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ABSTRACT

With the booming sale of iOS devices, the number of iOS
applications has increased significantly in recent years. To
protect the security of iOS users, Apple requires every iOS
application to go through a vetting process called App Re-
view to detect uses of private APIs that provide access to
sensitive user information. However, recent attacks have
shown the feasibility of using private APIs without being
detected during App Review.

To counter such attacks, we propose a new iOS applica-
tion vetting system, called iRiS, in this paper. iRiS first
applies fast static analysis to resolve API calls. For those
that cannot be statically resolved, iRiS uses a novel iterative
dynamic analysis approach, which is slower but more power-
ful compared to static analysis. We have ported Valgrind to
iOS and implemented a prototype of iRiS on top of it. We
evaluated iRiS with 2019 applications from the official App
Store. From these, iRiS identified 146 (7%) applications
that use a total number of 150 different private APIs, in-
cluding 25 security-critical APIs that access sensitive user
information, such as device serial number. By analyzing
iOS applications using iRiS, we also identified a suspicious
advertisement service provider which collects user privacy
information in its advertisement serving library. Our results
show that, contrary to popular belief, a nontrivial number of
iOS applications that violate Apple’s terms of service exist
in the App Store. iRiS is effective in detecting private API
abuse missed by App Review.
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1. INTRODUCTION

Mobile devices, especially tablets and smartphones have
gained tremendous popularity in recent years. Apple iOS
is one of the dominating mobile platforms on the market;
by the end of January 2015, Apple had sold one billion iOS
devices [9]. One of its major success factors is the large
number of third-party iOS applications that provide a wide
variety of functionality to users. To rapidly grow the iOS
ecosystem, Apple created the App Store which allows third-
party developers to distribute their own iOS applications.
As of September 2014, there were 1.3 million iOS applica-
tions available in the App Store [28].

Allowing third-party applications to run on iOS devices
greatly improves the user experience. However, it also opens
up the opportunity for malicious developers to attack the
system and users. To prevent third-party applications from
performing malicious activities, iOS employs several runtime
protection mechanisms such as Sandboxing, Mandatory Ac-
cess Control (MAC), Data Execution Prevention (DEP) and
Address Space Layout Randomization (ASLR).

Unfortunately, even under these runtime protections, at-
tack is still feasible through the use of private APIs. Private
APIs are functions in iOS frameworks reserved only for in-
ternal uses in built-in applications. They provide access to
various device resources (e.g. camera, bluetooth) and sensi-
tive information (e.g. serial number, device ID), which are
often not regulated by runtime mechanisms. Although some
resources are guarded by entitlements with MAC in recent
versions of i0S, there are still many that can be accessed
without mediation.

As a countermeasure to the attack, Apple strictly pro-
hibits any use of private APIs in third-party applications,
according to its iOS developer license agreement [3]. To en-
force the policy, every third-party application submitted to
App Store must go through Apple’s vetting process called
App Review before it can be distributed to end users. Appli-
cations that pass App Review are digitally signed by Apple
to prevent further modification. The signature is verified by
iOS at runtime to ensure that only the original applications
approved by App Review can run on iOS devices.

App Review has significantly raised the difficulty of dis-
tributing malicious applications to end users. Given the fact
that very few malicious applications have been found on
iOS [14], it is generally believed that App Review is quite



effective. However, recent work [15, 30] shows that by con-
structing the names of private APIs at runtime, it is pos-
sible to invoke private APIs in third-party applications and
still be able to pass the vetting process. While Apple has
never publicly disclosed the technical details of App Review,
these attacks indicate that the current vetting process may
be based on static analysis which is vulnerable to obfusca-
tion. Although Apple complements automatic analysis with
manual inspection [1], due to the large number of applica-
tion submissions, it can only cover a small portion of all
applications.

Besides Apple’s App Review, there are several automated
binary analysis systems [11, 29, 20, 18] proposed by security
researchers to analyze iOS applications. However, these ap-
proaches also have shortcomings. Systems based on static
analysis [11] could not resolve API names composed at run-
time. Dynamic approaches [29, 20, 18] suffer from incom-
plete code coverage, thus would fail to detect uses of private
APIs if malicious application authors place the invocations
behind complicated triggering conditions.

To overcome the limitations of existing application vetting
approaches on iOS, we present iRiS, an automated system
that can effectively detect uses of private APIs in iOS appli-
cations. Given a binary iOS application, iRiS uses a combi-
nation of static and dynamic analysis to resolve the names
of the functions being called in the program. iRiS first stat-
ically scans all function call sites and tries to resolve the
names of the call targets using constant propagation and
backward slicing. For the remaining call sites whose targets
could not be statically determined, iRiS utilizes dynamic
binary instrumentation to drive the execution of the appli-
cation to the call sites to resolve the call targets at runtime.

We have encountered and solved many challenges of per-
forming binary analysis on iOS in the design of iRiS. Due to
the closed-source nature of iOS, there is no existing dynamic
binary instrumentation framework available for it. As part
of our effort, we have ported Valgrind [23] to i0S and built
the dynamic analysis component of iRiS on top of it. Also,
most i0OS applications are based on event-driven graphical
user interface (GUI) which exhibits very limited behavior
without human interactions. In iRiS, we propose an auto-
mated Ul event handler exploration approach by using dy-
namic binary instrumentation to monitor the registration of
event handlers and trigger them automatically.

We have used iRiS to analyze 2019 free applications on the
App Store. To our surprise, the results show that more than
one hundred of these applications use private APIs. In some
applications, we even identified the behavior of using private
APIs to retrieve personal information (e.g. the applications
installed on the device, the serial number of the device and
its various components such as cameras and battery) and
sending such information to advertisement providers. This
suggests that the current application vetting approach used
by Apple may not be sufficient to guarantee the security and
privacy of iOS device users.

In summary, the contributions of our paper are as follows:

e We have ported the popular instrumentation frame-
work Valgrind [23] to i0S. To the best of our knowl-
edge, this is the first instruction-level dynamic binary
instrumentation framework on iOS.

e We present the design and the prototype implementa-
tion of iRiS, an automated system using a combination
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of static and dynamic analysis to detect uses of private
API in binary iOS applications.

e To show the effectiveness of our approach, we have
analyzed more than 2000 iOS applications. Our result
shows that a non-trivial number of iOS applications
use security-critical private APIs to access and collect
sensitive user information.

The rest of the paper is organized as follows. In Section 2
we introduce the background. We demonstrate the practical
challenges and our solutions for porting Valgrind to iOS in
Section 3. Then we present our approach of resolving API
call targets in Section 4. We discuss the limitations of iRiS
in Section 6 and compare with related work in Section 7.
Section 8 concludes the paper.

2. BACKGROUND

In this section, we introduce background about various
aspects of iOS. This will help readers to better understand
our system described in later sections.

(1) C Function Call: my View Object
CGRectMake(0, 0, 100, 100); T

(2) Objective-C Method Call:

|::> [my View drawNumber:1];
objc_msgSend(my View,
“drawNumber”, 1); | Classs l:iertadata

- U |H

©) SuPerCl?SS Method Call‘ I I [ MyView drawNumber
[super didMoveToWindow]; | | Cmethods
struct objc_super super; | |
super.id = self; | | Superclass Metadata
super.class = UIView; | Y super N
objc_msgSendSuper(&super,| _! UlView |- | didMoveToWindow
“didMoveToWindow™): methods

Figure 1: Different forms of function invocations in
iOS applications.

