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ABSTRACT

ARM is the leading processor architecture in the emerging mobile
and embedded market. Unfortunately, there has been a myriad
of security issues on both mobile and embedded systems. While
many countermeasures of such security issues have been proposed
in recent years, a majority of applications still cannot be patched
or protected due to run-time and space overhead constraints and
the unavailability of source code. More importantly, the rapidly
evolving mobile and embedded market makes any platform-specific
solution ineffective. In this paper, we propose RevARM, a binary
rewriting technique capable of instrumenting ARM-based binaries
without limitation on the target platform. Unlike many previous bi-
nary instrumentation tools that are designed to instrument binaries
based on x86, RevARMmust resolve a number of new, ARM-specific
binary rewriting challenges. Moreover, RevARM is able to handle
stripped binaries, requires no symbolic/semantic information, and
supports Mach-O binaries, overcoming the limitations of existing
approaches. Finally, we demonstrate the capabilities of RevARM in
solving real-world security challenges. Our evaluation results across
a variety of platforms, including popular mobile and embedded sys-
tems, show that RevARM is highly effective in instrumenting ARM
binaries with an average of 3.2% run-time and 1.3% space overhead.
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1 INTRODUCTION

ARM is the de facto standard for a variety of mobile and embedded
platforms — including smartphones and tablet computers, the “In-
ternet of Things” (IoT) devices, unmanned aerial vehicles (UAVs),
and other robotic vehicle systems. Unfortunately, as ARM-based
systems gain popularity, security threats to these systems have also
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increased significantly. Many severe security vulnerabilities have
been exposed recently in bothmobile devices and embedded devices.
For example, popular mobile platforms have experienced private
information leaks through private API abuse [19, 63], many IoT
devices have been exploited by malicious attackers for the invasion
of victims’ privacy [15, 17], and more importantly, compromised
UAVs threaten privacy, financial loss, and even human lives [4].
These incidents happen mainly because many ARM-based devices
remain unpatched and vulnerable to malicious attacks [28, 33].

Considering a large number of such applications on ARM-based
platforms are not open-source, a precise ARM binary rewriting
technique is highly desired. For example, most apps for iOS and
Android smartphones and tablets are closed-source. App developers
submit only the binary files of the apps to the marketplaces and
even the distributors (e.g., Google and Apple) do not have access
to the source code. While the submitted binary files go through
the vendor’s vetting process for security, privacy, and reliability, it
has been shown that such vetting processes can be easily tricked
by attackers [42]. Besides mobile applications, embedded systems
also commonly deploy only closed-source binaries. A few examples
include flight controller software for UAVs [11], IoT devices [21],
and robotic vehicles [32]. Security challenges in such binary-only
software can all be resolved with an accurate and practical binary
rewriting technique. For example, during the existing app vetting
process, one can instrument function calls in order to prevent the
use of private APIs, which has been reported as a major threat
in iOS platforms [42]. Such a binary rewriting technique is also
much in demand by embedded systems. For instance, S.F. Express
(one of China’s leading logistics providers) has recently adopted
UAVs for package delivery [10]. However, their UAVs run closed-
source embedded software [11], and attackers have already found
ways to hijack UAVs [9]. Consequently, it is highly desirable for
service providers to be able to secure their software through binary
rewriting techniques that are ready to be deployed in such cases.

Unfortunately, despite the pressing need for a highly effective
ARM binary rewriting technique, existing techniques have several
limitations. Dynamic analysis techniques incur large run-time and
space overheadwhich often leads to high energy consumption. They
are hardly deployed due to the nature of resource-scarce embedded
system environments. Moreover, many existing dynamic analysis
techniques [37, 40, 45, 50, 51] do not support non-rooted mobile
devices, hence limiting their applicability. Many static binary instru-
mentation techniques cannot instrument stripped binaries which
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Table 1: Comparison of static binary rewriting techniques

for stripped binaries. I: Fine-grained instrumentation at

arbitrary locations, MP: Multiple platform support, LSB:

Large-scale binary support, RO: Run-time overhead, SO:

Space overhead.

Target I MP LSB RO SO
BISTRO [43] x86 ✓ ✗ ✓ Medium Medium
Uroboros [62] x86 ✓ ✗ ✓ Low Low

SecondWrite (2011) [52] LLVM ✓ ✓ ✗ [2, 61, 65] Low High
SecondWrite (2013) [34] LLVM ✓ ✓ ✗ [2, 61] Low High

Dyninst [39] x86 ✗ ✓ ✓ High High
Pebil [49] x86 ✗ ✗ ✓ Medium High
REINS [65] x86 ✓ ✗ ✓ Low High
PSI [68] x86 ✓ ✗ ✓ High High

RevARM ARM ✓ ✓ ✓ Low Low

Table 2: Differences between theARMand x86 architectures.

ARM x86
Branch instructions B, BL, BLX, IT*, TBB*, TBH*, etc CALL, JMP, JE, etc
Program counter Readable and writable Not directly accessible
Instruction modes ARM and Thumb modes -
Instruction lengths Fixed (16 or 32 bits) Variable lengths
* These instructions are unique in ARM.

do not have symbolic or relocation information [41, 44, 54, 55]. Fur-
ther, most instrumentation techniques are incapable of supporting
ARM binaries, instrumenting any instruction at arbitrary locations,
or providing platform-agnostic instrumentation. We summarize the
limitations of the existing techniques in Table 1.

To overcome the above issues, we propose RevARM, a platform-
agnostic ARM-based binary rewriting technique for security appli-
cations. Unlike existing trampoline-based approaches which intro-
duce additional control flow to the instrumented program (leading
to a large overhead), RevARM leverages an insertion/replacement-
based approach (“insertion-based” for short) which inserts and
replaces ARM instructions with negligible run-time and space over-
head. Further, our insertion-based approach enables fine-grained
instrumentation at arbitrary binary locations. This capability en-
ables powerful security applications that other approaches are not
able to support, such as instruction-level code diversification and
advanced software fault isolation (SFI) enforcement [56, 67] which
we demonstrated in §4.

To enable insertion-basedARMbinary instrumentation,RevARM
addresses a number of challenges unique to the ARM architecture,
which prior work in x86 binary rewriting did not encounter/handle.
Based on our thorough analysis of ARM and x86, we found several
fundamental differences between the two architectures, summa-
rized in Table 2. These differences motivated our design of RevARM
to overcome four key challenges unique to ARM binary rewriting:
(1) the If-Then instruction, (2) branch table instructions, (3) direct ac-
cess to the program counter (PC), and (4) run-time instruction mode
switching. Further, RevARM supports both Mach-O and stripped
ARM-based binaries, which cover a majority of ARM-based mobile
and embedded platforms.

In summary, the contributions of this paper are as follows:

• We present the design and implementation of the RevARM tech-
nique. To the best of our knowledge, RevARM is the first fine-
grained platform-agnostic ARM binary rewriting technique that
is able to instrument instructions at arbitrary binary locations.

• We introduce a number of previously-unresolved, ARM-specific
challenges that must be addressed to enable insertion-based ARM
binary rewriting, and show how RevARM overcomes these chal-
lenges in detail.

• We demonstrate the effectiveness of RevARM in security applica-
tions through a number of case studies: inserting NOP instructions
for code diversification, patching vulnerable functions using ex-
tracted function binary code, preventing private API abuses in
iOS with SFI, and fine-grained run-time status monitoring of a
UAV control system. Our evaluation results show that RevARM
introduces only negligible run-time and space overhead while
providing powerful ARM binary rewriting capabilities.

