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Abstract. To provide Quality of Service (QoS) guarantee in distributed services, it is necessary to reserve multiple computing and
communication resources for each service session. Meanwhile, techniques have been available for the reservation and enforcement of
various types of resources. Therefore, there is a need to create an integrated framework for coordinated multi-resource reservation. One
challenge in creating such a framework is the complex relation between the end-to-end application-level QoS and the corresponding
end-to-end resource requirement. Furthermore, the goals of (1) providing the best end-to-end QoS for each distributed service session and
(2) increasing the overall reservation success rate of all service sessions are in conflict with each other. In this paper, we present a QoS
and contention-aware framework of end-to-end multi-resource reservation for distributed services. The framework assumes a reservation-
enabled environment, where each type of resource can be reserved. The framework consists of (1) a component-based QoS-Resource
Model, (2) a runtime system architecture for coordinated reservation, and (3) a runtime algorithm for the computation of end-to-end
multi-resource reservation plans. The algorithm provides a solution to alleviating the conflict between the QoS of an individual service
session and the success rate of all service sessions. More specifically, for each service session, the algorithm computes an end-to-end
reservation plan, such that it guarantees the highest possible end-to-end QoS level under the current end-to-end resource availability,
and requires the lowest percentage of bottleneck resource(s) among all feasible reservation plans. Our simulation results show excellent
performance of this algorithm.
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1. Introduction

Emerging distributed services are expected to provide appli-
cation-level functionalities with certain Quality of Service
(QoS). Examples of distributed services include media data
distribution and processing, E-commerce, and virtual scien-
tific laboratory services. Meanwhile, advances in resource
reservation and scheduling make it possible to provide end-
to-end QoS guarantee in distributed services. For different
computing and communication resources, techniques have
been available to make reservations and to enforce them dur-
ing runtime. For example, for CPU capacity, there exist the
Dynamic Soft Real Time (DSRT) CPU scheduling frame-
work [1] and the hierarchical CPU scheduler based on Start-
time Fair Queuing [2]; for network bandwidth, RSVP pro-
tocol [3] and various packet scheduling algorithms [4,5] are
responsible for bandwidth reservation and enforcement, re-
spectively; and for disk I/O bandwidth, Cello [6] provides a
disk scheduling framework. However, what is missing is a
higher-level framework that coordinates the reservations of
multiple resources required in a distributed service.

One challenge in creating such a multi-resource reserva-
tion framework is the complex relation between the end-to-
end application-level QoS and the corresponding end-to-end
resource requirement. First, each resource contributes to
the end-to-end QoS, but not in the simple and linear fash-
ion. Second, a distributed service may achieve multiple lev-
els of end-to-end QoS, which in the general case are repre-
sented by multi-dimensional and partially-ordered QoS vec-
tors. Correspondingly, the end-to-end resource requirements

to achieve these QoS levels are also represented by partially-
ordered resource requirement vectors. Therefore, when de-
termining the amounts of resources to be reserved for a dis-
tributed service session, each resource can not be treated in-
dividually. Instead, trade-offs must be considered among the
requirements of all resources – not only for different levels of
end-to-end QoS, but also for the same end-to-end QoS level.

Another challenge in the multi-resource reservation
framework is the presence of resource contention: sessions
of different distributed services try to reserve from the same
pool of resources in the environment, causing some reserva-
tions to fail. Therefore, one goal of the framework is to in-
crease the overall success rate of multi-resource reservations
in the environment. However, to realize the goal, there exist
two difficulties. First, each resource can potentially become
the bottleneck resource in a multi-resource reservation, due
to the fluctuation of resource availability over time. Any so-
lution that assumes a specific bottleneck resource may not
work in all situations. Second, the goal of increasing overall
reservation success rate is in conflict with the goal of bring-
ing the highest possible end-to-end QoS to each individual
service session.

In this paper, we present a multi-resource reservation
framework which deals with these challenges. The frame-
work assumes a fully reservation-enabled environment,
where each type of resource can be reserved. The framework
is both QoS and resource contention aware. It consists of
(1) a component-based QoS-Resource Model to capture the
relation between application-level QoS and resource require-
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ment, (2) a runtime system architecture to perform multi-
resource reservations, and (3) a runtime algorithm to com-
pute an end-to-end multi-resource reservation plan for each
distributed service session. In the component-based QoS-
Resource Model, a distributed service is modeled as a set of
collaborating service components. Each service component
is associated with a set of input QoS levels and output QoS
levels. The input/output QoS of each participating service
component transitively contributes to the end-to-end QoS
of the distributed service. The runtime algorithm is based
on this model. Finally, in the runtime system architecture,
a QoSProxy and one or more Resource Brokers run for each
end host. The QoSProxies execute the runtime algorithm,
and dispatch the computed end-to-end reservation plan to the
Resource Brokers.

To alleviate the conflict between the end-to-end QoS of
individual service sessions and the overall reservation suc-
cess rate of all service sessions, our runtime algorithm com-
putes a reservation plan for each distributed service session
such that: (1) it guarantees the highest possible end-to-end
QoS level under the current end-to-end resource availabil-
ity, and (2) it requires the lowest percentage of bottleneck
resource(s) among all feasible reservation plans – the algo-
rithm dynamically identifies the bottleneck resource in each
reservation plan. Based on this algorithm, we also propose
two heuristics: one to handle more complex dependencies
between service components, and one to further improve the
overall reservation success rate. Our simulation results show
excellent performance of the algorithm: comparing with a
contention-unaware algorithm, our algorithm constantly re-
sults in higher reservation success rate, while achieving the
highest possible level of end-to-end QoS for each successful
service session.