2.1 Function Invocations

Objective-C is the major programming language used for
building iOS applications. As an extension of the C pro-
gramming language, Objective-C adds object-oriented fea-
tures such as object, class and inheritance. In Objective-
C, function invocations can take several different forms as
shown in Figure 1. Since Objective-C is a superset of C, tra-
ditional C functions can be invoked as shown in case 1. In
addition to that, Objective-C also supports object-oriented
method calls as shown in cases 2 and 3.

The code in the boxes in cases 2 and 3 show how Objective-
C method calls are actually implemented by sending mes-
sage to object through one of the objc_msgSend family dy-
namic dispatch functions. More specifically, a message is
composed of a selector which is the literal name of the
method to be invoked, and the arguments to be passed to
the method. In case(2), the drawNumber message is sent to
the myView object. As shown in the path along the arrows,
the objc_msgSend dispatch function locates the metadata
of the object’s class MyView, finds the implementation (i.e.
entry address) of the drawNumber method and then calls it.
Similar to other programming languages that support inher-
itance, if the corresponding method is not implemented in
the object’s class, the dynamic dispatch function searches
through the object’s superclasses along the class hierarchy.

Case 3 uses the super keyword to explicitly call a method
in an object’s superclass. An objc_super structure contain-
ing the myView object and name of its superclass UIView is



constructed and passed to the objc_msgSendSuper dispatch
function. The dispatch function follows the dashed path to
locate the didMoveToWindow method in UIView and call it.
The dynamic features of Objective-C grant iOS developers
much flexibility in building their applications. Since selec-
tors are just literal method names which contain no low-level
information such as address, developers could easily con-
struct selectors at runtime to send arbitrary messages to any
object. Also, the mapping between selectors and method
implementations could be modified at runtime. Such cases
pose great challenges to binary analysis of iOS applications.

2.2 Private API

iOS provides a rich set of frameworks for building user-
level applications. These frameworks are essentially direc-
tories that contain dynamic shared libraries and resources.
The dynamic shared libraries expose APIs for applications
in two forms: (1) as traditional C functions that are ex-
plicitly exported by the shared libraries; (2) as methods in
Objective-C classes that are managed and dispatched by the
Objective-C runtime.

Among all the frameworks, only some of them are public
frameworks that are for use in third-party iOS applications.
The other ones, known as private frameworks, are reserved
for use in built-in applications and public frameworks only.
Similar to frameworks, APIs are also categorized into pub-
lic and private depending on whether they can be used in
third-party applications. Note that public frameworks may
also contain private APIs as part of their internal implemen-
tation.

Private frameworks and APIs provide many powerful func-
tionalities that could threaten the security of the system
if they are available to third-party applications. For ex-
ample, the SpringBoardServices framework provides APIs
to launch and terminate applications; the I0Kit framework
provides APIs to access mach I/O ports which could be used
to obtain various device information. To prevent third-party
developers from using private APIs, only public frameworks
and APIs are documented and exposed by the header files in
the i0OS software development kit (SDK). However, despite
efforts to conceal the prototypes of private APIs, they can
still be reverse-engineered from the dynamic shared libraries
in the frameworks [27].

Once their prototypes are known, calling private API func-
tions follows the same procedure as calling public API func-
tions. As a countermeasure, Apple requires every applica-
tion submitted to the App Store to go through App Review
to make sure the application binary is only linked to public
frameworks and imports only public C APIs. Invocations
of private Objective-C APIs are also detected because the
__objc_selrefs section in the application binary contains
all statically-known message selectors. However, such de-
tection is not always effective. To evade the detection, an
attacker may use the dlopen function to load private frame-
works and the dlsym function to locate and call private C
APT functions. For private Objective-C APIs, the attacker
can construct the message selectors at runtime so they do
not appear in the application binary.

2.3 iOS Runtime Security

Similar to other modern operating systems, iOS incorpo-
rates standard runtime protections such as DEP and ASLR.
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In addition to that, it also implements several enhanced se-
curity mechanisms as described below.

Entitlements. iOS provides fine-grained access control that
is based on the TrustedBSD MAC framework [32]. Each ap-
plication can declare a set of entitlements that grant specific
capabilities or security permissions in iOS. The iOS kernel
checks for corresponding entitlements whenever an applica-
tion is trying to access guarded resources. Most entitlements
in i0OS are for built-in applications; the only ones available
to third-party applications are for enabling iCloud service
and pushing notifications. To prevent third-party develop-
ers from abusing or counterfeiting entitlements, entitlements
declared in third-party applications are checked for validity
during App Review and then built in to the code signatures
of the application binaries. Entitlements effectively regulate
the use of private APIs: without proper entitlements; even if
the attacker is able to invoke the private API, iOS will refuse
the attempt to access the resource. Unfortunately, there are
still many resources that are not protected by entitlements
in iOS.

Prohibiting dynamic code generation. iOS disallows
any kind of dynamic code generation, except for applications
with the dynamic-codesigning entitlement. This entitle-
ment is for the built-in MobileSafari application to imple-
ment its JIT Javascript engine and is unavailable to third-
party applications. The prohibition of dynamic code gen-
eration in third-party applications has both a positive and
negative impact on our system: it helps us to better dis-
assemble third-party application binaries for static analysis
because there is no dynamically generated or self-modifying
code; on the other hand, it also disables dynamic binary
instrumentation frameworks such as Valgrind due to their
need to translate binary code at runtime. Fortunately, we
can still port Valgrind to jailbroken iOS devices, where the
kernel is patched to remove restrictions on dynamic code
generation. Note, this does not indicate that the applica-
tions we analyze are also free to generate code at runtime;
we still prohibit dynamic code generation in these applica-
tions by wrapping and checking the related system calls (e.g.
mprotect) using Valgrind.

User Interface ViewController Object

H UlTableView *table ]

[ &
UlTableView

9: UlTableViewDelegate Protocol [
|(void)tableView:didSelectRowAtindexPath: ) :

H—Delegate—

N UlTableViewDatasource Protocol [
|(:(NSInteger)numberOfSectionsInTable View ) :

H—DataSource—

- ——- H UlButton *button ]

FTarget-ActiomY(~(void)onButtonClick: )

UlButton

Figure 2: Event driven execution of iOS application.

2.4 Execution of iOS Application

We use an example in Figure 2 to demonstrate the exe-
cution of a typical iOS application. When the application
is launched, it initializes a view controller object to create
and manage views. In our example, the view controller ob-
ject creates a UITableView object and a UIButton object
to interact with the user. To handle user inputs, it sets
delegate and data source for the table view and registers a



target-action event handler to the button. These are the
two design patterns for implementing event handlers in i0S,
which are described below.

Target-action. The target-action design pattern is used
by all control classes (e.g. UIButton, UITextField) that are
derived from the UIControl base class. Developers call the
addTarget:action:forControlEvents: API to register a
pair of target and action for a specific control event on a
UIControl object. The action is the name of the Objective-
C method to be invoked upon triggering the event and the
target is the object that the method is called on. In our ex-
ample, the application registers the onButtonClick: action
with the view controller object as the target, for the click
event on the button. When the button is clicked, the on-
ButtonClick: method will be called on the view controller
object.

Delegates and data sources. Delegates are objects that
can be assigned to a view to provide application-specific
event handling logic. When an event occurs, the view sends
an Objective-C message to its delegate to invoke the corre-
sponding event handler. Usually, a delegate must conform
to the protocol corresponding to the view it is assigned to,
so that the view knows the required methods are indeed
implemented in the delegate.