2 BACKGROUND AND MOTIVATION

In general, binary instrumentation techniques can be categorized
into two groups: trampoline-based and insertion-based. Trampoline-
based instrumentation can be further divided into detour-based
and patch-based. In this section, we discuss why we chose to use
insertion-based instrumentation.
Detour-based Instrumentation: Detour-based instrumentation
techniques, such as Dyninst [39], Etch [54], and Detours [45], over-
write original instructions at a target instrumentation point with a
branch instruction. Whenever the branch instruction is executed,
it passes control to a newly inserted instruction block, called a
trampoline. Trampolines contain both the added instrumentation
logic and the original instructions overwritten by the branch in-
struction. This approach introduces new control flows to and from
the trampoline, which incur run-time overhead and space overhead
(for the inserted trampoline and control transfer code).

Further, there are corner cases that detour-based instrumentation
cannot handle, hence the correctness of the instrumented program
cannot be guaranteed. Fig. 1 shows an example case which detour-
based instrumentation cannot correctly handle. In this example, the
binary code represents a switch statement in C with four switch
cases (case 0-2 and default). The value of R2 determines which
case will be selected. The goal of the instrumentation is to limit the
range of memory addresses for the LDR instruction in case 0. As
described in Fig. 1a, BIC is inserted to limit the range of R5—which
the load instruction takes as an operand. A detour-based instrumen-
tation creates a trampoline (Tramp) and overwrites two original
instructions (the LDR instructions) with a branch instruction (B.W
Tramp). The trampoline contains the added instruction (BIC) and
the two original instructions. The branch instruction at the end
(B.W 0x8E6C) of the trampoline ensures that the rest of the original
program is executed after the trampoline. It is important that a
long-range branch instruction (four bytes) is used here because the
location of the trampoline can be far from the target instrumenta-
tion point. However, this violates the correctness of the program
since the original instructions may span multiple basic blocks. As
described in Fig. 1b, there is a control flow from the switch table to
case 1. In this case, the switch table does not know that case 1



0x8E60   TBB [PC,R2] 

0x8E64   DCB 0x2         case0

0x8E65   DCB 0x3 case1

0x8E66   DCB 0x4 case2

0x8E67   DCB 0x5 default
-----------------------------
0x8E68   LDR  R4,[R5]   case0

0x8E6A   LDR  R4,[R5+4] case1

0x8E6C   LDR  R4,[R5+8] case2

-----------------------------

BIC   R5, 0xF0000003

---------------------- -----

----------------------- -----

……

(a) Before instrumentation.

0x8E60  TBB [PC,R2] 
------------------------ ----
0x8E64 DCB 0x2     case 0

0x8E65 DCB ?? case 1

0x8E66 DCB 0x4        case 2

0x8E67 DCB 0x5       default

0x8E68 B.W Tramp   case 0

0x8E6A                case 1

0x8E6C LDR  R4,[R5+8] case 2
……

0xEE00    Tramp:

0xEE02 BIC  R5,0xF0000003

0xEE06 LDR  R4,[R5]  case 0

0xEE08 LDR  R4,[R5+4]case 1

0xEE0A B.W  0x8E6C

-----------------------------

-----------------------------

(b) Detour-based approach.

0x8E60   TBB [PC,R2] 
-----------------------------
0x8E64   DCB 0x2     case 0

0x8E65   DCB 0x5 case 1

0x8E66   DCB 0x6        case 2

0x8E67   DCB 0x7       default
-----------------------------

0x8E6C   LDR  R4,[R5]   

0x8E6E   LDR  R4,[R5+4] case1

0x8E70   LDR  R4,[R5+8] case2

0x8E68   BIC  R5, 0xF0000003   

case0
-----------------------------

-----------------------------

……

(c) Our approach.

Figure 1: Comparison between detour-based instrumentation and our approach.

was also moved to the trampoline, and thus the program will show
unexpected behavior.
Patch-based Instrumentation: Patch-based approaches [49, 64]
duplicate the target code to a new location. The instrumentation is
then applied to the duplicated code but not the original code. The
original code is modified to pass control to the duplicated code. The
aforementioned problem of detour-based instrumentation is solved
in this approach since new control flows are introduced while pre-
serving the original instructions. However, introduced control flows
leads to large run-time overhead. Further, this approach introduces
large space overhead for the duplicated code.
Our Approach: RevARM leverages insertion-based instrumenta-
tion, which directly inserts new instructions into target instrumen-
tation points without creating a trampoline or new control flow
transitions. In comparison with the two other approaches, RevARM
enables fine-grained instrumentation. In other words, RevARM nei-
ther introduces complex control flow transitions that can jeopardize
program stability (like trampoline-based instrumentation) nor du-
plicates original code which introduces large space overhead (like
patch-based instrumentation). Instead, RevARM stretches the target
binary to create slots for the new instructions to be inserted while
preserving the control flow. For example, inserting target instruc-
tions into the stretched switch case as described in Fig. 1c. This
approach has two advantages. First, RevARM can achieve binary
instrumentation with very low run-time and space overhead, which
makes it a practical technique for mobile and embedded systems
with limited resources. Further, RevARM is more versatile in enforc-
ing a variety of security applications. For example, RevARM can
enforce in-place, fine-grained code diversification by randomizing
the code address space to prevent control flow hijacks. However,
trampoline-based approaches cannot enable this since they cannot
perform in-place instruction insertion at arbitrary locations. Finally,
RevARM can enforce advanced SFI [56, 67] which requires chang-
ing the binary layout to guarantee that all indirect control flows
pass through SFI instructions (see §4).

3 DESIGN

3.1 Overview

Fig. 2 illustrates the overall design of RevARM. Overall, our binary
rewriting procedure goes through two stages: preprocessing and in-
strumentation. In the preprocessing stage, RevARM takes a binary
file and an instrumentation specification as inputs. An instrumen-
tation specification contains instrumentation information, such as

Instrumentation
Specification

Input Binary
Decompress

/Decrypt
Instrument
/Recompile

IR 
Transform

Output 
Binary

Preprocess

Disassemble

InstrumentationInput Output

Figure 2: Overview of RevARM.

security policies to enforce and target embedding/extraction loca-
tion for when RevARM instruments the input binary (i.e., to embed
new logic or extract existing logic).

The input binary is first decompressed or decrypted if it is in
a compressed or encrypted format. Then, RevARM disassembles
the input binary and interprets the instrumentation specification.
During the instrumentation stage, RevARM’s IR transformer ex-
tracts all the information that it needs from the input binary —
including instructions/data, instruction mode, type, size, reference
— and creates a representation, called internal representation (IR).
Based on the instrumentation specification, the instrumentation
algorithm inserts or replaces instructions to instrument the input
binary. Finally, RevARM updates the metadata of the input binary
with the new locations of code and data after instrumentation.

3.2 Preprocessing

Preprocessing consists of two steps: decompression/decryption and
disassembling. Our target input binaries can be Mach-O binaries or
stripped/unstripped binaries (e.g., UAV firmware binaries). Decom-
pression/decryption should be performed by leveraging existing
techniques [22, 23, 25]. Then, RevARM disassembles the input bi-
nary. During disassembly, it may be necessary to identify the mem-
ory location of a firmware image for proper disassembly. To resolve
this problem, RevARM performs analysis of the binary’s jump ta-
bles, indirect branch target values, and memory access patterns to
locate the firmware image region [57].