The rest of the paper is organized as follows. Section 2
introduces the component-based QoS-Resource Model. Sec-
tion 3 describes the runtime system architecture for multi-
resource reservation. Section 4 presents the runtime algo-
rithm for the computation of end-to-end reservation plans.
Section 5 shows the performance of the algorithm based on
simulation results. Section 6 compares our framework with
related work. Finally, section 7 concludes this paper.

2. A component-based QoS-Resource Model

2.1. Component-based distributed services

With distributed object techniques, a distributed service can
be implemented as a set of collaborating service compo-
nents, rather than as a monolithic program. A service com-
ponent is a functional unit participating in the service de-
livery. Figure 1 shows an example of a distributed Video
Streaming + Tracking service. A client requesting this ser-
vice is allowed to provide images of certain objects, which
will be recognized and tracked in the requested video. The
tracking of objects is performed by a specialized tracking
proxy. Therefore, the video server first streams a video to

Figure 1. An example of component-based distributed service.

Figure 2. The QoS-Resource Model.

the tracking proxy, which performs real-time object track-
ing, and then forwards the video stream with tracking results
to the requesting client. In this service, there are three ser-
vice components: the VideoSender component running on
the video server, the ObjectTracker component running on
the tracking proxy, and the VideoPlayer component running
on each requesting client.

The service component is a natural choice of granular-
ity for modeling the relation between application-level QoS
and corresponding resource requirement. Each service com-
ponent may perform its function at different QoS levels, de-
pending on the availability of the resource(s) required by this
service component. Furthermore, for a distributed service,
the QoS achieved by each participating service component
contributes to the end-to-end QoS in a transitive manner.

2.2. The QoS-Resource Model

The QoS-Resource Model is illustrated in figure 2. We de-
fine the model first from the angle of a service component,
and then from that of a distributed service.
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• A service component c is associated with an input QoS
Qin and an output QoS Qout. Instances of both Qin and
Qout are QoS vectors of multiple application-level QoS
parameters. For simplicity (and is often the case in prac-
tice), we assume that each parameter takes discrete val-
ues. Therefore, both Qin and Qout are enumerable. To
compare two QoS vectors, they must have the same set
of QoS parameters. For two QoS vectors Qa and Qb ,
Qa � Qb holds if and only if for each QoS parame-
ter, the corresponding value of Qa is not larger than that
ofQb.

Each service component c is also associated with a
Translation Function Tc. Tc computes the following:
given an input QoS Qin, in order to achieve an output
QoS Qout, what is c’s resource requirement?, i.e., Tc is
defined by Tc : Qin × Qout → R. Instances of the
resource requirement R are represented by resource re-
quirement vectors. Therefore, given a pair of (Qin,Qout),
we have:

R = Tc
(
Qin,Qout). (1)

The resource requirement vector R = [r1, r2, . . . , rM ],
and rm (1 � m � M) is the required amount of the mth
resource by service component c. Similar to the QoS vec-
tors, to compare two resource requirement vectors, they
must have the same set of resources. For two resource
requirement vectors Ra and Rb , Ra � Rb holds if and
only if for each type of resource, the corresponding value
of Ra is not larger than that of Rb.

• A distributed service is associated with a Dependency
Graph. The nodes of the Dependency Graph represent
the participating service components, while the edges
represent the input/output and QoS dependencies be-
tween the service components. An edge from service
component c1 to c2 indicates that the output of c1 is the
input of c2; and the Qout of c1 is equivalent to the Qin

of c2. Especially, the Qin of the source node (for exam-
ple, c1 in figure 2) represents the original quality of the
source data involved in this service; while the Qout of the
sink node (for example, c3 in figure 2) represents the final
end-to-end QoS provided by this distributed service.

For example, for the Video Streaming + Tracking ser-
vice described in section 2.1, its Dependency Graph is a
three-node chain: VideoSender → ObjectTracker → Video-
Player. For service component VideoSender, both its Qin

and Qout are in the form of [Frame_Rate, Image_Size],
and its resource requirement R is in the form of [CPU,
Disk_IO_Bandwidth]. For service component Object-
Tracker, its Qin is the Qout of VideoSender, while its
Qout has the form of [Frame_Rate, Image_Size, Number_of
_Trackable_Objects], and its R is in the form of [CPU,
Network_bandwidth (between the video server and the
tracking proxy)]. For service component VideoPlayer, its
Qin is the Qout of ObjectTracker, while its Qout, which
is the end-to-end QoS of this service, has the form of
[Frame_Rate, Image_Size, Number_of_Trackable_Objects,

Buffering_Delay], and its R is in the form of [CPU,
Network_bandwidth (between the tracking proxy and the
client)].

Our runtime algorithm for the computation of end-to-
end multi-resource reservation plans is based on this QoS-
Resource Model. However, before presenting the algorithm,
we first describe the runtime system architecture in which
the algorithm will be run and the reservations will be made.

3. System architecture for multi-resource reservation

The runtime system architecture of our framework is shown
in figure 3. We assume a fully reservation-enabled environ-
ment. In this environment, service components of different
distributed services run on the end hosts. For each end host,
a QoSProxy and one or more Resource Brokers are deployed.

• A Resource Broker is responsible for making and en-
forcing the reservations for a certain resource. The re-
source can be a local resource, such as CPU, memory,
or disk I/O bandwidth, or it can be an end-to-end net-
work resource between this host and a remote host. In
the latter case, the end-to-end network resource is man-
aged in a two-level manner. At the higher level, the Re-
source Broker on one of the end hosts1 treats the net-
work links between the two end hosts as one resource.
At the lower level, the RSVP-enabled bandwidth broker
on each router treats each network link as a separate re-
source. As we show later, this two-level approach to end-
to-end network resource reservation is compatible with
our runtime algorithm. The basic operations of a Re-
source Broker include: (1) reporting current availability
of the corresponding resource, (2) making and enforcing
reservations for this resource, and (3) terminating or can-
celing reservations for this resource.

