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Abstract

A shared distributed infrastructure is formed by fed-
erating computation resources from multiple domains.
Such shared infrastructures are increasing in popularity
and are providing massive amounts of aggregated com-
putation resources to large numbers of users. Mean-
while, virtualization technologies, at machine and net-
work levels, are maturing and enabling mutually iso-
lated virtual computation environments for executing ar-
bitrary parallel/distributed applications on top of such a
shared physical infrastructure. In this paper, we go one
step further by supportingautonomic adaptationof vir-
tual computation environments as active, integrated en-
tities. More specifically, driven by both dynamic avail-
ability of infrastructure resources and dynamic appli-
cation resource demand, a virtual computation environ-
ment is able to automatically re-locate itself across the
infrastructure and scale its share of infrastructural re-
sources. Such autonomic adaptation is transparent to
both users of virtual environments and administrators of
infrastructures, maintaining the look and feel of a sta-
ble, dedicated environment for the user. In this paper, we
present the design, implementation, and evaluation of a
middleware system that we have called VIOLIN [10, 15]
that is composed of a virtual network of virtual machines
capable oflive migration across a multi-domain physi-
cal infrastructure.

∗Department of Computer Science Technical Report CSD TR 06-
004, Purdue University, January 2006.

1 Introduction

We have seen the emergence of shared distributed
infrastructures that federate, allocate, and manage het-
erogeneous resources across multiple network domains,
most notably PlanetLab [2] and the Grid [8, 9, 7]. The
growth of these infrastructures has led to the availabil-
ity of unprecedented computational power to a large
community of users. Meanwhile, virtual machine tech-
nology [1, 5, 21] has been increasingly adopted on
top of such shared physical infrastructures [6], and has
greatly elevated customization, isolation, and adminis-
trator privilege for users running applications inside in-
dividual virtual machines.

Going beyond individual virtual machines, our pre-
vious work proposed techniques for the creation of vir-
tual distributed computation environments [10, 15, 16]
on top of a shared distributed infrastructure. Our vir-
tual computation environment, called a VIOLIN, is com-
posed of virtual machines connected by a virtual net-
work, which provides a layer separating the owner-
ship, configuration, and administration of the VIOLIN
from those of the underlying infrastructure. Mutually
isolated VIOLINs can be created for different users
as their “own” private distributed computation environ-
ment bearing the same look and feel of customized phys-
ical environments with administrative privilege (e.g.,
their own private cluster). Within VIOLIN, the user
is able to execute and interact with unmodified paral-
lel/distributed applications, and can expect strong con-
finement of potentially untrusted applications.

It is possible to realize VIOLIN environments as in-
tegrated, autonomic entities that dynamically adapt and
relocate themselves for better performance of the ap-
plications running inside. This all software virtualiza-
tion of distributed computation environments presents a



unique opportunity to advance the possibilities of auto-
nomic computing [14, 22, 19]. The autonomic adapta-
tion of virtual computation environments is driven by
two main factors: (1) the dynamic, heterogeneous avail-
ability of infrastructure resources and (2) the dynamic
resource needs of the applications running inside VIO-
LIN environments. Dynamic resource availability may
cause the VIOLIN environment to relocate its virtual
machines to new physical hosts when current physical
hosts experience increased workloads. At the same time,
dynamic applications may require different amounts of
resources throughout their execution. The changing re-
quirements can trigger the VIOLIN to adapt its resource
capacity in response to the application’s needs. Further-
more, the autonomic adaptation (including re-location)
of the virtual computation environment istransparentto
the application and the user, giving the latter the illusion
of a stable, well-provisioned, private, networked runtime
environment. To realize the vision of autonomic virtual
environmentswe address the following challenges:

First, we must provide the mechanisms for
application-transparent virtual environment adapta-
tion. In order to provide a consistent environment,
adaptation must occur without effecting the application
or the user. Currently, work has be done to enable
resource reallocation and migration within a local-area
network [4] and many migration features are provided
by the most current machine virtualization platforms.
However, we still need to determine how to migrate
virtual machines across a wide-area network without
effecting the application. The solution must keep
the virtual machine alive throughout the migration.
Computation must continue and network connections
must remain open. The necessary wide-area migration
facility requires two features not yet provided by current
virtualization techniques. First, virtual machines need
to retain the same IP address and remain accessible
through the network when physical routers will not
know where they were migrated. Second, wide-area
migration cannot rely on NFS to maintain a consistent
view of the large virtual machine image files. These
files must be transferred quickly across the relatively
slow wide-area network. Clearly, current solutions are
not yet adequate for wide-area use.