3.3 Instrumentation

In this section, we explain our instrumentation algorithm to handle
code sections. Other sections including data and metadata are de-
scribed in §3.9. To instrument an input binary (disassembled in the
previous stage), RevARM determines what instructions will be in-
serted or replaced based on the input instrumentation specification.
Our algorithm takes a disassembled binary, Pbin , and a set of new
instructions to insert or replace (INS) as inputs. RevARM follows



P: Program (P := <C, D>, where C := IR | IR+C)
C: Code section D: Metadata section
IR: List of IR I: Insertion Instruction
F: Function Address List FM: Mapping Function Entry to IR

INSType instype := INSERTION | REPLACE;
INSPosition inspos := BEFORE | AFTER;
INS ins := ins | ins · < IRnew, instype, IRpos, inspos>

Figure 3: Definitions of variables used in Algorithms 1-3.

Algorithm 1 Pseudo-code to translate the input binary into IRs.
1: function TranslateToIR(Pbin ) ▷ Transform instruction/data into IR in a code section
2: PI R := empty
3: for each ci ∈ Pbin .C do

4: iri := GetCorrespondingIR(ci ) ▷ Basic and common translation
5: iri .caddr := GetConcreteAddr(ci ) ▷ Actual address for an instruction/data
6: iri .instmode := GetInstMode(ci ) ▷ Determine the current instruction mode
7: iri .ranд := GetReferRange(ci ) ▷ Get reference range
8: iri .cref := GetReference(ci ) ▷ Get target reference instruction/data
9: if iri .type is an IT instruction then ▷ Get IT information
10: iri .IT _cond := GetITCond(ci )
11: iri .IT _children := GetITChildren(ci ) ▷ Get instructions influenced by the IT
12: end if

13: PI R := PI R · iri ▷ Insert initialized iri to PI R
14: end for

15: for each iri ∈ PI R where iri .type is Ref erence do ▷ Get reference info on each ir
16: iri .r ef := GetReferenceIR(iri .cref , PI R )
17: end for

18: return PI R
19: end function

three steps: TranslateToIR, InstrumentCode, and AdjustBinaryLay-
out. Then, it generates instrumented IRs and exports the IRs into
a new binary. We describe our algorithms using the definitions
shown in Fig. 3.
Translating Instructions to IRs: In this step, RevARM converts
each disassembled code section into IRs and Algorithm 1 presents
the pseudo-code. Specifically, RevARM first stores basic informa-
tion such as instruction address, instruction type, used registers and
immediate values in each IR (line 4). Also, it stores ARM-specific
information including the current instruction mode, reference, ref-
erence range, condition and related instruction/data addresses (lines
5-8). We note that related instruction/data address is any instruc-
tions or data used to perform addressing. For example, the entire
32-bit address space cannot be addressed with only one four-byte
instruction because these instructions cannot include the entire ad-
dresses and the opcode. Furthermore, RevARM stores If-Then (IT)
instructions’ information. IT instructions make following instruc-
tions to be executed conditionally. We will describe more details
in §3.4. RevARM should store IT conditions and all child instruc-
tions controlled by the current IT (lines 9-12). We note that child
instructions are sequential, and the number of IT_children and
IT_cond will be identical. Lastly, RevARM stores the converted IRs
in PI R (line 13). After generating the IRs, RevARM creates reference
pointers to any code segments referenced by each IR (lines 15-17).
Using such pointers, we can find the target reference instruction
or data even after binary layout modification. Then, the algorithm
returns a set of IRs (line 18).
Instrumentation:Algorithm 2 presents the pseudo-code for the in-
strumentation step. It inserts and replaces instrumentation instruc-
tions and data (lines 4-26). We note that there may be many replace-
ment instruction/data objects (lines 7-10). In addition, RevARM
records any changes to instruction/data addresses and sizes. This is
necessary to later adjust reference targets in the stretched binary.

Algorithm 2 Pseudo-code for code instrumentation.
1: function InstrumentCode(PI R , I N S )
2: PI R ’ := empty
3: stretchedSize := 0 ▷ Stretched size by the instrumentation
4: for each ircur ∈ PI R do ▷ Instrument all codes
5: irinstr := empty
6: if < irnew , instype, irp , inspos >∈ INS where ircur = irp then

7: if instype is REPLACE then ▷ Instruction replacement
8: str etchedSize += sizeof(ircur ) - sizeof(irinstr )
9: ircur .str etchedSize := stretchedSize
10: irinstr := irinstr · irnew
11: else if instype is I N SERT then ▷ New instruction insertion
12: if inspos is BEFORE then ▷ Insertion before the current instruction
13: ircur .str etchedSize := stretchedSize + sizeof(irinstr )
14: irinstr := irinstr · irnew · ircur
15: else ▷ Insertion after the current instruction
16: ircur .str etchedSize := stretchedSize
17: irinstr := irinstr · ircur · irnew
18: end if

19: stretchedSize += sizeof(irinstr ) ▷ Update stretched size after adjustment
20: end if

21: else

22: ircur .str etchedSize := stretchedSize ▷ Adjust the concrete address
23: irinstr := ircur
24: end if

25: PI R ’ := PI R ’·irinstr ▷ Store instrumented irinstr
26: end for each

27: for each ircur ∈ PI R ’ do ▷ Fix all erroneous references
28: ircur := ExtendReferenceInst(ircur ) ▷ Make an instruction reachable to its target
29: ircur := AdjustDerefTargets(ircur ) ▷ Fix all call targets
30: ircur := AdjustBranchStructure(ircur ) ▷ e.g., IT instruction
31: end for each

32: return PI R ’
33: end function

-------------------------

0x4C68 LDR R1,[PC+0x4000]

0x4C6C CMP R1, R0

0x8C68 DCD 0x10000

……

(a) Before instrumenta-

tion.

0x4C68 LDR R1,[PC+MAX]

0x4C6C CMP R1, R0

0x9D68 DCD 0x10000
-------------------------
……

(b) Unreachable data after

stretching the binary lay-

out.

0x4C68 ADD R1, PC, #0x1000

0x4C6C LDR R1,[R4+0x4000]

0x4C6E CMP R1, R0

0x9D6C DCD 0x10000
-------------------------
……

(c) Correctly extending

the short reference range

by RevARM.

Figure 4: An example where RevARM makes unreachable

data reachable by supplementing the short reference range.

RevARM then extends the code segments to make branch/data
loading instructions reachable (lines 27-31). Note that the insertion
of instructions/data usually causes stretched distances between
referencing/referenced instructions/data. As mentioned before, this
may push a referenced instruction beyond the reach of a referenc-
ing four-byte instruction. To resolve this problem, it is necessary
to replace unreachable instructions with one or multiple reachable
instructions. For example, a two-byte instruction can be replaced
with a four-byte instruction by substituting a four-byte LDR for a
two-byte LDR. However, there are cases where an LDR or VLDR in-
struction’s offset must also be updated to reach a target address. In
this case, RevARM prepends an ADD instruction. Lastly, RevARM
adjusts all reference instructions/data to ensure that they point
to their original targets. We describe such a case in Fig. 4. Note
that RevARM does not consume an additional register in Fig. 4 as
RevARM uses a destination register which will store the result of
the LDR. However, there are cases where such registers are unavail-
able, such as VLDR which does not change any general register. To
complement this case, RevARM checks any following instructions
and searches for any overwritten register without a subsequent
read in the possible paths. Otherwise, RevARM adds a PUSH and POP
for a used register to reference the target data. Note that RevARM



Algorithm 3 Pseudo-code to adjust the layout of the instrumented
binary.
1: function AdjustBinaryLayout(PI R )
2: stretchedSize := 0
3: for each ircur ∈ PI R do ▷ Adjust instruction/data address
4: if iri .caddr is not aligned then

5: stretchedSize += GetAlignment(ircur ) ▷ Keep the alignment correct
6: end if

7: ircur .caddr := AdjustInstAddress(ircur , stretchedSize) ▷ Adjust each address
8: for each irderef that dereferences ircur do

9: irderef := AdjustDerefTargets(irderef ) ▷ Fix all call targets
10: end for

11: end for

12: return PI R
13: end function

also considers conditional execution. In particular, RevARM passes
a condition field if any replaced instruction has it. Lastly, RevARM
must take special care of every If-Then instruction (IT) in the instru-
mented program, which is a unique type of a conditional instruction
in ARM. We describe how RevARM handles this instruction in Sec-
tion 3.4.
Adjusting Binary Layout: In this step, RevARM adjusts the bi-
nary layout as described in Algorithm 3. Specifically, RevARMmod-
ifies each instruction/data address based on the size of the stretched
code from Algorithm 2 and the necessary alignment. Stretching the
input binary inevitably leads to violating the alignment which was
originally assigned to the original binary. Therefore, we preserve the
original alignment by adding or removing NOP instructions appro-
priately, similar to modern compilers (lines 3-11). Then, RevARM
adjusts or replaces instructions/data to ensure the original control
flows remain intact (lines 7-9).