In our example, the view controller object itself is assigned
to the table view as a delegate to handle events such as se-
lecting a row in the table. When a row in the table is se-
lected, the tableView:didSelectRowAtIndexPath: method
will be invoked on the view controller object. The view con-
troller object conforms to the UITableViewDelegate proto-
col which declares the event handlers for table view.

Data sources are similar to delegates except they provide
application-specific data instead of logic to views. In our ex-
ample, the view controller object is also assigned to the table
view as a data source. When iOS renders the table view, it
invokes the numberOfSectionsInTableView method on the
view controller object to determine how many sections are
there in the table.

2.4.1 Nib Files

Besides creating views directly in the application code,
iOS application developers may also choose to load Ul ele-
ments stored in Nib (NeXT Interface Builder) files. Nib files
are resource files generated by Apple’s Ul design tool called
Interface Builder, which allows developers to design Ul views
and related non-visual objects (e.g. view controllers) in a vi-
sualized environment. The views and objects are serialized
in the format of an object graph and stored in Nib files.

The UIKit framework provides several APIs to load Nib
files at runtime. These Nib-loading APIs are responsible for
reconstructing the views, objects and the connections among
them to the same state as designed in Interface Builder. It
is worth noting that in each Nib file, there is a special place-
holder object called File’s Owner. The File’s Owner object
is provided by the application as an argument to Nib-loading
APIs, which serves as the link between the application code
and the Ul elements in the Nib file. It usually contains out-
lets, which are references to the views and objects in Nib
files. The outlets are connected by the Nib-loading API
during the process of loading Nib Files.

To demonstrate the details of the loading process, we still
use the example in Figure 2, but we assume the views are
loaded from a Nib file. We assume the information of the
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delegate, data source and the target-action event handler
are all properly stored as connections to the File’s Owner
object in the Nib file. We provide the view controller object
as the File’s Owner object. According to Apple’s documen-
tation [5], the loading process consists of the following steps:

1. The Nib-loading API allocates the two view objects
and sends them an initWithCoder: message to ini-
tialize the views. During the initialization of the table
view, its delegate and data source are set to the File’s
Owner object, which is the view controller.

2. It connects the outlets (table and button variable) in
the view controller to the two views by calling the set-
Value:forKey: method on the view controller. The
values are the view objects and the keys are the name
of the outlets.

3. It registers the onButtonClick: method in the view
controller object as a target-action event handler to
the button.

4. Tt sends an awakeFromNib message to the two views to
notify them the loading is complete.

Clearly, the loading process implicitly involves invocations to
many APIs, which all have to be considered in our analysis.

3. PORTING VALGRIND TO IOS

In order to build the dynamic analysis component in iRiS,
we first ported the popular dynamic binary instrumenta-
tion framework Valgrind to iOS. Valgrind already supports
ARM architecture. It also supports OS X, Apple’s desk-
top operating system that shares the same kernel as iOS.
Therefore, we could reuse the CPU-specific and OS-specific
code. However, we still need to implement the parts that are
specific to the combination of CPU and OS, which mainly
include (1) the system call wrapper that executes system
calls on behalf of the instrumented program; (2) the sig-
nal dispatcher that constructs the frames for signal handlers
and (3) other OS-dependent code (e.g. Valgrind’s bootstrap
routine) that must be reimplemented in ARM assembly. In
total, we added/modified over 6000 SLOC to Valgrind. We
also encountered many practical challenges specific to iOS,
some of which are discussed below. We plan to open source
the ported framework to support future work on iOS secu-
rity.

Calling convention of system calls. Valgrind needs to
interpose system calls to perform many crucial operations,
such as thread and memory management. The calling con-
vention of system calls in iOS can be observed from the ex-
ecution of the system call wrapper functions. More specif-
ically, we build a program that calls system call wrapper
functions with carefully crafted arguments. Then, we run
the program and use GDB to set a breakpoint at those
functions. Once a breakpoint is hit, we do single step until
reaching a SWI instruction, which is used to perform system
calls on ARM. It is then straightforward to infer the call-
ing convention by observing which argument value is stored
in which register or stack memory location at that point.
We derived the calling conventions of all three types (BSD,
MACH and MDEP) of system calls in the iOS kernel using
this approach.



Reading symbols from dyld shared cache. The symbol
table maintained by Valgrind is important for translating ad-
dresses to human-readable API names. Normally, Valgrind
reads symbols from shared libraries when they are loaded
into the address space of the application. However, there is
no such loading of individual libraries in iOS. All shared li-
braries in iOS are combined into a single large file called dyld
shared cache, which is mapped into the application’s address
space by the kernel when the application is loaded. To read
the symbols, we invoke the shared_region_check_np sys-
tem call to obtain the start address of the shared cache.
Since the symbols of all libraries are too large to fit in the
memory available to Valgrind, we read the symbols of a spe-
cific library from the shared cache only when its code is
executed the first time.

Instrumenting GUI applications. In iOS, GUI applica-
tions have to be launched by sending a launch request with
the bundle id of the application to SpringBoard. Clearly,
Valgrind has to be launched this way when instrumenting
GUI applications. However, the applications launched by
SpringBoard run on behalf of the user mobile, which does
not have the root privilege required by Valgrind. We solve
this problem by setting the owner of the Valgrind executable
to root and setting its setuid attribute.

4. RESOLVING API CALL TARGETS

4.1 Overview

The goal of iRiS is to identify the targets of all API calls
in iOS application binaries. This cannot be done with pure
static analysis due to the dynamic features of Objective-C.
Theoretically, dynamic analysis could resolve all the targets
by utilizing approaches such as symbolic execution [19] or
forced execution [25] to explore every path leading to an
API call. However, such approaches are infeasible in practice
due to the large size of i0OS applications. For example, the
Facebook iOS application binary is sized at 48MB, contain-
ing about 10 million instructions and 1.4 million branches.
Binaries of such scale could not be handled by symbolic exe-
cution. Even forced execution with complexity linear to the
number of branches would need several weeks to explore all
the necessary paths in a single application.

To solve this problem, we adopt an approach that com-
bines static and dynamic analysis in iRiS. Our key observa-
tion here is that the vast majority of call targets in normal
iOS application binaries can be resolved using static analy-
sis, which is fast and scales well with the size of the program.
For the very few remaining call sites whose targets cannot be
statically determined, we apply the slower, but more pow-
erful dynamic analysis to get the targets from the concrete
execution states at the call sites.

An overview of iRiS is shown in Figure 3. The input to
iRiS is an iOS packaged application (with an .ipa file exten-
sion) downloaded from the App Store, which is essentially
a zip file containing the application executable, resources
and other metadata. iRiS first extracts the application ex-
ecutable and the Nib resource files from the package. Since
all applications submitted by third-party developers are en-
crypted by Apple before they are distributed through the
App Store, iRiS needs to decrypt the application executable
to the raw binary executable before it can proceed to the
analysis.
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The analysis begins with resource analysis of the Nib files.
For each Nib file, iRiS identifies the functions in the appli-
cation binary that are implicitly invoked when the Nib file
is loaded. In this way, each Nib file is represented as a set of
call targets it implies. In later stages of static and dynamic
analysis, upon encountering an API call that loads a Nib
file, iRiS will add the call targets implied by the Nib file to
the API call site.

After analyzing Nib resources, iRiS performs static anal-
ysis on the decrypted application binary executable. iRiS
disassembles the binary using IDA Pro [16] and scans for all
call sites. Similar to PiOS [11], iRiS tries to use backward
slicing and forward constant propagation to resolve the call
targets at each call site to generate an initial call graph. For
each function in the binary, iRiS also generates its intra-
procedural control-flow graph (CFG). The initial call graph
and intra-procedural CFGs serve as guidance for the final
stage of analysis.