The second challenge is to defineallocation policies.
Our goal is to move beyond the limits of static alloca-
tion and provide autonomic environments that have the
intelligence to scale resource allocations without user in-
tervention. As such, we need to determine when a vir-
tual machine needs more CPU. Which virtual machine
should be migrated, and where to migrate the virtual

machine when a host can no longer support the mem-
ory demands of its guests. Consequently, we must be
able to recognize the best destination could either be the
one to which we can quickly migrate or one with a long
migration time but more adequate resources.

The main contribution of this paper to autonomic
computing is the elaboration of VIOLIN’s capacity
to enable autonomic virtual computation environments
over a wide-area shared infrastructure. These environ-
ments retain the customization and isolation properties
of existing statically deployed VIOLINs, however, they
have the added ability to autonomically adapt resource
allocation driven by the dynamic needs of their appli-
cations and without the application’s knowledge. The
environment, as well as the applications within the en-
vironment, will appear to be unchanged, except for its
performance, even though it may have been migrated to
a distant host domain. In this way we can make efficient
use of available resources while giving the appearance
of more powerful machines than actually exist.

We have built a prototype adaptive VIOLIN system
using Xen [1] virtual machines and have deployed it over
the NanoHub (www.nanohub.org) infrastructure. The
evaluation of the system shows that we are able to pro-
vide increased performance to several concurrently run-
ning virtual environments. To the best of our knowledge,
this is the first demonstration of a autonomic adaptive
virtual computation environment, using live application
transparent migration with real-world parallel applica-
tions.

The remainder of this paper is organized as follows:
Section 2 describes the design of VIOLIN autonomic
virtual environments, Section 3 presents their real-world
deployment, Section 4 describes the experiments and
presents performance results, Section 5 compares our
study to related works, and Section 6 presents the pa-
per’s conclusions.

2 Autonomic Virtual Environments

We have designed VIOLIN to address the dynamic
needs of multi-domain shared infrastructures and their
users. Each user is presented with an isolated auto-
nomic virtual computation environment of virtual ma-
chines connected to an isolated virtual network overlay.
From the user’s point of view, a virtual computation en-
vironment is a static private subnet of machines dedi-
cated to that user alone. The user does not know where
the virtual machines reside. On the other hand, the in-
frastructure sees the environments as dynamic entities
that can flow through the infrastructure being assigned
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Figure 1. VIOLIN environments sharing a multi-domain infra structure. Virtual machines can
migrate between domains to maintain sufficient resources fo r their changing applications.

as much or as little resources as needed.
The components of the VIOLIN autonomic virtual

computation environment system are:

• Enabling Mechanisms: The enabling
virtualization-based mechanisms include the
VIOLIN virtual environments as well as themoni-
tor daemonrunning on the host infrastructure. The
VIOLIN environments provide an interface to the
user and applications, while themonitor daemons
know the CPU power and memory available on
each node and have the ability to query the local
virtual machine monitor (VMM) for resource
availability and utilization levels. In addition,
the monitors can manipulate the allocation of
resources to local guest machines.

• Adaptation Manager: The adaptation manager
uses themonitor daemonsto form a global sys-
tem view of all host resources available as well
as the utilization level of any allocated resources.
With this information theadaptation managercan
dictate resource re-allocation including fine-grain
per-node CPU and memory adjustments, as well
as coarse-grain migration of virtual machines or
whole virtual environments without any user or ad-
ministrator involvement.

The remainder of this section describes these compo-
nents.

2.1 Enabling Mechanisms

The enabling mechanism for autonomics in VIOLIN
is a daemon residing on each host that has the capabili-

ties to monitor local resource availability and utilization,
as well as, manipulate local resource allocation.