3.4 If-Then Instruction

IT is a unique instruction of ARM that allows multiple instructions
following the IT instruction to become conditional. For example, an
LDR instruction that follows an IT instruction may or may not be
executed depending on the condition specified in the IT instruction.
We found that it is critical to correctly handle all of IT instructions
as an incorrect handling of IT instruction may cause an erroneous
control flow at run-time. However, handling IT is challenging due
to its dynamic and complex nature, and, unfortunately, existing
works do not address the problem. In this section, we describe how
to handle IT instructions.

IT consists of an opcode and two fields: firstcond and mask.
firstcond indicates which conditions will be enforced on the fol-
lowing instructions. mask determines how many instructions that
follow the IT instruction will become conditional, namely an IT
block. According to mask values, conditions of executed instructions
can be reversed if these instructions belong to the IT block.

To handle IT, we set the IT condition flag in the IR representing
each instruction and insert an IT at every fourth instruction in the
IT block. However, there are two more complications that RevARM
needs to consider. First, each IT can maximally cover only the
following four instructions. Second, the first condition cannot be
reversed. This situation is described in Fig. 5. In Steps 1 and 2 (the
target of the two LDR instructions are unreachable after instruction
insertion. In this case, one more IT must be inserted because the
IT instruction cannot cover five instructions due to the length
limitation. Therefore, SUB must belong to a new IT block at Step

DATA 

CODE 

IT:EQ LDR LDR 

T E T 1.Pre-Insertion

REACHABLE:Y

DATA SUB 

SUB IT:EQ ADD ADD LDR LDR IT:NE

T T T TT 4.Revise IT

REACHABLE:Y

DATA CODE DATA 

DATAIT:EQ LDR LDR 

T E T 2.Post-Insertion

REACHABLE:N

CODE DATASUB 

DATA CODE SUB IT:EQ ADD 

T TT ET 3.Extend Instruction

REACHABLE:Y

DATA LDR ADD LDR IT:EQ

: Partially Reachable Space

: Reachable Space

: Unreachable 

: Reference 

: Unreachable Space

Figure 5: Handling IT instructions.

3. Then, firstcond should be reversed because the first condition
must always be true and IT condition of SUB is a reversed value.

There are two cases which lead to the above case. First, instruc-
tions whose reference range is short belonging to an IT block. Even
with small code insertions within their reference ranges, their refer-
ence ranges may be violated. Second, some instructions are inserted
into an existing IT block. In this case, inserted instructions are en-
forced by the IT condition at the inserted address. However, we
should consider two IT restrictions before insertions. The first re-
striction is that any instructions within IT block cannot set the
condition flags except CMP, CMN, and TST. These behave differently
from traditional branch instructions. Therefore, we must not re-
place IT with branch instructions such as B, BL, BLX, BX. In
addition, some instructions such as B cannot be inserted into an
IT block. In this case, RevARM rejects the insertion because such
trials are invalid, resulting in unpredictable results when they are
executed [6]. Finally, some branch instructions such as BX can be
inserted with location limitation to the end of an IT block.

3.5 Branch Table Instructions

In x86, a switch statement in C/C++ is often implemented using
conditional jump instructions (e.g., JE). In contrast, ARM provides
special branch instructions for switch statements: Table Branch
Byte (TBB) and Table Branch Halfword (TBH). These branch in-
structions dereference the jump table location first and then select
the target address for the chosen case. Unfortunately, the branch
instructions have limited reference distances and this limits the
size of inserted instruction/data in ARM binary rewriting. To over-
come this limitation, we handle the branch table instructions dif-
ferently based on the reference distances that the instrumentation
requires: short switch with TBB, medium switch with TBH, and
long switch with LDR.

In Fig. 6a, we show an example of the short switch with TBB.
The jump table is referenced by PC because the current PC value
plus four which indicate the next PC value is the jump table location.
Then, the value of R2 determines which case will be selected. TBB



0x8E60   TBB [PC,R2] 

0x8E64   DCB 0x2         case0

0x8E65   DCB 0x6 case1

0x8E66   DCB 0xA case2

0x8E67   DCB 0xC default
-----------------------------
0x8E68   LDR  R4,[R1]   case0

0x8E7C   LDR  R4,[R3] default

-----------------------------

-----------------------------
……

……

(a) Before insertion.

0x8E60   TBB [PC,R2] 

0x8E64   DCB 0x2         case0

0x8E65   DCB 0xA case1

0x8E66   DCB 0xE case2

0x8E67   DCB 0x10? default
-----------------------------
0x8E68   LDR  R4,[R1]   case0

0x8E84   LDR  R4,[R3] default

-----------------------------

-------------------- --------
……

……

Fail to inserting 8bytes

(b) Insertion failure due to the limited

reachable distance.

0x8E60   TBH  [PC,R2,LSL#1] 

0x8E64   DCW 0x04         case0

0x8E66   DCW 0x0C case1

0x8E68   DCW 0x10 case2

0x8E6A   DCW 0x12 default
-----------------------------
0x8E6C   LDR  R4,[R1]   case0

0x8E84   LDR  R4,[R3] default

-----------------------------

-------------------- --------
……

……

8bytes were inserted

(c) 8-byte instruction insertion.

0x8E68   DCD 0x8E78+1         case0

0x8E6C   DCD 0x8E80+1 case1

0x8E70   DCD 0x8E88+1 case2

0x8E74   DCD 0x908C+1 default

-----------------------------

-----------------------------
0x8E78   LDR  R4,[R1]   case0

0x908C   LDR  R4,[R3] default
-------------------- --------
……

……

0x8E60   ADR R4,PC,#0x8

0x8E62   LDR PC,[R4,R2,LSL#2]

0x8E64   ALIGN 4         

200 bytes were inserted

(d) More than 200-byte instruction in-

sertion.

Figure 6: An example of making unreachable switch statement reachable via instruction/data replacement.

basically reaches only 0x22 relative address because only one byte
is assigned to it. In other words, it can maximally reach 0x8E82.
Therefore, the default case located at 0x8E84 is unreachable if 8
bytes of instructions are inserted as described in Fig. 6b. In order
to resolve this problem, RevARM replaces the short switch with
medium switch consisting of TBH and two-byte relative address
values as illustrated in Fig. 6c.

However, when more than 200 bytes of instructions are inserted,
even medium switch cannot reach the default case since TBH’s
maximum reachable distance is 0x202. In this case, RevARM re-
places medium switch with long switch as described in Fig. 6d.
Unlike both TBB and TBH, long switch relies on LDR and absolute
addresses which cover the whole address space. In order to jump to
the right location, ADR resolves the jump table location by adding
the next PC value and relative jump table address via ADR. Then,
LDR dereferences the jump table address stored in R4, selects one of
absolute addresses using R2 and then updates the PC value with the
selected jump address. We note that the last bit of each absolute
address should be set if referenced instructions are thumb-mode
instructions as described in §3.7. Also, each absolute address should
be word aligned as illustrated in §3.8.