Figure 3. Runtime system architecture for multi-resource reservation.

1 To be compatible with RSVP, we assume that the network Resource Bro-
ker on the receiver side initiates an end-to-end network bandwidth reser-
vation.
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• The QoSProxy is the coordinator of multi-resource reser-
vation activities. More specifically, for a distributed ser-
vice session, QoSProxies of the hosts involved in the ses-
sion coordinate to compute the end-to-end multi-resource
reservation plan, according to our runtime algorithm (to
be described in section 4). Other basic operations of a
QoSProxy include: (1) collecting resource availability in-
formation from local Resource Brokers, (2) after a multi-
resource reservation plan is computed, dispatching the
plan to its local Resource Brokers, and (3) starting the lo-
cal service component(s) participating in the service ses-
sion, when the end-to-end multi-resource reservation is
completed.

The system architecture is service-independent. How-
ever, to plan and to perform multi-resource reservations for
a distributed service, the definition of the QoS-Resource
Model for this service has to be understood by the archi-
tecture. In our framework, the QoS-Resource Model defin-
ition is stored in the QoSProxies of one or more end hosts
involved in the service. In a centralized approach, the de-
finition will be stored and accessed by the QoSProxy of
the main server for the service, while in a distributed ap-
proach, the Qin and Qout levels and the Translation Func-
tion of each service component will be stored and accessed
by the QoSProxy of the host where the service component
runs. In either approach, a Translation Function is provided
by the developer of the corresponding service component as
a “plug-in” function, which will be called by a QoSProxy
when computing the end-to-end multi-resource reservation
plan. We assume the centralized approach for the rest of the
paper.

4. Algorithm for computing multi-resource reservation
plans

After introducing the model and architecture for multi-
resource reservation, we now present the runtime algorithm
for computing end-to-end multi-resource reservation plans
for distributed service sessions. The algorithm is the main
contribution in our framework.

4.1. Basic algorithm

The key ideas in the algorithm are QoS-awareness and
contention-awareness:

• QoS-awareness. As defined in the QoS-Resource Model,
each service component may accept multiple levels of
Qin, and achieve multiple levels of Qout. Each pair of
(Qin,Qout) is associated with a certain resource require-
ment vector. When the algorithm computes an end-to-
end resource reservation plan, it will select appropriate
Qin and Qout levels for each service component, so that
they will lead to the highest possible end-to-end QoS
level. This is under the constraint that the resource re-
quirement of each service component is satisfied by the
current end-to-end resource availability.

• Contention-awareness. A resource may be requested by
multiple service sessions on a competitive basis. There-
fore, resource contention exists. The degree of resource
contention varies from resource to resource and from
time to time. Moreover, the failure to reserve one re-
source leads to the reservation failure for the whole dis-
tributed service session. To increase the overall reser-
vation success rate of all service sessions, our runtime
algorithm dynamically determines an end-to-end reser-
vation plan for each service session. This plan is selected
from multiple feasible reservation plans, such that it will
reserve the lowest percentage of bottleneck resource(s).
Therefore, each computed end-to-end reservation plan is
“disciplined” in the aspect of its bottleneck resource con-
sumption. Note that the bottleneck resource in each reser-
vation plan may be different and even change over time.
It will be dynamically identified by our algorithm.

There are two main steps in the runtime algorithm: for
each distributed service session, the algorithm (1) constructs
a QoS-Resource Graph (QRG) based on the QoS-Resource
Model of this service, and (2) finds the end-to-end reserva-
tion plan based on the QRG. The two steps will be described
in the next two subsections.

4.1.1. Constructing the QoS-Resource Graph
For a distributed service session, the QoS-Resource Graph
(QRG) represents a “snap-shot” of the end-to-end resource
requirement and availability, as well as the achievable lev-
els of Qin and Qout for each service component. Figure 4
shows an example QRG constructed for a Video Streaming +
Tracking service session. The dotted rectangles in the QRG
represent the corresponding service components in the De-
pendency Graph of this service. A QRG is defined as fol-
lows:

(1) QRG nodes: For each participating service component
c, the possible levels of its Qin and Qout are represented
as nodes of the QRG. The source node of the QRG (for
example, Qa in figure 4) represents the original quality
of the source data associated with this service session.
For the service component whose Qout is the end-to-
end QoS (for example, service component VideoPlayer
in figure 4), its Qout nodes are sink nodes of the QRG
representing the end-to-end QoS levels. Although QoS
levels of a service component are partially ordered in
general, we assume that the end-to-end QoS levels can
be ranked in a linear order, based on a user’s preference
or some other subjective criteria. For example, when
two end-to-end QoS levels are not comparable, the user
who requests the service session can arbitrate that the
QoS level with a smaller delay parameter is better than
the one with a larger delay.

(2) QRG edges: Edges of the QRG are in two categories:

• Edges from Qin nodes to Qout nodes of the same ser-
vice component. For a service component c, an edge
from a Qin node Qx to a Qout nodeQy exists, if and
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Figure 4. An example QRG (we assume that both ObjectTracker and Video-
Player have a hypothetical image intrapolation capability to scale up the

size of video images, at the cost of higher CPU requirement).

only if the resource requirement vector Rreq, calcu-
lated as Rreq = Tc(Qx,Qy), can be satisfied by the
current availability of the corresponding resources.

• Edges from Qout nodes of a service component to Qin

nodes of the downstream service component in the
Dependency Graph. Each edge simply indicates the
equivalence of the two nodes it connects.

(3) Weights of QRG edges: A weight is computed for each
edge in the QRG.