Local Adaptation Mechanism. The adaptation
managercan control all virtual machines through the
monitor daemons. VIOLIN environments use both
memory ballooning and weighted CPU scheduling to
achieve fine-grain control over per node resource mul-
tiplexing. While a virtual machine is running, theadap-
tation manager, can modify the memory footprint and
percentage of CPU allocated through the monitor dae-
mons.

Both VMware [21] and Xen [1] allow for memory
ballooning which allows for dynamic reallocation of
memory to virtual machines. In effect, the VMM can
change the amount of memory allocated to each vir-
tual machine while the machine is running. Addition-
ally, modern machine virtualization platforms allow for
weighted CPU scheduling. The use of these advanced
schedulers allows theadaptation managerto assign ar-
bitrary amounts of CPU power to each individual virtual
machine.

Wide-area Adaptation Mechanism The key con-
tribution of VIOLIN to autonomic environments is the
ability to re-allocate resources to live virtual machines
by migrating them across wide-area networks. Live vir-
tual machine migration is the transfer of a virtual ma-
chine from one host to another without pausing the vir-
tual machine or checkpointing the applications running
within the virtual machine. One of the major challenges
of live migration is maintaining any network connec-
tions the virtual machine may have open. Modern ma-
chine virtualization mechanisms provide live virtual ma-
chine migration within layer-2 networks [4]. Migra-
tion is limited to a layer-2 network because IP packet
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routing is not designed to handled mobile IP addresses.
VIOLIN [15] solves this problem by creating a virtual
layer-2 network that tunnels network traffic end-to-end
between remote virtual machines. The overlay appears
to be an isolated physical Ethernet LAN though which
migration is possible.

In our autonomic system, each virtual computation
environment has its own VIOLIN network overlay. As
the virtual machines flow through the infrastructure they
will remain connected to their original virtual network.
We are among the first to provide a system that allows
for live wide-area migration of virtual machines without
the need to modify network addresses or use proxies.

2.2 Adaptation Manager

The other major component of dynamic VIOLIN en-
vironments is, therefore, theadaptation manager. The
adaptation manageris the intelligent agent, or “pup-
peteer” acting on behalf of the users and administrators
and making autonomic reallocation decisions. It is ap-
pointed two tasks: to compile a global system-view of
the available resources from the data collected by the re-
source monitoring daemons and to use this data to trans-
parently adapt the assignment resources to virtual envi-
ronments without the knowledge of the environment’s
application or users.

2.2.1 Infrastructure Resource Monitoring

Theadaptation managermonitors the complete sys-
tem by querying the monitor daemons on each host. Us-
ing the monitors it maintains knowledge of all available
hosts in addition to the demands of applications running
within the VIOLINs. Overtime both the resources avail-
able to the shared infrastructure and the VIOLIN’s uti-
lization of resources will change. Hosts may be added
or removed and VIOLINs can be created, destroyed, or
enter periods of very high or low CPU, memory, or net-
work usage. In order for theadaptation managerto suc-
cessfully allocate dynamic resources to virtual machines
it must monitor the availability and utilization of the al-
located resources.

2.2.2 Resource Reallocation Mechanism

Although system monitoring is a responsibility of the
adaptation manager, its key function is to decide how to
allocate and reallocate resources to best serve the VI-
OLINs. Once it has collected the data from the mon-
itors and has created the global system-view, it knows

the resource availability of each host, the current re-
source usage of each environment, and the current al-
location of resources. With this information theadap-
tation managerlocates environments with an over- or
under-allocation of resources and then adapts the alloca-
tion to provide better performance or reduce the alloca-
tion to more efficiently use the infrastructure.

2.2.3 Resource Reallocation Policy

The adaptation manager’sre-allocation policy is
based on observed host resource availability and vir-
tual machine resource utilization. It uses a heuristic that
aims to dynamically balance load between all domains
within the system, and then between hosts within each
domain. We do not attempt to find the ideal allocation
of resources to virtual machines, but to incrementally in-
crease the performance of the system while minimizing
the number of virtual machine migrations and the result-
ing overhead.