3.6 Direct Access to the Program Counter

The ARM architecture handles the PC register as a general register.
This allowsmany instructions (e.g., LDR, MOV, ADD and etc) to directly
read from and write to PC. Such access to PC involves dereferencing
the target address before control transitions or referencing data,
which occurs frequently in position independent code (PIC). In order
to properly instrument the binary, RevARM dereferences the target
address. Such dereference requires backward slicing [66] to figure
out which instructions (e.g., LDR to load pointer values and ADD
to modify a referenced address value) involve reading or writing
PC. This is because most PC register accesses are performed via
multi-staged address dereferences. After finding sliced instructions,
RevARM dereferences the target address and modifies the correct
address value on instructions or code pointer values to keep code
and data dereference correct.

Fig. 7a presents an example of code address dereference. Deref-
erence is done by executing two instructions: LDR and ADD. In this
case, the target function (PC-relative address at 0x8CB8) is loaded
by LDR. Then, ADD adds the PC value to resolve the target address.
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Address Load.....
0x8982 BLX      R1

0x8980 ADD      R1,PC ; sub_8C78

0x897A STR      R7,[SP,#0xC8+var_2C]

0x8978 LDR      R1,=(sub_8C78-0x8984)

0x897C STR      SP,[SP,#0xC8+var_24]

------------ --------------------------

0x8CB8 DCD sub_8C78-0x8984 

(a) Relative code address dereference.
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e0xA018 MOVW     R2,#(WiFi_pass-0xA026)

0xA01E MOVT     R2,#(WiFi_pass-0xA026)

0xA026 BLX      objc_msgSend
....

0xA01C MOV      R4,R5

0xA020 STR      R4,[SP,#0x30+var_30]

0xA022 ADD      R2,PC ; "WiFi_pass"

(b) Relative data address dereference.

Figure 7: Examples of the address dereference using the PC.

After that, BLX will be executed to jump to 0x8CB8. In the case of
the data address dereference, both MOVW and MOVT puts the relative
address of data in R2. Then, PC is added to R2 via ADD. This derefer-
enced data address is used as a parameter of objc_msgSend which
is a typical iOS function call.

3.7 Run-time Instruction Mode Switching

32-bit ARM architecture provides two interchangeable instruction
mode (ARM and Thumb). Unlike conventional architectures, ARM
allows a program to switch the instruction mode even at run-time.
This adds new challenges to ARM binary rewriting because many
real-world ARM binaries are written in both ARM and Thumb
instructions to reduce the binary sizes. In order to properly han-
dle the instruction mode switching while keeping control flows
correct, RevARMmust abide by the branch rule of run-time instruc-
tion mode switching. There are three branch instructions capable
of changing the instruction mode: BLX, BXJ, and BX. When they
triggers branch operations, they have both target address and in-
struction mode bit. Such instruction mode bit is always located at
the lowest bit of the address value. If the lowest value is set to 1 then
the jump target executes in the Thumb mode. Otherwise, it will
be executed in the ARM mode. Designed to be aware of the mode
switching, RevARM separately handles direct and indirect branch
instructions. In terms of the direct branch, RevARM simply set or
clear the instruction mode bit according to the instruction mode
of the referenced instruction. On the other hand, RevARM should
perform backward slicing to dereference code pointer values. Then,
it modifies pointer values in instructions or data. Further, when
inserting instructions into the binary, RevARM makes sure that
instrumented program uses the correct instruction mode before
executing the inserted instructions. For example, RevARM ensures
that the CPU switches to the Thumb mode whenever the inserted



Thumb instructions are executed while the instrumented program
is running in the ARM mode.

3.8 Alignment

In this section, we described the three alignment cases which
RevARMmust correct: code, data, and reference address alignment.
Code Alignment: Since the instruction mode can be switched dy-
namically in ARM, all ARM mode functions (i.e., functions written
in ARM instructions) and Thumb mode functions (i.e., functions
written in Thumb instructions) must be aligned to a word (4 bytes)
and a half-word (2 bytes), respectively. However, after the instru-
mentation, the stretched binary may not have the correct alignment,
especially when the binary contains both ARM and Thumb mode
functions. In such a case, RevARM re-align the code by inserting
or removing NOP instructions before each function affected by the
instrumentation, similar to how a compiler handles code alignment
while generating the machine code.
Data Alignment: ARM allows instructions to load data in a code
section in alignments of byte, half-word, word and double-word.
From our observation, such data are aligned to word or double-
word. Even if there are byte and half-word data, they will be word
aligned by compilers. Therefore, RevARM aligns word data in 4
bytes and double word in 8 by inserting or removing NOP.
Reference Address Alignment: The Thumb mode supports half-
word aligned addressing. However, there are several instructions
that cannot access half-word aligned addresses. For example, VLDR,
half-word-sized LDR and ADR — because their two lowest address-
ing bits are ignored. These mostly reference data in a text section
due to their short reference ranges. Except data referenced by TBB
and TBH, they are aligned to word or double-word. Therefore, it is
not necessary to add additional logic to reference data in a code
section. However, ADR sometimes needs to reference half-word
aligned addresses. RevARM handles these by reordering indepen-
dent instructions or replacing them with half-word-addressable
instructions while such cases rarely happen.

3.9 Code Pointers

Data and metadata sections contain code pointers which must be
adjusted with respect to the new address space layout modified by
our instrumentation. However, it is challenging to identify code
pointers in binaries because semantic information for those code
pointers has been removed by the compiler. In order to solve this
problem, RevARM adopts similar approaches proposed in previous
work [62, 69] to recognizing pointer-like data. Specifically,RevARM
checks whether pointers reference an instruction start address in a
certain section. Note that we must also consider the branch rule of
the Thumb instruction mode. As illustrated in §3.7, the lowest bit
of the Thumb instruction address have to be set. Therefore, we can
filter out code pointer-like data if it refers to Thumb instructions
without setting the instruction mode bit.

3.10 Mach-O Metadata

Metadata handling is critical for Mach-O binaries since the validity
of the metadata is checked by Apple’s vetting process in order for bi-
naries to appear in the App Store.We note that RevARM is designed

to handle other popular binary formats (e.g., executable and link-
able format (ELF)). Although the ELF format is well-documented
[1] and supported by other binary rewriters, the official document
which describes the Mach-O format only covers a few parts, leav-
ing many other parts uncertain. Below we describe these uncertain
parts, which can often lead to an incorrect binary transformation.

To handle the Mach-O binaries, RevARM should revise load
commands and metadata sections. Load commands let the loader
identify how to load an input binary in specified addresses. On the
other hand, metadata sections contain symbols and other informa-
tion that the linker uses.

For load commands, RevARM modifies file offsets, virtual ad-
dresses and sizes of the file and virtual address space for modified
segments, sections and function start addresses to adjust the new bi-
nary layout. For metadata sections, RevARM also modifies identical
types of information described for the load commands.

More importantly, variable-length addresses are also stored in
the metadata sections. Such addresses are encoded with uleb128 as
the DWARF format stores them. For example, the dynamic loader’s
information consists of a set of nodes which respectively encoded
symbols and other nodes absolute or relative addresses. Function
start addresses are encoded in the same way. Hence, RevARMmust
increase the sizes of encoded addresses because of the stretched
values of addresses between functions and symbols, which lead
to larger encoded address values. As a result, RevARM stores the
original data and reconstructs it after instrumentation.