• For an edge belonging to the first category, the weight
indicates the degree of contention in reserving the re-
sources associated with this edge. For an edge from a
Qin nodeQx to a Qout nodeQy of service component
c, let Rreq = [r req

1 , r
req
2 , . . . , r

req
M ] be the correspond-

ing resource requirement vector. On the other hand,
let Ravail = [ravail

1 , ravail
2 , . . . , ravail

M ] be the current re-
source availability vector. Rreq is computed by call-
ing Tc(Qx,Qy), while Ravail is obtained by querying
the Resource Brokers of these resources. For a net-
work Resource Broker, ravail is the minimum of the
link bandwidth availabilities reported by the lower-
level RSVP-enabled bandwidth brokers.

We first define a contention index ψi for the ith
resource to evaluate how “competitive” it is to re-
serve r req

i amount of resource, under the availability

of ravail
i . We adopt a simple definition of ψ as fol-

lows:

ψi = r
req
i

ravail
i

, r
req
i � ravail

i . (2)

Intuitively, the larger the percentage of a resource
we try to reserve under its current availability, the
lower the probability that the reservation will suc-
ceed.2 Then, we further define the weight � of the
edge as

� = M
max
i=1

ψi = M
max
i=1

r
req
i

ravail
i

. (3)

• For an edge belonging to the second category, the
weight is zero, because the edge only represents the
equivalence of the two nodes it connects.

4.1.2. Selecting an end-to-end reservation plan
After constructing the QRG, the algorithm will select an
end-to-end multi-resource reservation plan for the service
session.

The selection is based on two key observations. In the
QRG, each edge with a non-zero weight exists if and only
if the corresponding Rreq � Ravail, i.e., the reservation of
resources according to Rreq is feasible. Therefore, we have
the first key observation: every path from the source node to
one of the sink nodes represents a feasible end-to-end multi-
resource reservation plan, and the sink node represents the
end-to-end QoS level that can be achieved by this reserva-
tion plan. In particular, the highest achievable end-to-end
QoS under the current resource availability is represented by
such a sink node: it has the highest QoS ranking among all
the sink nodes which are “reachable” via a path from the
source node. For example, in figure 4, if we assume a linear
order ofQn > Qo > Qp > Qq > Qs > Qr , thenQo is the
highest achievable end-to-end QoS.

However, to reach the highest achievable end-to-end QoS
from the source node, there exist multiple paths, i.e., there
exist more than one feasible end-to-end reservation plan to
achieve the highest possible end-to-end QoS. To make a
choice, we first define�P for each path P as

�P = max
(each edge e on path P)

�e. (4)

It is easy to see that �P represents the highest contention
index of any resource on path P , i.e., the contention index of
the bottleneck resource(s) on P . Note that on different paths,
the bottleneck resource may be different. Then, to minimize
resource contention, our algorithm should select a path, such
that its �P is the smallest among all the paths leading to the
sink node representing the highest possible end-to-end QoS.
In other words, our algorithm should select an end-to-end
reservation plan, such that it requires the lowest percentage

2 In fact, there are other definitions of ψ which also exhibit this property.
Fortunately, it is straightforward for our algorithm to adopt a different ψ
definition in the future.
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Figure 5. The shortest path fromQa toQo , which represents the end-to-end
reservation plan computed by the algorithm.

of bottleneck resource(s) among all feasible plans to achieve
the highest possible end-to-end QoS. To select such a path,
we have the second key observation: the path to be selected
is the “shortest” path from the source node of the QRG to the
sink node representing the highest possible end-to-end QoS,
with operator “+” re-defined as “max” during the shortest
path computation. Figure 5 shows such a shortest path (by
the thicker edges) in the example QRG.

The shortest path can be computed by running Dijkstra’s
algorithm on the QRG. In figure 5, the value associated with
each node is generated during the execution of Dijkstra’s
algorithm. Especially, for a sink node, the value is equal
to the contention index ψ of the bottleneck resource on the
shortest path from the source node to this node. With “+”
re-defined as “max”, we also add the following tie-breaking
rule to Dijkstra’s algorithm: when there are two Qin nodes as
candidates for the predecessor of a Qout node [7], if the val-
ues in the Qin nodes and the weights of the two edges have
the relation max(a, b) = max(a, c) = a, we choose the pre-
decessor according to min(b, c). For example, in figure 5,
we chooseQd instead ofQe as the predecessor ofQi .

4.2. Algorithm complexity and execution overhead

The computation complexity of this runtime algorithm is
O(KQ2). K is the number of participating service com-
ponents in a distributed service session. Q is the maximum
number of Qout nodes (QoS levels) of a service component.
For example, in figure 5, K = 3 and Q = 6 – the number of
Qout nodes of service component c3. In practice, K and Q
usually have fairly small values, for example, a service hav-
ing fewer than ten service components, and a service com-
ponent having tens of Qout nodes. Therefore, our algorithm
is efficient for runtime execution.

In section 3, we assume that the QoS-Resource Model
definition of a distributed service is stored in the QoSProxy
of the main server of this service, which we will call it the
main QoSProxy. Therefore, there are three phases to run our
algorithm: first, QoSProxies of all participating end hosts
report current resource availability to the main QoSProxy;

second, the main QoSProxy executes the algorithm locally;
and third, the main QoSProxy dispatches different segments
of the computed end-to-end multi-resource reservation plan
to the participating QoSProxies, respectively. The overhead
will involve one message passing round-trip between each
participating QoSProxy and the main QoSProxy, and the lo-
cal execution of the algorithm at the main QoSProxy.

4.3. Extensions to the algorithm

In this section, we propose extensions to the basic algorithm
to further improve its performance and applicability.

4.3.1. Trading off end-to-end QoS for overall success rate
The first extension is to further improve the overall reserva-
tion success rate among all service sessions. The enhance-
ment is based on the following observations: (1) the basic
algorithm is “greedy” in the sense that it always tries to bring
the highest possible end-to-end QoS to each service session,
and then makes a contention-aware selection among those
reservation plans that lead to the highest possible end-to-
end QoS. However, if the algorithm can trade off the end-
to-end QoS of each service session, a higher overall reserva-
tion success rate may be achieved; (2) meanwhile, the basic
algorithm uses a snapshot of current resource availability to
construct a QRG. However, if the algorithm is also aware of
the trends in resource availability changes, the overall reser-
vation success rate may be improved.