Intuitively, the policy assigns adesired resource level
for each virtual machine and attempts to assign that
amount of resources to the virtual machine. If adequate
resources cannot be obtained locally the virtual machine
may be migrated to another host or its whole VIOLIN
may be migrated to another domain.

It may be that there are not enough resources in the
entire infrastructure to supply each virtual machine with
its desired resource level. In this case, we would like to
achieve a weighted balance of load on each domain and
host (more powerful hosts/domains will take on more
load). Conveniently, a weighted balance of load on an
under-utilized system will assure that all (or most) vir-
tual machines will have been allocated theirdesired re-
source level. With this in mind, our reallocation policy is
designed to balance the load between domains and hosts.

The desired resource levelassigned to each virtual
machine is derived from the amount of CPU, in Float-
ing Point Operations Per Second (FLOPS), memory al-
located, and the percentage of the allocation the virtual
machine is utilizing. We define a utilization greater than
75% to behigh utilizationand below 25% to below uti-
lization. Thedesired resource levelis defined to be dou-
ble the current allocation forhigh utilization, half the
current allocation forlow utilization, equal to the cur-
rent allocation otherwise. If at any time a virtual ma-
chine is under-allocated (i.e. itsdesired resource levelis
greater than its allocated resources) theadaptation man-
ager triggers the global reallocation algorithm.

Intuitively, the algorithm finds the average load on the
whole infrastructure and attempts to migrate VIOLINs
between domains until each domain has the load as the
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system average. Then, within each domain, virtual ma-
chines are migrated until each host has the domain’s av-
erage load. We define theaverage system loadas the ra-
tio of the total amount ofdesired resourcesfor all virtual
machine in the system to the total amount of resources
provided by all hosts in the system. For each domain,
we define theaverage domain loadas the ratio of the to-
tal amount ofdesired resourcesfor all virtual machines
in the domain to the total amount of resources provided
by all hosts in the domain. For each host the load is
the ratio ofdesired resourcesto provided resources. To
handle multiple types of resources that comprise these
totals, the system declares a weight to be assigned to
each type and the total is the weighted sum.

The algorithm is as follows:

1. Find theaverage system load

2. For each domain, find theaverage domain load.
We want to reduce the load on domains whose av-
erage load is greater than that of the system by
migrating of whole virtual environments to under-
loaded domains.

3. Find inter-domain environment migration opportu-
nities. Rank the domains by average domain load
and find the VIOLIN from the most loaded do-
main that can be migrated to the least loaded do-
main, such that both domains’ average load be-
comes closer to the average system load.

4. Repeat steps 2 and 3 until step 3 produced no pos-
sible migrations. At this point, each domain has
approximately the same domain load.

5. For each host, find the host load.

6. Find intra-domain virtual machine migration op-
portunities. Rank the hosts by average load and
find the virtual machine with the most demand that
can be migrated from the most loaded to the least
loaded host, such that both hosts’ loads become
closer to the average domain load.

7. Repeat steps 5 and 6 until step 6 produces no possi-
ble migrations. At this point, each host within each
domain has approximately the same host load.

3 Implementation

We have implemented a prototypewide-area dy-
namic virtual environmentsystem and have deployed
the system on the NanoHub’s (www.nanohub.org) in-
frastructure. The NanoHub is an e-science infrastructure

for running online and on-demand Nanotechnology ap-
plications, and is our “living lab”. Part of the NanoHub
allows students and researchers the ability to use com-
putational Nanotechnology applications, including dis-
tributed and parallel applications, through either a web-
based GUI or a VNC desktop session. The unique prop-
erty of the NanoHub is that the back-end processing is
heavily reliant on virtualization. Users of the NanoHub
may, unknowingly, be using VIOLIN environments that
have the ability to adapt resource allocation to the chang-
ing needs of their applications.

3.1 Deployment Details

Toward a full deployment, we have created several
prototype autonomic VIOLINs on the NanoHub’s in-
frastructure.