4 EVALUATION

We tested RevARM on two commodity target systems: a mobile
system and an embedded system. Our target mobile system is iOS
version 10.0.2. For our target embedded system, we selected a 3DR
IRIS+ [27], a popular quad-copter UAV based on the 3DR Pixhawk
micro-controller [20]. Pixhawk contains an ARM Cortex-M4 pro-
cessor with 256KB SRAM, and a 2MB flash memory, which is quite
representative of a resource-constrained environment. The UAV is
controlled by ArduPilot [12], a robotic vehicle controller program.
ArduPilot supports many different types of unmanned vehicles
(UxVs), such as copters and planes, as well as ground and underwa-
ter vehicles. For any UxV based on the Pixhawk micro-controller,
ArduPilot runs the NuttX [29] real-time operating system (RTOS)
along with many other operational components, including device
drivers, libraries, and applications. In addition, ArduPilot relies
on MAVLink [18] which is responsible for communicating with a
ground control station (GCS) for the UAV. The GCS sends control
commands abiding by the MAVLink protocol. We tested RevARM
on such large-scale firmware to show that our approach is effective
on complex ARM binary programs. In addition, we instrumented
Mach-O binaries and stripped/non-stripped firmware binaries us-
ing RevARM to test the effectiveness of the binary rewriting on
our iOS and UAV target devices, respectively.

In order to verify the correctness of RevARM’s instrumented
binaries, we conduct an experiment that inserts NOP instructions
in between every instruction in the binaries. Then, we run the
instrumented binaries with various workloads. Specifically, for bi-
naries on ArduPilot, we run all flight missions provided by the
vendor (127 missions) on the instrumented binaries. Moreover, we



Table 3: Instrumentation APIs of RevARM

Prototype Description
preproc Responsible for all preprocessing procedures
instrument Main instrumentation function
rearrange Control flow rearrangement to keep control flows intact
flush Write an instrumented binary to a binary form

manually trigger all possible operations supported by ArduPilot
(77 operations). For the instrumented iOS apps such as Twitter,
Gmail, Amazon, and PerformanceTest, we exercise all functionali-
ties displayed on the screen (e.g., click all buttons, explore all menu
items).

RevARM is built upon an IDA-Pro 6.8 Plug-in which is respon-
sible for disassembling the ARM binaries and identifying func-
tions [16]. However, the RevARM technique is generic enough to
be directly ported to other disassembly libraries (e.g., Capstone
[24] or Radare2 [31]). In addition, we thoroughly evaluate the com-
patibility of RevARM on binaries generated by different compilers.
Specifically, we analyzed binaries generated by popular compilers
on three different platforms: GCC 4.9.3 for embedded systems (e.g.,
ArduPilot), GCC 4.8.2 on top of Linux, and Clang on iOS. Our result
shows that RevARM is able to instrument binaries from all these
compilers/platforms, without breaking any of the binaries. Finally,
RevARM provides a set of APIs in order to facilitate instrumenta-
tion and functional extension on ARM binaries. We summarized
these APIs in Table 3. In this section, we show that RevARM can
be used in various security applications: fine-grained code diversi-
fication, vulnerable function patching, private API call prevention
via SFI [56, 59, 67], and control system status monitoring. Then, we
show run-time and space overhead.

4.1 Case Study I: Fine-grained Code

Diversification

Code diversification is a defense technique that probabilistically
limits the impact of an attack to a known target [48]. For example,
randomizing the instructions in a binary program can prevent a
wide range of code-reuse attacks which rely on prior knowledge
of the layout of the victim binary code. Moreover, ROP attacks
often chain together gadgets in binaries to construct attack pay-
loads which are also sensitive to the layout of the binaries. Code
diversification, which randomizes the layout of a binary, can signif-
icantly reduce the success rate of these attacks by randomizing the
locations of code (and ROP gadgets) in the binary [46].

In this case study, we show the application of RevARM on fine-
grained code diversification. Specifically, we used RevARM to per-
form instruction-level diversification on the ArduPilot firmware
and four different iOS apps, including Gmail, Twitter, Amazon, and
PerformanceTest Mobile benchmarking app [30]. Specifically, we
inserted an increasing number of NOP instructions at arbitrary lo-
cations in the binaries and verified that all of the programs run
correctly. To test the code diversification with the finest granularity,
we inserted a NOP instruction before every instruction in the target
binary. The details of the experiment is summarized in Table 4.

Table 4: Fine-grained code diversificationwith NOP insertion.

Program Code size Diversified code size # of inserted NOPs Space overhead
Twitter 7KB 12KB 2,448 1.39%
Gmail 2,367KB 3,973KB 786,909 1.78%

PerformanceTest 117KB 191KB 35,688 2.1%
Amazon 9,950KB 16,995KB 3,372,547 2.77%
Firmware 596KB 1,024KB 201,678 3.26%

Table 5: List of real-world bugs in ArduPilot. We patch these

bugs in the stripped firmware binary using RevARM with-

out using any symbol information.

Target Bug ID Module Description
Memory B1 [13] ArduCopter String null-terminated bug
Memory B2 [8] PX4 driver Double free bug — Heap corruption
Memory B3 [7] PX4 driver Potential integer overflow
Memory B4 [14] PX4 driver Parsing bug — Buffer overflow
File system B5 [5] ArduCopter Duplicated directory creation
File system B6 [3] NuttX File system clustering

4.2 Case Study II: Vulnerable Function

Patching

In this section, we show that RevARM can patch vulnerable func-
tions in a stripped ArduPilot firmware binary. Vulnerable iOS apps
are removed by Apple from App Store without an official announce-
ment, but ArduPilot vulnerabilities can lead to property damage or
even personal injury. Thus, we choose to demonstrate patching the
ArduPilot firmware.

The target bugs we patched using RevARM are listed in Table 5.
B1 is a null-terminated string bug in the GCS_MAVLink module in
the ArduPilot firmware. The buggy function incorrectly uses the
communication protocol between the UAV and the GCS. Specifically,
it can send a wrong status report to the GCS and cause the GCS
to send back an invalid command. B2 is a double free bug in a
device driver, called i2C. A device pointer is not assigned null after
heap deallocation by mistake. This leads to a heap corruption when
later code tries to illegally deallocate the same heap memory again,
which was already deallocated previously. The B3 case is an integer
overflow bug in an I/O device driver. The driver computes a float
actuator state value and an unregulated computation of the value
causes an integer overflow, which leads to an unexpected flight
control state. For B4, the bug is a stack buffer overflow in i2C.
This target function calls the sscanf function to copy an input
string to a fixed-size local buffer. Before our patch was deployed,
there was no string length checking. Therefore, it can lead to a
stack overflow which allows an attacker to hijack the control flow
via manipulation of a return address. On the other hand, B5 is
a file system bug in ArduPilot. The module DataFlash_File is
responsible for logging UAV operation information on an SD card.
This bug leads to SD card corruption by creating two directories
for logging because this function did not check whether a logging
directory was previously created. B6 is a second file system bug
in the NuttX RTOS. Two vulnerable functions are responsible for
file read and write respectively. However, they do not check file
system cluster boundaries when reading and writing file system,
which leads to file content corruption.



Patching the above cases require two steps, extract and embed-
ding functions. In the extraction step, we used a patched binary
and let RevARM extract the functions’ instructions, data, and refer-
ence information. However, there are two types of data we should
handle: RevARM first must store all data referred by any instruc-
tion that belongs to a function, and second, if this data is a pointer
value, RevARM must also preserve its reference information. Then,
RevARM stores extracted function information in an instrumenta-
tion specification file. In the embedding step, RevARM interprets
the instrumentation specification file and replaces/inserts the code
and data. RevARM basically replaces each instruction with a new
instruction. Any remaining instructions are inserted between the
end of the code and the start of the data. Then, RevARM rebuilds
reference relationships based on the instrumentation specification.
However, there are a few cases to handle when patching data: If
new data belongs to a function, then RevARM inserts it into the
code section. However, the original location of some data does not
belong within a function. We can see this example in B4. B4 regu-
lates stack overflow by changing the destination string of sscanf.
Although we can replace such unpatched string with a new string,
there is a possibility that the string is reused by other functions.
Therefore, we insert such data at the end of its original section.