Based on these observations, we propose a trade-off pol-
icy between end-to-end QoS and overall success rate. This
policy requires that each Resource Broker also generates and
reports an Availability Change Index α to the QoSProxy. The
Availability Change Index is generated as follows: assume
that each Resource Broker keeps an average ravail

avg of resource
availability values reported during the past T amount of time
(T may vary for different Resource Brokers). When the
QoSProxy queries the Resource Broker, the Resource Bro-
ker will report both ravail – the current availability, and α,
which is computed as

α = ravail

ravail
avg

. (5)

ravail
avg will be updated after each report. α reflects the trend in

this resource’s availability: when α � 1.0, the trend is “up”
or “unchanged”; when α < 1.0, the trend is “down”.

During the execution of the algorithm, α of each resource
will be attached to ψ of this resource. Especially, after run-
ning Dijkstra’s Algorithm, each sink node will be associated
with both ψ and α of the bottleneck resource on the shortest
path from the source node to this node. Our trade-off pol-
icy will determine the end-to-end QoS level for this service
session as follows: let s0 be the sink node representing the
highest possible end-to-end QoS level, and ψs0 and αs0 be
the ψ and α values associated with s0, respectively,

• if αs0 � 1.0, then s0 will still be the end-to-end QoS for
this service session as in the basic algorithm;
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• if αs0 < 1.0, then the end-to-end QoS will be the highest
ranked sink node s that satisfies: ψs � αs0ψs0 .

The intuition behind this heuristics is: when the availabil-
ity of the bottleneck resource tends to go down (αs0 < 1.0),
the algorithm chooses a lower end-to-end QoS level, such
that the bottleneck resource in the corresponding end-to-end
reservation plan has a lower contention index (by a ratio of
1 − αs0 ). In section 5, our experimental results will show
that this trade-off heuristics constantly achieves higher over-
all reservation success rate than the basic algorithm.

4.3.2. Supporting DAG dependency graphs
The second extension is to improve the applicability of the
basic algorithm. Before this section, there has been an im-
plicit assumption about a distributed service: its Dependency
Graph is a chain of service components. The assumption
limits the algorithm’s applicability. In this section, we ex-
tend both the QoS-Resource Model and the basic algorithm,
so that they are applicable to a distributed service whose De-
pendency Graph is a Directed Acyclic Graph (DAG).

(1) Extension to the QoS-Resource Model. For a distrib-
uted service with a DAG Dependency Graph (as shown
in figure 6), we add the following definitions about the
QoS dependencies among service components:

• If a service component c has more than one adjacent
service component, we call c a fan-out service com-
ponent – for example, c2 in figure 6. Its Qout is equiv-
alent to the Qin of each service component adjacent
to it.

• If a service component c is adjacent to more than one
service component, we call c a fan-in service compo-
nent – for example, c5 in figure 6. Its Qin is defined as
the concatenation of Qout of each service component
it is adjacent to.

(2) Extension to the basic algorithm. The algorithm still
first constructs a QRG for each distributed service ses-
sion. An example QRG generated from the DAG De-
pendency Graph in figure 6 is shown in figure 7. A fea-
sible end-to-end multi-resource reservation plan is now
represented by an embedded graph G in the QRG such
that: (1) in G, there is only one Qin node and one Qout

node from each service component, and an edge exists
between the two nodes in the QRG; (2) in G, the Qout

node of one service component is equivalent to (or con-
tributes to, if its adjacent service component is a fan-in
component) the Qin node of its adjacent service com-
ponent(s). Therefore, the goal of our algorithm is to
find such a G that: (1) the sink node inG represents the
highest reachable end-to-end QoS level in the QRG; and
(2) the value of �G is the smallest among all embedded
graphs representing the feasible end-to-end reservation
plans – �G is defined as:

�G = max
(each edge e in G)

�e. (6)

Figure 6. An example of DAG dependency graph and the extension to the
QoS-resource model.

Figure 7. An example QRG based on a DAG dependency graph.

To approach this goal, we provide an efficient heuristics
which will result in high end-to-end QoS level and low �G
value. Our heuristics is based on the following two-pass pro-
cedure on the QRG:

• Pass I on the QRG is similar to Dijkstra’s Algorithm, in
order to “probe” the shortest paths from the source node
to the sink nodes of the QRG. However, a key difference
from Dijkstra’s Algorithm is: when computing the value
associated with a Qin node of a fan-in service compo-
nent (for example, node Qr of c5 in figure 8), we set
the value to be the maximum of those associated with the
Qout nodes of the service components it is adjacent to
(for example, node Qn of c3 and node Qp of c4, whose
concatenation formsQr ).

• Pass II on the QRG is in the backward direction of pass I.
Starting from the reachable sink node with the highest
QoS ranking (for example, Qv), we backtrack the edges
toward the source node, according to the result of pass I.
This is to determine the embedded graph that represents
the resultant end-to-end reservation plan. However, the
backtracking may encounter the following problem: at
a fan-out service component, the selected edges do not
converge at the same Qout node. For example, in figure 8,
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Figure 8. Running the heuristics: the embedded graph represents the resul-
tant end-to-end reservation plan.

the selected edges (the thicker ones in the figure) lead to
different Qout nodes Qh and Qi . We use the following
policy to resolve this non-convergence locally: for the
service components adjacent to the fan-out component
(for example, c3 and c4), fix their Qout nodes that have
been backtracked (for example, nodesQn andQp); then
select such a Qout node of the fan-out service component:
it incurs the lowest degree of resource contention to reach
the fixed Qout nodes of the adjacent service components.
For example, in figure 8, Qi will be selected instead of
Qh, because for Qi to reach Qn and Qp, the highest �e
is 0.30; while for Qh to reach Qn and Qp , the highest
�e is 0.35. The computed end-to-end reservation plan is
illustrated in figure 8 by the thicker edges.