Host Infrastructure. The virtual machines are
hosted on two independent clusters on separate subnets
on the Purdue campus. One cluster is composed of 24
Dell 1750s with 2GB of RAM and two hyper-threaded
Pentium 4 processors running at 3.06 GHz, while the
other is 22 Dell 1425s with 2GB of RAM and two hyper-
threaded Pentium 4 processors running at 3.00 GHz.
Both clusters support Xen 3.0 virtual machines and VI-
OLIN virtual networking.

Environment Configuration. Each environments is
composed of several Xen virtual machines connected
with a VIOLIN network overlay. Environments are
composed of one virtual head node and several virtual
compute nodes. The head node provides an access point
to the VIOLIN environment and, as such, must remain
statically located within its original host domain. How-
ever, all compute nodes are free to move throughout the
infrastructure as long as they stay connected to the VIO-
LIN overlay.

User accounts for all machines are managed by a
shared Lightweight Directory Access Protocol (LDAP)
server and users home directories are mounted to the
local NFS server with the head node acting as a NAT
router for the isolated dynamic compute nodes, giving a
consistent system view from all virtual machines regard-
less of the physical location of the virtual machine.

In order to migrate a virtual machine three things
must be transferred to the new host: a snapshot of the
root file system image, a snapshot of the current mem-
ory, and the thread of control. Xen’s contribution to
live migration is to very efficiently transfer the mem-
ory thread of control. It performs an iterative process
that reduces the amount of time the virtual machine is
unavailable to an almost unnoticeable level.
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Figure 2. Migration overhead caused by
live migration of entire VIOLIN virtual en-
vironments that are actively executing the
parallel application NEMO3D

However, Xen does not support the migration of the
root file system image. Xen assumes that the root file
system is available on both the source and destination
hosts (usually through NFS). Wide-area shared infras-
tructures are composed of independently administered
domains which cannot safely share NFS servers. In or-
der, to perform wide-area migrations, our prototype uses
read-only root images that can be distributed without
needing to be updated. We do this by putting all sys-
tem files that need to be written to intmpfsfilesystems.
Since,tmpfsfile systems are resident in memory, Xen
will migrate these files with the memory. Initially, we
thought of this solution as a workaround to be fixed later,
however, our experience is demonstrating thattmpfscan
be a very good solution for many applications. In ad-
dition to the usingtmpfs for system files, users home
directories are NFS mounted through the virtual overlay
to the NanoHub server and do not need to be explicitly
transferred.

4 Experiments

In this section we present several experiments that
show the feasibility of VIOLIN environments. First we
measured the overhead of live migration of whole VIO-
LIN environments, then we measured increased perfor-
mance due to autonomic adaptation of several examples
of VIOLINs sharing a multi-domain infrastructure.

For all experiments we use the NanoHub VIOLIN de-
ployment, anadaptation manageremploying the algo-
rithm described in section 2.2.3, and the NEMO3D [12]
atomic particle simulation.

4.1 Migration Overhead

Objective. This experiment aims to find the overhead
of migrating an entire VIOLIN that is actively running
a resource intensive application (individual virtual ma-
chine migration overheads have been studied [4]). The
overhead of live VIOLIN migration includes the execu-
tion time lost due to the temporary down-time of the vir-
tual machines during migration, the time needed to re-
configure the VIOLIN overlay, and any lingering effects
such as network slowdown caused by packet loss and the
resulting TCP back-off.

Configuration. We used a VIOLIN composed of
four virtual machines. We executed NEMO3D with sev-
eral different problems sizes (1/8 Million Particles, 1/4
Million Particles, 1/2 Million Particles, 1 Million Parti-
cles). For each problem size we recorded the execution
time with and without migrating the VIOLIN. During
the no-migration runs, the application was allowed to
run unimpeded. During each run involving migration,
all four virtual machines are simultaneously migrated
live across the network to destination hosts configured
identically to the source hosts. In order to stress the sys-
tem and find the worst overhead possible, we chose the
migration to occur at the most resource intensive period
of the application’s execution. While the tests where oc-
curring there was no background load any of the hosts
involved, however the network is shared by many users
and had some amount of unavoidable load. In addition,
both CPU and memory are sufficiently provided to all
virtual machines.

Results. Figure 2 shows the results. We found that,
regardless of problem size, the runtime of the applica-
tion was increased by approximately 20 seconds (rang-
ing from 17-25) when the VIOLIN was migrated.