In the final stage, iRiS iteratively resolves the remaining
call sites whose targets could not be statically determined,
using dynamic analysis. In each iteration, iRiS picks a call
site with unresolved targets from the call graph, and uses
the call graph and intra-procedural CFGs to explore paths
to the call site to obtain the call targets. The resolved call
targets are merged back to the call graph, which helps with
resolving more targets in later iterations. After all itera-
tions are finished, the call targets in the final call graph are
checked against iOS SDK headers to reveal uses of private
APIs.

4.2 Resource Analysis

Resource analysis aims to identify application functions
implicitly invoked in the process of loading a Nib file. It
is infeasible to statically examine a Nib file to obtain such
information since the file format is not publicly known. Our
idea here is to load the Nib file artificially using the API
in the UIKit framework, and use Valgrind to monitor the
function invocations in this process.

However, there are several challenges to load a Nib file ar-
tificially. Creating a dummy program that blindly calls the
Nib-loading API would most likely fail, as a Nib file is not
a self-contained entity that can be loaded in an arbitrary
context. For example, the objects stored in a Nib file might
be of custom classes defined in the application binary. The
Nib-loading API would fail when it tries to invoke the ini-
tialization methods of these objects, as they do not exist in
the dummy program. Also, since the provided File’s Owner
object does not contain the outlets expected in the Nib file,
the Nib-loading API would fail when trying to connect the
outlets.

To overcome these challenges, we utilize the application
itself to provide the proper context for loading its own Nib
files. We run the application with DYLD_INSERT_LIBRARIES
environment variable to inject a preload shared library con-
taining the Nib-loading code to its address space. In the
preload shared library, we put the invocation of the Nib-
loading API in a function with the constructor attribute so
it is executed before any other code (except global initializa-
tion routines) in the application binary. To handle outlets,
we provide a fake File’s Owner object to the Nib-loading API
which ignores connections to undefined outlets by overrid-
ing the setValue:forUndefinedKey: method, which is the
fail-safe method when the setValue:forKey: method for
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Figure 3: Overview of iRiS.

connecting outlets fails. We terminate the application by
calling exit right after the Nib file is loaded so no unrelated
code is executed.

Event handler registration functions need to be handled
specially. Although the event handlers are not directly called
when they are registered during Nib loading, we include
them as implicit call targets so that they can be explored
later in the iterative dynamic analysis stage. Since we have
the concrete execution state, we can query the Objective-
C runtime to get the entry addresses of the event handlers
(as the parameters to the registration functions). A target-
action event handler is identified if the method has the ac-
tion selector implemented in the class of a target object.
For delegate or data source, we enumerate the methods that
are implemented in the class of the delegate or data source
object and include the ones listed in the delegate or data
source protocol.

Another case that requires special handling is the func-
tion invocation to connect outlets. The setValue:forKey:
method for connecting outlets internally invokes the setter
methods of the File’s Owner object to set its properties.
However, since we artificially load the Nib file by providing
a fake File’s Owner object, the expected type of the real
File’s Owner object is unknown and the entry addresses of
the setter methods could not be determined at this time.
Therefore, we record the keys that are being set here so
that the setter methods can be resolved when the class of
the File’s Owner object is known at later stages of analysis.

The final step of resource analysis is to prune the im-
plicit call targets that have been obtained so far. This is be-
cause the Nib-loading API calls other functions in the UIKit
framework or other frameworks. Such invocations might tar-
get private APIs, which is normal for internal interactions
between iOS frameworks but would trigger false alarms if
included in our result. We exclude the call targets that are
not functions in the application by checking whether they
fall in the range of the code section in the application binary.

4.3 Static Analysis

The goal in the static analysis stage is to build the intra-
procedural CFGs and resolve call targets to construct call
graphs. We build our static analysis as a plugin of the pop-
ular IDA Pro disassembler. Generating the intra-procedural
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CFGs is straightforward as IDA Pro already performs intra-
procedural flow analysis for each function. However, the
ability of IDA Pro to resolve call targets is quite limited.
For traditional C function calls, IDA Pro can only identify
direct call targets represented as constant relative addresses
embedded in the instructions; it does not resolve indirect call
targets that are stored in registers. Moreover, IDA Pro does
not resolve function arguments stored in either register or
stack variables. They are especially important for analyzing
the target of Objective-C method invocations. For exam-
ple, even if a call to the objc_msgSend message dispatching
function is identified, we would not be able to know the ex-
act Objective-C method being invoked unless we resolve the
message selector and the object class type from the argu-
ments of the function.

To resolve the call targets that cannot be handled by IDA
Pro, we build our analysis based on the approach proposed
in PiOS [11] which consists of intra-procedural backward
slicing and forward constant propagation. The basic idea
is to use backward slicing to recursively identify a slice of
instructions that influence the value of the register or stack
variable related to the call target at the call site. Starting
from the beginning of the slice, statically known constant
values are propagated forwardly according to the semantic
of the instructions in the slice to compute the target value.

Our static analysis consists of three passes on the applica-
tion binary. Compared with the original approach in PiOS,
our approach covers more forms of Objective-C message dis-
patching and handles implicit invocations which result in a
more precise and complete call graph. The details of each
pass are described below.

4.3.1 Resolving C Function Calls

In the first pass, we identify all traditional C function
calls and resolve their call targets. On ARM architecture,
functions calls are made with BL (branch with link) and
BLX (branch with link and exchange) instructions. We enu-
merate all these instructions in the application binary and
check their operands. Constant operands representing direct
call targets are already identified by IDA Pro. For register
operands that contain indirect call targets, we try to use
backward slicing and forward constant propagation to re-
solve their values. For those unresolved operands, we mark



the corresponding call targets as unknown. A resolved call
target is identified as an external API if the target address
is one of the following two cases: (1) the address of an API
in the imported symbols section or (2) the address of a stub
function that is a trampoline for calling an external API.

4.3.2 Resolving Objective-C Messages

Calls to Objective-C message dispatching functions (e.g.
objc_msgSend) are identified in the first pass. In the sec-
ond pass, we try to resolve the actual Objective-C methods
invoked in those message dispatching function calls.

For the message dispatching functions that invoke meth-
ods in the object’s class, such as objc_msgSend, we use back-
ward slicing and forward constant propagation to resolve
the message selector and the object’s class in the function
arguments. Similar to PiOS, to resolve the object’s class,
we propagate not only constants, but also type informa-
tion along the slice. Once the message selector and the ob-
ject’s class are resolved, we find the corresponding method
in the class hierarchy obtained from the application using
the class-dump [24] tool.

Other dispatching functions, such as objc_msgSendSuper,
are used to explicitly invoke methods in object’s superclass
(Section 2.1). The name of the superclass is provided in
an objc_super structure, which is pointed to by one of the
function arguments. To identify the superclass, we apply
two rounds of slicing and constant propagation: the first one
resolves the argument pointing to the objc_super structure
and the second resolves the superclass name in the structure.
In most cases, the values could be successfully resolved as
these functions are mainly inserted by the compiler to handle
the super keyword in Objective-C source code, where the
superclass is known at compile time.

Any Objective-C method that is not successfully resolved
here is marked as unknown target to be processed later in
iterative dynamic analysis.

4.3.3 Resolving Implicit Invocations

We resolved the targets of explicit C function calls and
Objective-C method invocations in the previous two passes.
In the final pass, we aim to find and resolve the targets
of implicit function invocations, which are categorized and
discussed as below.