Limitations of this heuristics include: (1) for a sink node
of the QRG reachable after pass I, the heuristics may not be
able to find a feasible end-to-end reservation plan in pass II;
(2) due to the local (instead of global) nature of the non-
convergence resolution in pass II, the computed end-to-end
reservation plan may not have the lowest bottleneck resource
contention index among all feasible reservation plans.

5. Performance study

In this section, we study the performance of our multi-
resource reservation framework. We simulate a distributed
reservation-enabled environment, with multiple distributed
services deployed and multiple clients requesting these ser-
vices. In particular, for runtime computation of end-to-end
multi-resource reservation plans, we compare our basic al-
gorithm (referred to as basic), our algorithm with the trade-
off policy presented in section 4.3.1 (referred to as trade-
off), and a contention-unaware algorithm (referred to as ran-
dom), which randomly selects a feasible end-to-end reser-
vation path leading to the highest possible end-to-end QoS
level, instead of finding the “shortest-path” in the QRG. The
key performance metrics in our simulations are: (1) the over-

Figure 9. The simulated reservation-based distributed environment.

all reservation success rate of all service sessions, and (2) the
average end-to-end QoS level provided to successful service
sessions.

5.1. Simulation setup

The simulated environment is shown in figure 9. There are
four high performance computersH1−H4, as well as a num-
ber of client machines in eight different domains D1−D8.
These hosts are connected by high speed network links
L1−L14. Four different distributed services S1−S4 are de-
ployed in the environment. The QoS-Resource Model for
each service is defined as follows:

• For service Si (1 � i � 4), the main server is Hi . The
Dependency Graph of Si involves a chain of three ser-
vice components ciS → ciP → ciC : ciS is the server-side
service component running on host Hi; ciC is the client-
side service component running on the requesting client;
and ciP is a proxy service component running on host Hj
(1 � j � 4 and j 
= i) – depending on which domain the
client is from. For example, in figure 9, if a client in do-
mainD2 requests service S4, then the service session will
involve service components c4

S on H4, c4
P on H1, and c4

C

on the client itself.

• For each of service components ciS, c
i
P , and ciC , figure 10

shows the Qin and Qout levels and the corresponding re-
source requirements: (a) is for services S1 and S4; while
(b) is for services S2 and S3. The service components
require four end-to-end resources: ciS requires resource
hS , which is a local resource of the server; ciP requires
resources hP and lSP , which represent the local resource
of the proxy (hS and hP assumed to be of the same
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(a)

(b)

Figure 10. QoS levels and corresponding resource requirements in different
services: (a) for services S1 and S4; (b) for services S2 and S3.

type), and the network link between the server and the
proxy, respectively; and ciC requires resource lPC , which
is the network link between the proxy and the client. We
also assume that the end-to-end QoS levels are ranked as
Qp > Qq > Qr in figure 10(a), andQl > Qm > Qn in
figure 10(b). In the same order, we denote the QoS levels
as level 3, level 2, and level 1, respectively.

In our simulation, service requests from different clients
generate service sessions. More specifically, a service ses-
sion is generated by a client from a randomly selected do-
main amongD1−D8. The type of service is selected among
the four services except S�i/2� (i is the index of the domain
where the client is from). The service sessions are highly
heterogeneous in their resource requirement and duration.
For resource requirement heterogeneity, figure 10 shows the
“base” resource requirement for normal service sessions.
However, there are also “fat” service sessions whose re-
source requirement is N times the values in figure 10. N is
either 2 or 10; and the ratio between normal service ses-
sions and “fat” service sessions is 1 : 2. For service duration
heterogeneity, the duration of a service session is randomly
distributed in the wide range between 20 and 600 time units.
Those longer than 60 time units are called “long” service
sessions, while the rest are called “short” service sessions.

(a)

(b)

Figure 11. Overall reservation success rate and average end-to-end QoS
level: (a) overall reservation success rate and (b) average end-to-end QoS

level.

The ratio between “long” service sessions and “short” ser-
vice sessions is 1 : 2. The service sessions are generated ac-
cording to a Poisson process. We perform multiple runs of
the simulation, each run with a different average generation
rates – from 60 sessions per 60 TUs (Time Units) to 240 ses-
sions per 60 TUs. Each run takes a total of 10800 time units.

The initial total amount of each resource is randomly set
between 1000 and 4000 units. During each run, we also
dynamically change the probability that each service is re-
quested. Therefore, the overall demand for each individ-
ual resource changes over time. We create these conditions
to test our algorithm’s adaptivity in dynamically identify-
ing bottleneck resource(s) and selecting different end-to-end
reservation plans.

5.2. Simulation results

5.2.1. Overall reservation success rate and average
end-to-end QoS level

Figure 11 shows the overall reservation success rate (a) and
the average end-to-end QoS level provided to the success-
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Table 1
Selected reservation paths and their percentages in QRGs gen-
erated from figure 10(a), by basic and tradeoff, respectively.