Discussion. One goal of adaptive VIOLIN envi-
ronments is that there should be little or no effect on
the applications due to adaptation. We observed ap-
proximately a 20 second penalty imposed on a four
node VIOLIN migrating across a campus while run-
ning NEMO3D. A 20 second penalty would seem im-
possible considering Xen virtual machine migration re-
quires the transfer of the entire memory footprint (ap-
proximately 800MB per virtual machine for the 1 Mil-
lion particle NEMO3D). However, Xen’s live migration
facility hides the migration latency by continuing to run
the virtual machine on the source host while the bulk of
the memory is transferred. We did not measure the ac-
tual down-time of our virtual machines; however, Xen
migration of a virtual machine with 800MB of memory
was found to have a 165ms down-time when migrating
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Figure 3. Workload Adaptation Example 1:
Time-line of VIOLIN’s progress.

on a LAN [4]. The significant effects on application per-
formance are not due to the migration itself but the time
to re-establish the VIOLIN network overlay and the ad-
ditional time the application is running on the inadequate
resources of the original hosts. This experiment shows
that the penalty for migrating a VIOLIN environment is
relatively small and does not escalate with increased vir-
tual machine size.

4.2 Workload Adaptation Example 1

Objective. The purpose of this experiment is to
demonstrate the effectiveness of theadaptation manager
and to show how small amounts of autonomic adaptation
can lead to better performance of all VIOLIN environ-
ments that share an infrastructure.

Configuration We created five VIOLIN environ-
ments, each used to run the NEMO3D application. Each
VIOLIN initiates its application at a different time with
different input problem sizes (emulating independent
VIOLINs used by different users). The shared infras-
tructure is comprised of two host domains. Domain 1
has six physical nodes while domain 2 has four phys-
ical nodes. The two domains are on separate sub-nets
within Purdue’s campus. We do not yet have adminis-
trative privileges on any machines outside of Purdue’s
campus that can be used for these experiments, there-
fore we cannot experiment with truly wide-area infras-
tructures. However, the two domains that we are using
are on separate sub-nets which confirm that wide-area
migration is possible.

The experiment compares the run-times of the
NEMO3D applications within each VIOLIN with and
without autonomic resource re-allocation enabled. With
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Figure 4. Workload Adaptation Example 1:
Runtime of applications running within VI-
OLIN environments with and without adap-
tation enabled.

re-allocation enabled some virtual machines of the VIO-
LINs will be migrated in accordance with theadaptation
manager’salgorithm in order to balance the load and in-
crease the performance of all applications.

Results. Figure 3 is a time-line showing where each
virtual environment was located at key moments. Fig-
ure 4 shows recorded runtime comparisons with and
without adaptation enabled.

Initially, for both runs, VIOLINs 1, 2, and 3 are exe-
cuting their applications and have been allocated signifi-
cant portions of the host domains. Each virtual machine
is using nearly 100% of its allotted CPU. Theadapta-
tion managersees the high CPU utilization and tries to
allocated additional CPU for each virtual machine but
the CPU load is balanced.

VIOLIN 2 is executing a smaller problem size and is
running alone on domain 2 so it finishes quickly. When
VIOLIN 2’s application finishes it remains on domain
2 but has nearly no requirements for resources. The
adaptation managerreacts to the low (less that 25%) uti-
lization and lowers VIOLIN 2’s desired resource level.
When VIOLIN 2’s desired CPU power drops a load im-
balance between the domains occurs. There are 10 vir-
tual machines on domain 1 that desire increased CPU
allocation and none of the virtual machines on domain
2 need any CPU allocation. The imbalance triggers the
migration of VIOLIN 1 to the unallocated resources of
domain 2. This adaptation balances the load and allows
the virtual machines of both VIOLINs 1 and 2 to each
be allocated the full resources of a single host. Although
both VIOLIN 1 and 3 have been allocated additional
CPU power they both remain at 100% CPU utilization
but there are no resources for theadaptation managerto
give.
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It is important to note here that although both remain-
ing VIOLINs have increased CPU power, VIOLIN 1
was temporally slowed during the migration. VIOLIN
3 will surely complete its application sooner, but it re-
mains to be seen if the increased speed seen by VIOLIN
1 can compensate for the cost of migration.