Other than the above cases, there are a substantial number of
patched bugs in the ArduPilot repository. RevARM assumes that
there is no open source repository for its target (as with many
commercial UAVs), andwe only leverage this information to identify
which functions are vulnerable and their locations. This technique
is also applicable to library patches since libraries for UAVs are
statically compiled in their firmware. If other UAVs are patched and
the patched vulnerabilities are in commonly used libraries, we also
can utilize them for patches across other vulnerable systems.

4.3 Case Study III: Preventing Private API

Abuses via SFI

Abusing private APIs has been shown to be an iOS specific attack
vector [19, 63]. Unlike public APIs, which Apple allows developers
to freely use, private APIs are undocumented functions that third-
party developers are not allowed to directly use. This is because
many of the private APIs are security-critical, which could allow
an attacker to leak the user’s private information and maliciously
control the device.

Several works have attempted to prevent the abuse of private
APIs, such as MoCFI [40] and XiOS [38]. However, these have
technical limitations. For example, MoCFI [40] requires jailbreaking
the target iOS platform for instrumentation. Similarly, XiOS [38]
provides limited protection on private APIs [42] by preventing
attackers from inferring the addresses of the private APIs.

To resolve the above issues, RevARM applies SFI to prevent
the code section (__text) from accessing private APIs and sym-
bol address modifications. To enable this, RevARM modifies the
code sections to block write access to symbol pointers and indirect
branch to library codes directly. We note that RevARM allows the
stub code section to access both sections to preserve the correct-
ness of the program because the stub code section is responsible
for accessing symbol pointers and library functions.

In order to enforce SFI, RevARM also needs to modify the bi-
nary layout and inserts SFI instructions. To modify a binary lay-
out, RevARM modifies sizes of segments and sections in the input
binary. For SFI instruction insertions, we insert SFI instructions
(described in NaCl for ARM [56]). However, SFI does not work well
simply with SFI instruction insertions. Control flows must execute
SFI instructions before potentially vulnerable instructions. Con-
sequently, it requires aligning each SFI instruction and function
address, since some attacks can directly jump to target instructions
without executing SFI instructions. In order to adjust this alignment,
we inserted padding instructions to forcibly fit the alignment.

Lastly, in order to evaluate the efficiency of our added SFI pro-
tection, we implemented two attack cases. Private API calls using
inferred and actual API addresses. The first attack we implemented
was described earlier in XiOS [38]: The private API addresses can be
inferred by a statically loaded symbol, (dyld_stub_binder) before
app execution. Attackers can abuse this symbol with some offset
to call private APIs. We implemented this attack case by calling
a dynamic library loading function, which is a private API and
can load arbitrary libraries including private libraries. However,
our SFI enforcement does not allow to access such symbol sec-
tion directly from code sections. Therefore, our SFI enforced app is
protected against attacks which try to infer private API addresses.
The second attack is calling private APIs using direct addresses
via signature-based scanning to find target private APIs [42]. XiOS
cannot prevent such attack because XiOS only hides symbol values
— not preventing the call to a private API. On the other hand, our
added app protections do prevent such attacks because SFI prevents
malicious accesses to private APIs.

4.4 Case Study IV: Control System Status

Monitoring

Control systems heavily depend on parameters, commands of the
ground control station (GCS), sensor inputs, control status and
control model. Out of such factors, such a control system deter-
mines a new system status based on dynamic variables, including
sensor input, command, current control status and control model.
In order to prevent and observe unexpected behavior within such
a system, it is necessary to observe such dynamic variables. As a
case study of monitoring these variables, we insert our monitoring
instrumentation into a UAV’s firmware.

An adversary can cause an anomalous system status by changing
dynamic control variables into exceptional values, which leads
to system disruption or crash. Such system disruption has been
achieved by sensor attacks via intentional ultrasonic signals [58]
and control hijacks [9] via wireless communication modules. In
order to prevent such attacks, we inserted control variable status
monitoring as the first step of anomaly system status regulation.
Our instrumentation lets UAVs trace status variables and sends
these traces to a remote UAV managing system.

We summarize our target functions in Table 6. All of them are
related directly to the above attack scenarios. For example, in the
’intentional ultrasonic signals’ case, our target UAV utilizes multiple
sensors some of which are vulnerable to intentional ultrasonic
signals [58]. Furthermore, a communication protocol vulnerability
can be abused by malicious attackers. One demonstrative example



Table 6: List of ArduPilot functions instrumented for the

run-time status monitoring of the flight controller.

Class Function Purpose of instrumentation
AC_PID get_p, get_i, get_d Get PID control values
AP_Mount_Servo move_servo Get the desired motor speed
AC_AttitudeControl rate_bf_roll_pitch_yaw, etc Get 3-axis attitude for balancing
AC_PosControl set_pos_target Get the target position of the UAV
AP_InertialNav_NavEKF get_altitude, get_latitude, etc Get estimated geometric information
AP_GPS velocity, location, etc Get estimated velocity and location
AP_InertialSensor get_gyro, get_accel Get estimated inertial sensor values
None (OS C Function) nsh_parse Get shell commands
GCS_MAVLINK handleMessage Handle MAVLink messages from GCS
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Figure 8: Run-time and space overhead with CoreMark.

is the SynerComm A-Team’s work [9] which shows how to hijack
a UAV using MAVLink. This communication protocol is widely
used in UAVs including ours. With our status variable monitoring,
security investigators are able to determine which functions are
vulnerable or involved in an anomalous system status. Then, they
can not only test but also limit anomaly values by adding robust
control functions based on the status variable monitoring.

4.5 Run-time and Space Overhead

In this section, we evaluate any run-time and space overhead in-
duced by RevARM on our two target platforms: iOS and UAV. In
order to measure the instrumented ArduPilot firmware overhead,
we ported the CoreMark [26] benchmark to the firmware as an
application run on NuttX. Then, we performed four general instru-
mentation cases: NOP, null function call, insertion-based function
counting and function call-based function counting. In the NOP case,
we inserted a NOP instruction to the entry of every function. A null
function call involves executing two branch instructions. There are
two function counting scenarios in our experiments: First is func-
tion counting on the function start addresses directly. The other is
performed by counting at the call site of each function.

Fig. 8 presents both run-time and space overhead measurements
for these four cases. In terms of run-time overhead, NOP, null func-
tion call, insertion-based function counting and function call-based
function counting respectively show 1.13%, 2.57%, 3.2% and 5.9% run-
time overhead and 1.23%, 1.31%, 1.37% and 1.28% space overhead.
Among the above tests, the two function counting experiments best
show the trade-off between run-time and space overhead. Insertion-
based function counting shows smaller run-time overhead then
function call-based function counting because function call-based
function counting is similar to trampoline-based instrumentation.
Such approach introduces additional expensive control transitions
unlike our insertion-based approach.