Selected path (see figure 10(a)) basic tradeoff

Qa −Qb −Qe −Qh −Ql −Qp 1.1% 0.1%
Qa −Qc −Qf −Qh −Ql −Qp 0.3% 0.0%
Qa −Qb −Qe −Qi −Qm −Qp 21.9% 4.4%
Qa −Qc −Qf −Qi −Qm −Qp 55.8% 22.2%
Qa −Qc −Qf −Qj −Qn −Qp 0.4% 0.0%
Qa −Qd −Qg −Qj −Qn −Qp 18.0% 2.3%
Qa −Qb −Qe −Qi −Qm −Qq 0.1% 2.6%
Qa −Qc −Qf −Qi −Qm −Qq 0.1% 11.0%
Qa −Qd −Qg −Qj −Qn −Qq 0.1% 6.5%
Qa −Qc −Qf −Qk −Qo −Qq 1.6% 41.8%
Qa −Qd −Qg −Qk −Qo −Qq 0.6% 9.0%

Table 2
Selected reservation paths and their percentages in QRGs gen-
erated from figure 10(b), by basic and tradeoff, respectively.

Selected path (see figure 10(b)) basic tradeoff

Qa −Qb −Qd −Qf −Qi −Ql 1.4% 0.4%
Qa −Qc −Qe −Qf −Qi −Ql 11.2% 2.0%
Qa −Qb −Qd −Qg −Qj −Ql 1.8% 0.5%
Qa −Qc −Qe −Qg −Qj −Ql 17.4% 9.6%
Qa −Qb −Qd −Qh −Qk −Ql 6.0% 0.4%
Qa −Qc −Qe −Qh −Qk −Ql 61.8% 15.7%
Qa −Qb −Qd −Qf −Qi −Qm 0.0% 0.0%
Qa −Qc −Qe −Qf −Qi −Qm 0.0% 4.8%
Qa −Qb −Qd −Qg −Qj −Qm 0.0% 0.2%
Qa −Qc −Qe −Qg −Qj −Qm 0.0% 7.6%
Qa −Qb −Qd −Qh −Qk −Qm 0.0% 0.9%
Qa −Qc −Qe −Qh −Qk −Qm 0.1% 57.8%

ful service sessions (b). The results are obtained under
different average generation rates of service sessions, and
by using algorithms basic, tradeoff,3 and random, respec-
tively. In reservation success rate, tradeoff outperforms ba-
sic, which in turn outperforms the contention-unaware ran-
dom. However, in average end-to-end QoS level, tradeoff re-
sults in lower average QoS levels, due to the “QoS-success
rate” tradeoff. On the other hand, both basic and random
achieve end-to-end QoS levels very close to the highest level
(level 3), due to their “greedy” nature on behalf of each in-
dividual service session.

5.2.2. Selection of end-to-end reservation paths
We record the selected end-to-end reservation path in the
QRG for each service session. Our results show that in the
QRGs generated from either figures 10(a) or (b), the paths
selected by basic and tradeoff have covered most of the ex-
isting paths in that figure. We also confirm via our results
that every resource in the environment becomes the bottle-
neck resource on a path for at least once during the sim-
ulation. Tables 1 and 2 list the selected reservation paths
and their percentages of occurrence, during the simulation

3 For tradeoff, each Resource Broker keeps an average ravail
avg of ravail values

reported during the past 3 time units.

Table 3
Reservation success rates/average QoS levels in each class,

achieved by basic.

Class/gen. 60 ssn.s/ 100 ssn.s/ 180 ssn.s/
rate 60 TUs 60 TUs 60 TUs

Norm.-short 99.9%/3.00 97.3%/2.99 92.0%/2.98
Norm.-long 99.9%/3.00 97.4%/2.99 92.2%/2.98
Fat-short 99.0%/2.99 73.2%/2.88 40.7%/2.67
Fat-long 98.6%/2.99 72.8%/2.86 38.9%/2.66

Table 4
Reservation success rates/average QoS levels in each class,

achieved by tradeoff.

Class/gen. 60 ssn.s/ 100 ssn.s/ 180 ssn.s/
rate 60 TUs 60 TUs 60 TUs

Norm.-short 100%/2.35 98.3%/2.27 94.4%/2.21
Norm.-long 100%/2.36 98.4%/2.27 94.1%/2.22
Fat-short 99.9%/2.36 87.6%/2.26 49.6%/2.18
Fat-long 99.7%/2.31 86.8%/2.27 49.1%/2.17

run with average session generation rate of 80 sessions per
60 TUs. The results demonstrate the adaptivity of basic and
tradeoff in dynamically identifying bottleneck resource(s)
and selecting different end-to-end reservation plans.

5.2.3. Impact of service session heterogeneity
Since the service sessions are heterogeneous in resource re-
quirement and duration, we categorize all service sessions
into four classes: normal and short sessions, normal and
long sessions, fat and short sessions, and fat and long ses-
sions. “Normal”/“fat” as well as “short”/“long” are defined
in section 5.1. Tables 3 and 4 show the reservation success
rates and average end-to-end QoS levels in each service ses-
sion class, under different average generation rates of (all)
service sessions and by basic and tradeoff, respectively. We
observe that both fat and short and fat and long classes result
in lower reservation success rates and lower average end-to-
end QoS levels than the other two classes. However, there is
no significant difference between fat and short and fat and
long, as well as between normal and short and normal and
long. The results suggest that the resource requirement het-
erogeneity has more significant impact than the duration het-
erogeneity on both key performance metrics.

5.2.4. Impact of resource availability observation
inaccuracy

So far in our simulation, we assume and implement the
framework as follows: for each service session, the com-
putation of end-to-end reservation plan and the actual reser-
vation take place in an atomic manner. Therefore, the re-
source availability observation is always consistent and up-
to-date, and there will be no change until after the actual
reservation. However, this assumption of accurate observa-
tion may not hold in real life, due to the concurrency among
multiple service sessions as well as the varying latency in
the collection of multi-resource availability. To show its im-
pact on the performance of algorithms basic and tradeoff,
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(a)

(b)

Figure 12. Overall reservation success rate with inaccurate resource avail-
ability observations: (a) algorithm basic and (b) algorithm tradeoff.

we re-run the simulation with the assumption lifted. More
specifically, for each service session, the availability of any
resource may be observed up to E time units ago. Fig-
ure 12 shows the overall reservation success rates under dif-
ferent E values achieved by basic and tradeoff, respectively.
For comparison, we also show the success rates achieved
by that algorithm and by random, both with accurate ob-
servations. The results indicate minor to moderate perfor-
mance degradation of basic and tradeoff, with the presence
of inaccurate resource availability observations. However,
the lowered success rates of both algorithms are still signif-
icantly higher than those of random with accurate observa-
tions. Furthermore, between basic and tradeoff, the lowered
success rates of the latter are constantly higher than those of
the former.