After some time, VIOLINs 4 and 5 initiate their ap-
plications and require significant resources (100% uti-
lization). We assume that both of these environments
are new and must be created to allow the non-adaptation
case to have some balance in load. Without this al-
lowance, VIOLINs 4 and 5 would have to remain where
they were (potentially within domain 1 creating an even
larger advantage for the adaptation case). In either case,
the creation of 4 and 5 causes both domains to be over-
loaded, however, the load is balanced.

Next, 1 and 3 finish their applications and no-longer
require significant resources. From figure 4 we see that
the migration of VIOLIN 1 allows VIOLIN 3 to fin-
ish 30% sooner than it would have otherwise, while 1
finishes in approximately the same amount of time due
to the additional cost it paid to migrate. Once 1 and
3 finish, the remaining VIOLINs (4 and 5) are already
balanced in a adaptation case, while the non-adaptation
cases are not. Although the adaptation algorithm was
lucky to create this state, its luck was not needed because
an unbalanced state could have been corrected through
migration unlike the non-adaptation case’s current situa-
tion. Both cases continue to run and the adaptation case
completes 4 and 5’s applications much sooner.

The chart in figure 4 shows the run-times for the ap-
plications in each VIOLIN. For each VIOLIN the run-
time of the application is reduced by enabling autonomic
adaptation. The last two data points on the chart show
the average timeand overall timeperformance of the
system. Theaverage timeis the average run-time for
all VIOLINs. This gives us a measure of the perfor-
mance seen by each of the environments. In this exam-
ple, adaptation saved on average 39% of execution time,
correlating to a 39% average increase in performance
seen by the environments. Theoverall timeis the time
from the execution of the first application until the com-
pletion of the last application (overall timeis much less
thanaverage timebecause the applications are running
in parallel). Theoverall timegives us a measure of the
efficiency of resource use. We see a 34% reduction in
overall timewith adaptation.

Discussion. Observe that during this experiment
nearly all of the VIOLINs benefit from adaptation even
though only one was migrated. It is important to real-
ize that a small amount of adaptation can lead to large

Figure 5. Workload Example 2: Time-line
of VIOLIN’s progress.

increases in both virtual environment performance and
system efficiency. In addition, algorithms, such as ours,
that aim to balance load while minimizing the cost of
migration can have great effects on the performance of
the system without needing to find and implement the
ideal allocation of resources to virtual machines.

4.3 Workload Adaptation Example 2

Objective. Whereas the previous example shows the
more typical case where virtual environments are being
heavily used or are completely idle, the next example
shows how adaptation can benefit applications that go
through periods of high and low use during a single ex-
ecution. In this situation, we create a VIOLIN that ini-
tially uses high amounts of CPU then moves to a stage in
its application that uses lower but still significant amount
of resources.

Configuration. The configuration uses the same host
infrastructure as the previous example, however, the VI-
OLINs and their applications have been changed. There
are now 4 VIOLINs, all of which execute the NEMO3D
application except for VIOLIN 1. Environment 1 ex-
ecutes the high demand NEMO3D followed by a less
CPU application that searches the filesystem. VIOLIN 1
is simulating 100% utilization followed a lower utiliza-
tion that stabilizes at or around 50% after the appropriate
reduction in CPU allocation.

Results. The time-line in figure 5 and the chart in
figure 6 show the resulting run times of the experiment
applications with and without adaptation enabled. Ini-
tially, the load is balanced between the four VIOLINs
which are running on the two domains. After some time,
VIOLIN 3 completes its application and no longer re-
quires significant resources (its CPU allocation is slowly
reduced to near zero). Next VIOLIN 1 enters its second,
less CPU intensive, stage of its execution. In the new
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Figure 6. Workload Adaptation Example 2:
Runtime of applications running within VI-
OLIN environments with and without adap-
tation enabled.

stage VIOLIN 1’s demand for resources drops well be-
low 25% of its allocation. Its drop in CPU allocation
results in a load imbalance between the two domains
forcing theadaptation managerto migrate VIOLIN 3
to domain 1. The migration balances the load between
domains but causes an imbalance between the hosts of
domain 1. Since it is now possible for all six virtual ma-
chines from VIOLIN 1 to be supported by only two of
the available hosts, they are migrated to the hosts that
are not supporting VIOLIN 2.