Grand central dispatch. Grand central dispatch (GCD)
is a runtime system to support concurrent code execution on
iOS. It provides APIs (e.g. dispatch_async) for developers
to submit functions to dispatch queues for execution. The
argument of a GCD API could be a function pointer or a
block object (a wrapper structure for a function pointer). In
either case, we apply backward slicing and forward constant
propagation to get the address of the submitted function
and add it as a call target.

Objective-C runtime. As we have mentioned in Sec-
tion 2, the implementation of an Objective-C method can
be changed at runtime. Therefore, it is possible for a mali-
cious application developer to define a placeholder method,
and replace its implementation with a private API function.
After that, the developer could invoke the completely le-
gitimate placeholder method to use the functionality of the
private API. To prevent such attacks, we try to resolve the
arguments of all functions in the Objective-C runtime that
are related to retrieving or replacing the implementation of
a method (e.g. class_replaceMethod). Although retriev-
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ing the implementation of a private API does not necessarily
mean it will be called, we still consider any such behavior
to be a violation due to the complexity of reasoning about
method replacement statically.

Nested message passing. Some Objective-C classes pro-
vide methods to send messages, which resembles the func-
tionality of objc_msgSend. For example, NSObject, the root
class of all other Objective-C classes, provides the perform-
Selector family methods which allow an object to send a
message indicated by the argument to itself. The message
could even be another performSelector which results in
nested message passing. To handle such cases, we resolve
the function arguments recursively until we reach the inner-
most message, which is added as the actual target.

Event handler registration. Similar to resource analysis,
when we identify an event handler (target-action, delegate
or data source) registration, we add the event handler as a
call target so it could be explored later in dynamic analysis.

Nib file loading. When a call to a Nib-loading API is iden-
tified, we try to resolve the name of the loaded Nib file in the
function argument. Once we know which Nib file is loaded,
we add its corresponding implicit call targets obtained in
resource analysis to the call site of the Nib-loading API. We
also resolve the class of the File’s Owner object provided to
the Nib-loading API. In resource analysis, we could not re-
solve the setter methods of the File’s Owner object that are
invoked to connect outlets, because the class of the File’s
Owner object is unknown at that time. With the concrete
class of the File’s Owner object here, those methods can be
resolved and added as implicit call targets.

The Nib-loading APIs in the UINib class are handled spe-
cially as they consist of two steps to load a Nib file. First
the nibWithNibName:bundle: method is called to cache the
Nib file in memory, and the Nib file is loaded at a later time
using the instantiateWithOwner:options: method. Since
it’s infeasible to statically correlate the calls to these two
methods, we leave them to be handled in dynamic analysis.

4.4 Iterative Dynamic Analysis

In the final stage of the analysis, iRiS uses dynamic anal-
ysis to resolve the call targets that cannot be determined in
the static analysis stage. In dynamic analysis, as long as a
function call is covered in an execution, it is straightforward
to get its target and arguments from the concrete execution
state at the call site. However, the task of reaching a specific
call site in a dynamic execution itself is challenging. Also,
we have to solve the problem of exploring the program paths
that can affect the target and arguments of the function call.

We propose an iterative algorithm to find and explore the
paths that could reach the target function call sites, as shown
in Algorithm 1. The exploration is based on the initial call
graph and the control-flow graphs of all functions generated
by the static analysis. Initially (line 1), the application bi-
nary is directly executed in Valgrind without user interaction
to record all call sites in the call graph that are covered in
the natural run. These call sites serve as our starting points
in the following rounds of exploration. The algorithm then
explores the paths and updates the call graph in each it-
eration (line 4 to line 12). It terminates when there is no
change to the call graph after an iteration (line 13).

In each iteration, we process each unresolved call site in-
dividually (line 6 to line 11). We denote that there is a
transition from a call site csa to another call site csp if the



Algorithm 1 Call Targets Resolving Algorithm

CS - the set of unresolved call sites in static
analysis

CG - the call graph produced by static analysis
CFG - the intra-procedural control-flow graphs
produced by static analysis

Input:

Output: CG - the updated call graph with edges to

newly resolved call targets

1: CS, + {call sites covered in the natural run}

2: CSprev < {{nil} * sizeof(CS)}

3: repeat

4:  change < {nil}

5: for i + 0 to sizeof(CS) do

6:  CSpeili] < {csr € CG | 3esn € CSp: csp ~ csp ~ CS[i]}

T7: if CSpeii] \ CSprevli] # 0 then

8: targets < ForceExecute(CS,.¢;[i], CS[i])

9: change < change U InsertTargets(CS[i], targets, CG)

10: CSprevlt] < CSreili]

11:  end if

12: end for

13: until change = 0

function fp that contains csp is one of the call targets at
csa. With these transitions as edges, the call sites forms
the graph CG. Given an unresolved call site csa, we first
compute its related call sites, which are the call sites along
the paths from any call site in C'Sn to csa(line 6). These
related call sites are the ones that we use to guide the nat-
ural execution to the target unresolved call site. If the set
of related call sites is different from the one in the previous
iteration (line 7), the algorithm will explore paths following
the new guidance to identify potential new targets at the
call site (line 8).

The ForceExecute function (line 8) to explore paths is
based on the path exploration algorithm in X-Force [25].
X-Force forces control-flow at branches to explore the ba-
sic blocks in a program. In our scenario, the call sites are
analogous to the basic blocks. The transitions from one
call site to another are analogous to the branches at the end
of the basic blocks. We force those transitions to explore
paths along related call sites. The application runs natu-
rally at the start of each execution of the exploration. Once
the execution reaches any related call site, we start forcing
transitions. Unlike in X-Force, where the exploration is un-
bounded, we limit the transitions to related call sites in our
exploration, which ensures that each execution eventually
reaches the desired unresolved call site to get its call tar-
gets. For the purpose of demonstration, let us assume the
execution currently reaches the call site csa, which calls the
function fp. To force a transition from csa to a call site
csp in fp, we force the control-flow from the entry of fg to
csp by forcing branch targets in fp. We compute the basic
blocks in the paths from the entry basic block of fg to the
basic block containing csp in the control-flow graph of fg,
which we denote as safe basic blocks since execution reach-
ing any other basic block will not be able to reach csp. In
the execution starting from the entry of fg, at each branch,
we force the branch target if it does not fall in the set of the
safe basic blocks. In this way, we guarantee the execution
will reach the call site csp with as few forced branches as
possible.

There are some cases that need to be handled specifically
during the exploration, which are discussed below:
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Event handlers. In static analysis, event handlers are
added as the call targets of their registration call sites. How-
ever, this is only for the purpose of path exploration algo-
rithm; the event handler itself is not actually invoked at its
registration site. Directly manipulating the call target at the
registration call site to force a call to the event handler will
most likely fail because it does not provide the proper con-
text for the execution of the event handler. Therefore, the
exploration of each event handler has to be handled based
on its type:

e Target-action. A target-action event handler is reg-
istered as a pair of action selector and target object on
a UIControl object. To trigger the event handler, we
use dispatch_async to dispatch a call to the sendAc-
tion:to:forEvent: method on the main dispatching
queue of the program. When the call is dispatched,
the UIControl object sends a message with the action
selector to the target object.

e Delegates and data sources. First, we construct
an NSInvocation to artificially invoke a specific event
handler implemented by a delegate or data source. The
target of the NSInvocation is set to the delegate or
data source object, and the selector is set to the name
of the event handler. The first argument is the UIView
object which the delegate or the data source is assigned
to. We pass zero to all other arguments by allocating
a zeroed buffer on the stack that is as long as the size
of the remaining arguments. The NSInvocation we
construct is then dispatched on the main dispatching
queue of the program.