To measure instrumented iOS app run-time overhead, we used
the PerformanceTest Mobile benchmarking app [30] on an iPhone
5s. Unlike the above experiments, here we applied our SFI to this app
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Figure 9: Run-time overhead of RevARM-based SFI on iOS.

and ran it to measure the overhead. The PerformanceTest Mobile
performs benchmarks into five different areas: CPU, Disk, Mem-
ory, 2D and 3D graphics consisting of 17 sub-experiments. Then,
it shows scores for each experiment area. Using this benchmark,
we tested SFI on this app to measure their overhead. This result is
shown in Fig. 9. CPU, disk, storage, and memory showed smaller
run-time overhead: 3.4%, 2.8%, and 6.3%, respectively. The highest
overhead was the memory test due to more frequent memory ac-
cesses. On the other hand, 2D and 3D show negligible run-time over-
head (< 0.5%) since their performance depends largely on graphic
libraries. We also experimented with enforcing SFI on real appli-
cations (such as Amazon, Gmail, Twitter) and found an increase
in 31.3% on average. Make sure that both run-time and space SFI
overhead includes both SFI codes and our tool’s overhead in this
case. We show our tool’s own overhead in Fig. 8.

5 RELATEDWORK

Static Binary Instrumentation: There are many existing static
instrumentation techniques developed for x86. A number of tech-
niques leverage symbolic information to accurately locate and
rewrite binary code [41, 44, 54, 55]. Detour-based approaches [45,
54] are incapable of instrumenting instructions at arbitrary loca-
tions but the inserted code for trampoline and control transfers
incur additional run-time and spatial overhead. Unlike detour-based
approaches, patch-based approaches [49, 64, 68] duplicate the orig-
inal code and patching the duplicated code. However, such code
duplication causes large space overhead. Dyninst [39] utilizes both
approaches depending on the specific instrumentation task.

More similar to RevARM, insertion-based approaches directly
insert into or replace instructions and data in a target binary with-
out adding a control transition. BISTRO [43] inserts code into a
stretched binary. Also, it supports function patching as our work
does. REINS [65] is a machine-verifiable binary rewriting technique
that protects a target program from unsafe branch targets by in-
serting code into the binary. Uroboros [62] is based on an advanced
disassembling technique [61] to convert a binary into their own
internal representations and perform instrumentation on those.

All of the above techniques are designed for the x86 architecture.
Due to the unique challenges in handling ARM-specific instruc-
tions (§3), their approaches are limited to supporting x86 only and
can hardly be applied to ARM binary instrumentation. Dyninst
is going to support for rewriting only 64-bit ARM binaries as an
experimental feature, but not 32-bit, due to the specific challenges



related to rewriting 32-bit ARM binaries. Rewriting 32-bit ARM
binaries is much more challenging than 64-bit ARM binaries since it
requires handling: (1) both 16-bit and 32-bit instructions, (2) much
more diverse branch instructions, (3) instructions with a limited
address dereference distance, and (4) dynamically switching ARM
and Thumb instruction modes. RevARM enables 32-bit ARM binary
rewriting by addressing these fundamental challenges that existing
works (including Dyninst) do not solve. Furthermore, RevARM is
capable of rewriting Mach-O binaries while all existing approaches
do not support these.
LLVM IR Instrumentation: SecondWrite [34, 52] leverages Low
Level Virtual Machine (LLVM) lifting to convert a binary into LLVM
IR for instrumentation. Yet, this LLVM lifting feature was officially
removed since LLVM 3.1 because it is unable to lift any non-trivial
program binaries into LLVM IR [2]. Consequently, SecondWrite is
not mature enough to rewrite full-scale stripped applications [61,
65]. Moreover, SecondWrite relies on patch-based instrumentation
which leads to larger space overhead than RevARM. Finally, there
exists no experimental result to show that this approach can rewrite
ARM-based binaries. On the contrary, the experimental results in §4
show that RevARM can instrument large-scale ARM binaries and,
by applying our technique, can improve the security of real-world
mobile and embedded systems.
Dynamic Binary Instrumentation: Dynamic binary instrumen-
tation techniques, such as PIN [50], DynamicRio [37], Valgrind
[51], Detours [45] and QEMU [36], instrument binaries loaded in
the memory at run-time. However, there are two reasons why we
chose static instrumentation when designing RevARM. First, dy-
namic instrumentation techniques incur large run-time and space
overhead which is a critical problem on embedded and mobile sys-
tems which not have high processing power and large memory.
In addition, these tools only support a small number of commod-
ity operating systems since their techniques are OS-dependent. In
contrast, RevARM is designed to provide platform-agnostic binary
rewriting capabilities.

6 LIMITATIONS

We point out that, despite its new capability, RevARM has a num-
ber of limitations — some of which are intrinsic to the current-
generation binary rewriting methodology and call for innovative
advances through future research.
Dynamically Generated or Obfuscated Code: Like all other
static binary instrumentation techniques [43, 62, 64, 68, 69], dynam-
ically generated code (e.g., self-modifying code) cannot be targeted
by RevARM since the code can only be seen while the program is
running. In addition, the correct disassembly of obfuscated bina-
ries is an orthogonal problem to all binary rewriting techniques,
including RevARM. Existing obfuscation-resilient disassembly tech-
niques [47, 57] can be used to complement RevARM’s rewriting
capabilities. Further, we observed that such obfuscation is not com-
mon in our target binaries because obfuscated iOS apps may be
rejected by App Review and the computing power of embedded
systems is limited [57].
Limitations Inherited fromDisassembly: SinceRevARM is built
upon IDA Pro for the disassembly of ARM binaries, it inherits the

current limitations of the disassembler. It is well-known that disas-
semblers are imperfect [35, 60, 61], and this has remained a restric-
tive problem for binary rewriting. The main reason for this is that
compilation removes semantic information (e.g., pointer types) [65]
from the resulting binary program. Inheriting this absence of infor-
mation can lead RevARM to produce incorrect instrumentation for
target binaries. Possible effects of this problem include: (1) misiden-
tification of pointers and virtual tables in C++ programs, and (2)
incorrect disassembly of data as code and code as data. If the disas-
sembler fails to identify pointers and virtual tables correctly, the
program instrumented by RevARM may take ill-formed execution
paths or access data at incorrect locations. In addition, erroneously
disassembling data as code or vice versa may also lead to incorrect
control or data flow during the execution of the instrumented pro-
gram. While this remains an open research challenge, there have
been some advances in improving the accuracy of disassemblers,
which may be leveraged to mitigate these negative effects in the
future. BinCFI [69] improves disassembler accuracy by combining
two existing disassembly algorithms. Marx [53] restores C++ class
hierarchy information with high accuracy from stripped binaries,
which enhance the detection of virtual tables and pointers.
Pointer Arithmetic:While it is theoretically possible for a binary
program to have pointer arithmetics on indirect branch and data
reference targets, RevARM does not handle complex arithmetic
operations, based on the observation that a vast majority of modern
binaries do not include such pointer arithmetics in practice [69]. In
our experiments, we did not find any pointer arithmetic operation
except one simple bitwise arithmetic that flips a bit to switch the
instruction mode between the ARM and Thumb modes. We handle
this case by setting the mode bit based on the current instruction
mode.

7 CONCLUSION

Despite the popularity of ARM-based systems, ARM binary in-
strumentation techniques are still immature due to the challenges
associated with accurately rewriting ARM binaries without source
code across a variety of platforms. To the address the challenges, we
proposed RevARM, a platform-agnostic ARM binary rewriting tech-
nique capable of instrumenting binaries without symbolic/semantic
information. Due to its insertion-based instrumentation technique,
RevARM is able to support powerful security applications with
a fine-grained ARM binary rewriting capability while introduc-
ing very low run-time and space overhead. Furthermore, RevARM
addresses a number of unique challenges in ARM binary rewrit-
ing, which previous work did not solve. Our experimental results
demonstrated the usefulness and practicality of RevARM in various
security applications on real-world ARM-based devices.
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