5.2.5. Impact of resource requirement diversity
We also study the impact of resource requirement diversity
on reservation success rate. For each service component, the
diversity means the difference among the required amounts
of each resource, in order to reach a certain Qout level from

(a)

(b)

Figure 13. Overall reservation success rate and average end-to-end QoS
level – under less diversified resource requirement: (a) overall reservation

success rate and (b) average end-to-end QoS level.

different Qin levels, or to reach different Qout levels from
the same Qin level. The greater the diversity, the more the
options for resource tradeoffs and therefore, the higher the
probability for an end-to-end reservation to succeed. We
have also conducted extensive simulations, in which we set
different resource requirement values in figure 10 for differ-
ent simulation runs. The settings reflect different degree of
resource requirement diversity. Our simulation results con-
firm the impact of resource requirement diversity on reserva-
tion success rate. Nevertheless, our results constantly show
the effectiveness of our algorithms. For example, figure 13
shows the results under such an unfavorable setting: for each
resource, the requirement values on different edges have the
same average as that of the corresponding values in fig-
ure 10, however, the ratio between the highest and lowest
values is limited to 3 : 1, and the other values are evenly dis-
tributed between them. Still, both basic and tradeoff achieve
higher reservation success rates than the contention-unaware
random, although the absolute success rates are lower than
the corresponding rates in figure 11(a).
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6. Related work

Our framework is motivated by the recent advances in high
performance distributed meta-computing (or the Grid) envi-
ronments, such as Globus [8], Condor [9], and Legion [10].
In these environments, a wide collection of distributed and
individually managed computing resources are connected
by high speed network links; and they form a virtual and
high performance platform for the deployment of numerous
value-added and application-level distributed services. Be-
sides high throughput and availability, clients of these ser-
vices may also require end-to-end QoS guarantees. Our
multi-resource reservation framework can potentially be in-
tegrated into these environments, in order to bring end-to-
end QoS guarantees into these services.

In Globus Project, it has been argued that multi-resource
co-allocation should be an integral part of the resource man-
agement architecture for the Grid [11,12]. In [11], a resource
co-allocation architecture and its mechanisms for allocation,
configuration, monitoring, and control are presented. Our
framework complements their architecture by introducing
the QoS-Resource Model and contention-awareness. An ad-
vance resource reservation mechanism is proposed in [12],
in addition to the mechanism for immediate reservation. One
of our next steps is to extend our multi-resource reservation
framework to support advance reservations.

Taking a more theoretical approach, Lee et al. also
study the problem of resource allocation for QoS guaran-
tee [13,14]. Particularly, in [13], the problem of apportion-
ing multiple finite resources to satisfy the QoS needs of mul-
tiple applications along multiple QoS dimensions is stud-
ied. However, their model does not consider multiple service
components, which contribute transitively to the end-to-end
QoS of an application. In addition, their solution is applied
to a static set of applications to be executed at the same time.
Therefore, it does not consider the dynamic arrival and com-
pletion of applications, i.e., it is not contention-aware.

Our QoS-Resource Model evolves from the EPIQ QoS
management framework [15,16]. In [15], the concepts of
flexible task, input/output quality, and producer/consumer
dependency graph are introduced. They correspond to the
service component, Qin/Qout, and distributed service De-
pendency Graph in our model. However, no specific algo-
rithm or protocol is presented in [15] for the computation of
end-to-end multi-resource allocation. In [16], a protocol for
end-to-end service establishment is proposed. The protocol
shares the same performance goals as our algorithm. How-
ever, the protocol’s performance depends on several key pa-
rameters, yet there is no systematic method to determine the
optimal values of these parameters. On the contrary, our al-
gorithm is self-adaptive and requires no pre-set parameters
except T for Resource Brokers in algorithm tradeoff.

In the Darwin Project [17], a hierarchical service and re-
source brokerage architecture is introduced. In order to com-
pose value-added services, allocation of multiple resources
is needed. The signaling protocol for multi-resource alloca-
tion is the Beagle signaling protocol [18]. However, this pro-

tocol is not contention-aware, and there is no generic model
to capture the QoS-resource relation of a service. In our ear-
lier work of Qualman [19], different QoS-aware Resource
Brokers are presented. They are responsible for the reser-
vation and enforcement of CPU, network bandwidth, and
memory resource, respectively. However, there is no coordi-
nation among these brokers, and this problem naturally leads
to our current framework of multi-resource reservation.

7. Conclusion

We present a QoS and contention-aware multi-resource
reservation framework. The framework consists of a for-
mal QoS-Resource Model, a runtime system architecture for
coordinated multi-resource reservation, and a runtime algo-
rithm (and its heuristic extensions) for the computation of
end-to-end reservation plans. Our framework is suitable to
be integrated into the current high performance distributed
meta-computing environments, in order to bring QoS guar-
antees into the distributed services deployed in these en-
vironments. Our simulation results show excellent perfor-
mance of this framework. In particular, the basic runtime
algorithm brings the highest possible end-to-end QoS level
to each service session, while achieving significantly higher
overall reservation success rate than the contention-unaware
algorithm. Our heuristics with the “QoS-success rate” trade-
off policy achieves even higher overall success rate, at the
cost of lower average end-to-end QoS level for individual
service sessions.
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