Nib file loading with UINib. As we mentioned in Sec-
tion 4.3.3, the UINib class involves two steps to load a Nib
file. In the first step, we track the call to the nibWithNib-
Name:bundle: method to record the name of the Nib file
cached in the UINib object. When the program later calls
instantiateWithOwner:options: on a UINib object to load
the cached Nib file, we refer to the recorded information to
get the name of the corresponding Nib file. At this time, we
can resolve the calls involved in the Nib-loading process as
both the Nib file name and the owner object are known.

Once the exploration has finished, the revealed call targets
at the unresolved call site will be merged into the current
call graph (line 9). Theoretically, the complexity of explo-
ration of all possible paths is exponential to the number of
related call sites. In practice, we support a number of ex-
ploration strategies (e.g. linear and quadratic) with different
trade-offs between completeness and complexity. In our cur-
rent implementation, we choose to use the linear complexity
exploration strategy. When performing a round of forced
executions to resolve an unresolved call site (line 8), we only
force transition to a related call site if it has not been cov-
ered in previous executions in this round. Therefore, the
number of executions is linear to the number of related call
sites.

S. EVALUATION

We evaluated iRiS on 2019 free applications obtained from
one of the largest official iOS App Stores. These applications
are the ones listed as popular apps in the following categories
in iTunes preview [4]: education, entertainment, finance,
fitness, lifestyle, medical, productivity, social and utility. We
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Figure 4: Distribution of the application binary size
and the dynamic analysis duration.

crawled the iTunes preview website to retrieve the item ids of
these applications. We downloaded the applications through
iTunes and decrypted them using the dumpdecrypted [13]
tool. We analyzed the applications using an iPad 3 16GB
and an iPad 4 16GB, both running iOS version 7.0.

During the process of using iRiS to analyze the 2019 appli-
cations, we have identified 135,682,132 Objective-C related
calls (including 135,650,013 objc_msgSend family message
dispatching functions and 32,119 other Objective-C runtime
functions), and 11,266 invocations to other C functions such
as GCD APIs. Our static analysis was able to resolve the
C function names or the Objective-C message selectors for
135,653,346 call sites (99%). For Objective-C related call
sites, iRiS was able to identify the class of the correspond-
ing object for 115,763,581 call sites (85%), which is similar
to PiOS (82%). Note that even when the class of the object
could not be resolved at a call site, it would not target a
private API if the message selector did not match the name
of any private API. In such cases, we did not need to apply
further dynamic analysis on that call site. In fact, we did
not find any private API name in the statically resolved C
function names or Objective-C message selectors.

For the remaining 40,052 call sites that were not resolved
in static analysis, iRiS was able to resolve the target for
35,427 of them (88%) with iterative dynamic analysis. Note
that although the total number of call sites to resolve in dy-
namic analysis is small (less than 1% of all identified call
sites), they exist in 1859 (92%) of the 2019 applications,
which confirms that dynamic analysis is required in vetting
most of the iOS applications. The natural runs of the ap-
plications covered 18671 call sites (47%), and the remain-
ing 16756 resolved call sites (41%) are explored with forced
executions. The duration of the dynamic analysis varies
depending on the number of call sites to resolve and the
complexity of the application, with the shortest one taking
257 seconds and the longest one taking 113,241 seconds to
finish. On average, it takes 2439 seconds to analyze one
application in our evaluation set. The distribution of the
application binary size and the dynamic analysis duration is
presented in Figure 4. Note that for universal binaries that
support multiple architectures, we use Apple’s 1lipo tool to
extract the binary for the ARMv7 architecture.

Among the 2019 applications, iRiS identified 146 appli-
cations that contain invocations to a total of 150 different
private APIs. We manually inspected these applications to
understand the strategies used by their authors to circum-
vent the App Review. The most commonly used approach is
concatenating or formatting API names and message selec-
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tors using NSString class methods (e.g. [NSString string-
WithFormat:]) and traditional C string manipulation func-
tions (e.g. strcat, snprintf). We even found one appli-
cation defining a dedicated function to make private API
calls; the function concatenates two parameters together
to make a message selector and then invokes the method,
probably to thwart static intra-procedural data-flow analy-
sis. Some applications use more advanced obfuscation, such
as decryption (e.g. XOR, RC4) to decrypt selectors that are
encrypted in the application binary.

Many of the private APIs we identified are for implement-
ing non-standard user interface features. For example, sev-
eral applications use the setOrientation: method in the
UIDevice class to force the orientation of the device display.
Although uses of such APIs also violate the iOS developer
license agreement, we will not discuss them in detail here
since they are not directly related to security. The remain-
ing invoked private APIs, which warrant further scrutiny for
suspicious behavior, are categorized and shown in Table 1
and discussed below.

Accessing Application Information. SpringBoardSer-
vices is the framework that handles application launching,
management and termination on iOS. It contains various
APIs to query the status of the applications on the device.
We found three applications using these APIs to obtain the
bundle identifiers of the currently running and the front most
application(s). After the bundle identifiers are retrieved,
they are translated to application names by calling another
private API. We also observed another 30 applications that
call the bundle id translation API. The translation API re-
turns a NULL pointer for non-existing bundle id, which is
used by those applications to detect whether a specific ap-
plication exists on the device.

We also identified two applications using private APIs in
the LSApplicationWorkspace class of the MobileCoreSer-
vices framework to obtain the information of all applica-
tions installed on the device. The use of the allApplica-
tions API to get the bundle id list of all installed applica-
tions is also mentioned in a recent work [35]. We speculate
that the two applications use these APIs instead of the pri-
vate APIs in the SpringBoardServices framework because
the latter ones are blocked by Apple since iOS 8.

Accessing User Identification Information. We found
one application that invokes the appleIDClientIdentifier
APT in the AADeviceInfo class to obtain the Apple ID of the
current user. Also, there are 25 applications using the APIs
in the ASIdentifierManager class to obtain the Advertising
Identifier (AdID) of the device. AdID is an identifier which
could be used to uniquely identify an iOS device. It serves
as the replacement of the unique device identifier (UDID)
for advertisement serving organizations after access to the
UDID was disabled in iOS 7. As mentioned in Apple’s doc-
umentation [2], AdID should only be accessed by advertise-
ment serving libraries (e.g. Google AdMobs). However, we
found that the crashlytics library, which is a library for
crash reporting, calls these private APIs to access AdID in
these 25 applications.