The results in Figure 6 show that environments 1 and
2 execute in approximately the same amount of time
while 3 and 4 show significantly decreased runtime.
With autonomic re-allocation enabled, theaverage time
and overall timeshow decreases of 41% and 47% re-
spectively.

Discussion. From this experiment we see that it is
possible to obtain even more performance and efficiency
by combining the fine-grain resource allocating mech-
anisms of machine virtualization with the large-grain
wide-area migration mechanism. Here the algorithm
was able to identify a virtual environment that experi-
enced a significant reduction in resource requirements.
By controlling the CPU power allocated to individual
virtual machines of VIOLIN 1, it was able to open the
possibility of migrating VIOLIN 2 increasing the perfor-
mance seen by all environments.

5 Related Works

Currently, most techniques for federating and man-
aging wide-area shared computation infrastructures ap-
ply meta-scheduling of dedicated Grid resources like
Globus [8], Condor [20], and In-Vigo [23]. All of these

solutions provide access to seemingly endless amounts
of computational power without incurring the full cost of
ownership. However, common to all of these systems is
that arbitrary jobs cannot be run unaltered through these
systems, jobs are run on nodes over which the job owner
has no control, and allocation of resources cannot adapt
to dynamic changes in application needs.

In-VIGO is a distributed Grid environment support-
ing multiple applications which share resource pools.
The In-VIGO resources are virtual machines. When
a job is submitted, a virtual workspace is created for
the job by assigning existing virtual machines to pro-
cess it. During the execution of the job the virtual ma-
chines are owned by the user and the user has access
to his or her unique workspace image through the NFS-
based distributed virtual file system. Provided with In-
VIGO is an automatic virtual machine creation project
called VMPlants [13]. VMPlants is used to automati-
cally create custom root file systems to be used in In-
VIGO workspaces. In-Vigo is part of the NanoHub de-
ployment and can be made to use VIOLIN environments
as a back-end.

Virtual networking is a fundamental part of our work.
The available machine virtualization techniques do not
supply advanced virtual networking facilities. UML,
VMware, and Xen all provide networking services by
giving the virtual machines a real IP address from the
host network. PlanetLab [2] uses a technique to share a
single IP address among all virtual machines on a host
by controlling access to the ports. These techniques al-
low virtual machines to connect to a network but do not
create a virtual network. Among the network virtual-
ization techniques are VIOLIN, VNET [18], and Soft-
UDC [11] all of which create virtual network overlays
of virtual machines residing on distributed hosts. The
creators of VNET are currently working on dynamic net-
work resources [17].

Cluster-on-Demand (COD) [3] allows dynamic shar-
ing of resources between multiple clusters. COD real-
locates resources by using remote-boot technologies to
reinstall preconfigured disk images from the network.
The disk image that is installed determines which clus-
ter the nodes will belong to upon booting. In this way
COD can redistribute the resources of a cluster among
several logical clusters sharing those resources.

6 Conclusion

We have presented the design and implementation of
VIOLIN autonomic virtual computation environments
for multi-domain shared infrastructures. Using VI-
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OLINs, independently administered virtual computa-
tion domains can flow through the massive amount of
computation resources available through multi-domain
shared infrastructures that adapt to the needs of their
applications. We have shown how the design and im-
plementation of VIOLIN environments allows for wide-
area migration of live virtual machines and how the
adaptation manageracts on behalf of the users and ad-
ministrators to dynamically control the allocation of all
resources in the shared infrastructure. Our experiments
with the NanoHub deployment of virtual computation
environments has shown significant increases in perfor-
mance and efficiency. With continued advancement of
machine and network virtualization, as well as resource
allocation policies, VIOLIN virtual computation envi-
ronments will continue to increase the potential of multi-
domain shared infrastructures.
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