We also found 21 applications using private APIs exported
by the I0Kit framework to access various hardware informa-
tion. The I0Kit framework is for communication with low-
level hardware on the iOS device. It exports various hard-
ware components as a tree of I0Service objects. We found
that 19 of these applications use the I0RegistryEntryCre-



Category Framework API Name Functionality #apps
SBSSpringBoardServerPort Initialize port with SpringBoard 3
. . SBSCopyApplicationDisplayldentifiers Obtain bundle ids of all running apps 3
Access SpringBoardServices SBFrontmostAPplicatio'nDi§playIdcntiﬁcr. B Obtain bundle id of ic front n}ost app 3
Application SBSCop?/Lo?ahzedApphcat1onNameForD1splayIdent1ﬁer Get app name from its bundle 1d- 33
Information [LSApplicationWorkspace default Workspace] Obtain the default workspace object 2
MobileCoreServices [LSApplicationWorkspace allApplications] Get all installed apps 1
[LSApplicationWorkspace alllnstalledApplications] Get all installed apps 1
LSApplicationWorkspace applicationlsInstalled:] Check if a specific app is installed 1
AppleAccount A ADevicelnfo appleIDClientIdentifier] Obtain the Apple ID of the device user 1
ASIdentifierManager sharedManager] Obtain reference to the AdID manager 25
AdSupport ASIdentifierManager advertisingldentifier] Obtain the device’s AdID 25
ASldentifierManager advertisingTrackingEnabled)] Check if advertising tracking is enabled 23
OMasterPort Initialize communication with IOKit 21
I0ServiceMatching . . . . 21
ﬁf:ris;g;:n 10ServiceGetMatchingService Find & open specified I0Service object 21
Information IORegistryEntryCreateCFProperty Locate specific property (e.g. S/N) 19
IOKit IORegistryEntryCreateCFProperties 2
IORegistryGetRootEntry Iterate through all properties to 2
IORegistryEntryGetChildIterator find information (e.g. Battery id, 2
IOIteratorNext IMEI) 2
IORegistryEntryGetNamelnPlane 2
IOObjectRelease Release the IOService object 2
Access User’s UIKit [UIStatusBarServer getStatusBarData] Get precise battery level 1
Data/Settings [UIView createSnapshotWithRect:] Capture the view as an image 1
Anti-debugging libsystem ptrace Prevent GDB attaching 1

Table 1: Uses of private APIs detected by iRiS in iOS applications.

ateCFProperty API to read the serial number of the device
from the I0OPlatformSerialNumber property in the tree of
I0Service objects. The other two applications use a set of
private APIs in I0Kit to iterate through the tree of I0Ser-
vice objects to find the desired information. We manually
inspected these two applications and found out that they
try to obtain the ID of the battery and the serial numbers
of the front and back camera by looking for the properties of
specific names. Further investigation reveals that the serial
number of the i0OS device itself is protected by entitlement
since i0OS 8; however, the identification information of the
battery and cameras are still available.

Accessing User’s Data/Settings. We identified two ap-
plications using private APIs in the UIKit framework to ac-
cess sensitive user data. One of them tries to obtain the cur-
rent battery level from the status bar. According to our in-
vestigation, this private API allows the application to get the
precise battery level compared with using the batteryLevel
public API in the UIDevice framework, which only rounds
the battery level to the nearest 5%. The other application
calls another private API in the UIView class which allows
the application to capture the displayed content in a view
and save it as an image.

Anti-debugging. We found that one popular application
calls the ptrace function with the PT_DENY_ATTACH argu-
ment to prevent itself from being attached by GDB. Since
ptrace is a private API that is not declared in the header
files in i0OS SDXK, the application calls d1sym to dynamically
retrieve the entry address and then make a call to the func-
tion.

5.1 Case Study: A Suspicious Advertisement
Service Provider

In this case study, we discuss our experience of identifying
a suspicious advertisement service provider that collects
user privacy information from various iOS applications in
the App Store. Our finding started from the analysis of a
utility application, anonymized as APPs. The size of the
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application binary is 3.21 MB and its disassembly produced
by IDA Pro contains 709,894 instructions.

We used iRiS to perform a thorough analysis of this ap-
plication. In the static analysis stage, iRiS identified a total
number of 210,534 call sites (excluding the ones in API call
stubs), in which 52,814 were Objective-C message dispatch-
ing calls. iRiS successfully resolved most of the call targets
in the static analysis; there were 21 unresolved call sites
left to be examined in the iterative dynamic analysis stage.
Despite the large number of statically resolved call targets,
none of them actually pointed to any private API.

iRiS first performed a natural run of the application in
the dynamic analysis stage. In the natural run, 13 of the
21 unresolved call sites were covered; 8 of them were target-
ing private APIs. The private APIs being called were the
ones in the SpringBoardServices framework for accessing
application information and the ones in the IOKit frame-
work for accessing the serial number of the device shown in
Table 1. There were also three of them calling the APIs
in the AdSupport framework to get the AdID of the device.
However, because our later analysis shows those three calls
are in an advertisement serving library, we do not considered
them as private API calls.

The remaining 8 call sites not covered in the natural run
were resolved iteratively with forced execution. Two of them
target private APIs in the MobileCoreService framework
for obtaining the bundle ids of all installed apps; the rest of
the call targets are functions in the application binary. We
closely examined the two private API call sites and found
that they shared a very close ancestor on the call graph with
the call sites that call private APIs in the SpringBoardSer-
vices frameworks. We then manually inspected the func-
tions around the region and found that their least common
ancestor on the control-flow graph was a branch that checks
if the iOS version was less than 8.0. If so, the application
calls the APIs in the SpringBoardService framework to get
the information about applications on the device; otherwise,
it uses the APIs in the MobileCoreService framework as



the former ones are blocked. Since our device runs iOS 7.0,
such behavior and the additional private APIs would not be
revealed had we not used iRiS to analyze the application.

Address | Private API

Oxdeec2 | SBSSpringBoardServerPort

Oxdefd6 | SBSCopyApplicationDisplayldentifiers
0xdf056 | SBFrontmostApplicationDisplayldentifier
0xfcf86 | IOServiceMatching

0xfcf8e | IOServiceGetMatchingService

0xfd070 | IORegistryEntryCreateCFProperty

0xfd0c2 | IOObjectRelease

0xfc632 | SBSCopyLocalizedApplicationNameForDisplayldentifier
Oxebfaa | [LSApplicationWorkspace defaultWorkspace]
0Oxebfd0 | [LSApplicationWorkspace allApplications|

Table 2: Private API Invocations in APPs.

The private APIs invoked in AP Ps and their call site ad-
dresses are listed in Table 2. Since the application collected a
lot of user privacy information, we were curious where the in-
formation was sent to. To answer this question, we inspected
the dynamic execution trace and found that there was a se-
ries of API calls right after the private API calls to post a
HTTP request to the domain http://ios.wall.youmi.net.
We then manually reverse engineered the functions along
the path in the application and found out the user privacy
information was encoded in the URL and sent as part of the
HTTP request.

We accessed the domain at http://wuw.youni.net which
is the web site of an advertisement service provider. They
provide an advertisement serving library for iOS application
developers to use their service, which we suspect might actu-
ally collect the user privacy information. The library is pro-
vided as binary and headers without source code. To verify
our concern, we downloaded the library, built a dummy ap-
plication with it and analyzed the application using iRiS. As
we expected, the application exhibited similar behavior to
APPs and sent user information to this advertisement ser-
vice provider. It is worth noting that in the advertisement
serving library, the Objective-C class names and method
names are all obfuscated to random meaningless strings,
probably to thwart the effort of manual analysis.

This advertisement service provider claims on their web
site that many popular iOS applications have incorporated
their advertisement serving library. In fact, in the process of
analyzing more iOS applications in our pool, we did find an-
other 20 applications that exhibited similar behavior, which
indicates they also use the same library. Compared with in-
dividual iOS applications, the existence of such third-party
libraries poses greater security risks to user’s privacy as they
can affect many more users by residing in a large number of
applications.

6. LIMITATION

The list of private APIs identified by iRiS might be incom-
plete since iRiS cannot afford to explore all paths leading to
the APT call sites in dynamic analysis. In our current imple-
mentation, we adopt the linear exploration strategy, which
does not reveal private API calls that require a combination
of multiple functions to trigger. However, we argue that
the problem could be alleviated by using more complex ex-
ploration strategies to achieve better path coverage. Large
organizations, such as Apple, could provide enough devices
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to support quadratic or even more complex exploration. We
also plan to parallelize our call targets resolving algorithm
in future work so multiple devices could be used to speed up
the analysis of one application.

iRiS might report private API calls that do not actually
happen in real executions since the application might be
forced to infeasible paths during the exploration. In such
case, we argue that the application should still be consid-
ered as suspicious, as it would be very unlikely that a legit-
imate application happens to have an infeasible path that
generates a private API call.

Our current implementation does not cover all types of
implicit function invocations in iOS frameworks. For exam-
ple, the NSTimer class allows developers to register a callback
function which is called when the timer fires. Handling all
such implicit function invocations requires us to thoroughly
examine the classes and APIs provided in iOS frameworks,
which will be studied in our future work.

iRiS is not able to capture private API calls in control flow
generated by external input. Although dynamic code gen-
eration is prohibited in iOS, it is still possible to use return
oriented programming (ROP) to introduce irregular control
flow with external input, as shown in a recent work [30].
Malicious application developers might also choose to use
external input, such as network data to create the message
selector for Objective-C method calls. In such cases, the
control flow could not be determined at the time of applica-
tion vetting, thus runtime approaches such as control-flow
integrity are required to defend against the attack. Never-
theless, we consider our approach to be orthogonal to run-
time defense and the two complement each other.

7. RELATED WORK

The work related to iRiS can be classified into three cate-
gories: (1) dynamic binary instrumentation, (2) mobile ap-
plication analysis and (3) mobile runtime hardening.

Dynamic binary instrumentation. Dynamic binary in-
strumentation frameworks such as PIN [22], Valgrind [23],
DynamoRIO [7] and QEMU [6] are widely used for building
dynamic analysis systems. All of them work on Android, but
none support iOS. Even QEMU, the full system emulator,
could not run iOS since it does not emulate the required
proprietary hardware used by Apple. In iRiS, we ported
Valgrind to iOS to build our dynamic analysis. We envision
the availability of dynamic binary instrumentation on iOS
will stimulate more future work on iOS security.

Mobile application analysis. There has been a lot of
work in Android application analysis. Enck et al. [12] pro-
posed TaintDroid to dynamically track privacy leaks in an-
droid applications. Lu et al. [21] presented CHEX which
performs static data-flow analysis to detect component hi-
jacking attacks. Zhang et al. [34] presented VetDroid to
identify permission use behaviors in android applications us-
ing dynamic analysis. Poeplau et al. [26] applied static anal-
ysis to detect attempts of loading malicious code in Android
applications. Johnson et al. [17] and Wang et al. [31] pro-
posed to switch branch outcomes to expose hidden behavior
in Android apps. However, due to the different nature of
the two mobile operating systems, it is infeasible to apply
these techniques on i0S. For example, most of these analy-
sis systems target the byte code running in the Dalvik VM;
in i0S, applications are compiled into native ARM instruc-



tions which are directly executed by the CPU. The access
control in 108 is also completely different from the Android
permission system.

Compared with Android, little work has been done in the
domain of iOS application analysis, which is closely related
to iRiS. Egele et al. [11] were the first to present PiOS, a sys-
tem to analyze privacy leaks in iOS application using static
analysis. PiOS uses backward slicing and constant prop-
agation to resolve Objective-C method calls and performs
data-flow analysis to identify potential privacy leaks. In
iRiS, we use similar approaches in our static analysis stage.
Compared with PiOS which only handles the objc_msgSend
message dispatching function, iRiS covers traditional C func-
tion calls, all types of Objective-C message dispatching func-
tions and other implicitly invoked functions, which results in
a more complete call graph. Also, as shown in the results of
both PiOS and our work, static analysis alone is usually not
enough to resolve all call targets in the application binary.

Szydlowski et al. [29] discussed the challenges of perform-
ing dynamic analysis on iOS applications. They proposed
an approach to identify GUI views in iOS applications using
image recognition. The execution of the application is driven
by simulating the interaction with identified GUI views us-
ing a VNC client. Joorabchi et al. [18] proposed iCrawler to
explore the UI states of iOS application by hooking into the
application to inspect and exercise the Ul elements. Kurtz
et al. [20] proposed DiOS which utilizes UI automation to
retrieve the GUI hierarchy and interact with GUI elements.
All three of these systems adopt the design of driving the
execution of an i0S application by interacting with the GUI
elements, which suffers from two limitations. First, it is gen-
erally infeasible to infer the interaction required to trigger a
specific event handler. For example, developers might imple-
ment touch event handlers which only recognize and react to
specific gestures. Second, even if proper interaction is made
on the UI element, the program might refuse to transit to a
new Ul state when certain conditions are not met. For ex-
ample, social applications usually require the user to login
with his/her account at start. In such cases, the aforemen-
tioned systems would get stuck at the login screen and result
in a very low code coverage. Contrary to the existing work,
iRiS drives the execution of the application by capturing
the registration of event handlers and triggers their execu-
tion programmatically and applies forced execution so the
application can get over various condition checks to reach
the desired instructions.

Mobile runtime hardening. In addition to offline mobile
application analysis, there also has been work focusing on
hardening the execution environment of mobile applications
at runtime. Davi et al. [10] proposed MoCFI to enforce
control-flow integrity in mobile applications. MoCFI stat-
ically rewrites application binaries to add control-flow in-
tegrity. Following this work, Werthmann et al. [33] proposed
PSiOS which also employs static binary rewriting to add
checks that enforce user-defined security and privacy poli-
cies. However, both solutions require jailbreaking the end
user’s i10S device. Recently, Bucicoiu [8] proposed XiOS to
prevent use of private APIs in iOS applications. XiOS stati-
cally rewrites application binaries to instrument the API call
stubs and inserts a reference monitor that checks for private
API invocations. XiOS relies on the assumption that all
calls to external APIs have to go through the call stubs.
However, advanced malicious application developers could
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scan the address space with the signatures of the target pri-
vate API functions and obtain the entry addresses to call
the private APIs directly, which breaks such an assumption.
iRiS detects uses of private APIs in the application vetting
stage to complement these runtime defenses.

8. CONCLUSION

With the fast-growing number of third-party iOS appli-
cations, the privacy and security of device users becomes
an increasing concern. Malicious iOS applications could use
private API calls to access sensitive user information. To
prevent such attacks, Apple enforces a vetting process for
third-party applications to detect the use of private APIs.
However, recent attacks have shown that the official vetting
process is insufficient to detect advanced forms of private
APT abuse.

In this paper, we have presented iRiS, an iOS application
vetting system that combines static and dynamic analysis to
detect uses of private APIs. Since iOS applications are usu-
ally large in size, iRiS applies static analysis to resolve the
targets of most API invocations. To handle the remaining
API invocations that could not be resolved statically, we pro-
pose a novel iterative dynamic analysis approach based on
forced execution. We port the Valgrind dynamic binary in-
strumentation framework to iOS to build the dynamic anal-
ysis engine for iRiS. To drive the execution of event-driven
iOS applications, we propose an automated approach to trig-
ger the execution of the event handlers. Our evaluation with
over 2000 iOS applications from an official App Store shows
that our technique effectively reveals many uses of private
APIs that are not detected by the official vetting process.
We found a nontrivial number of applications accessing and
sending out sensitive user data, such as installed applica-
tions and device serial number. According to our findings,
we believe that an advanced application vetting system such
as iRiS would be crucial for ensuring the safety of iOS device
users.
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