2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Reuse-Oriented Camouflaging Trojan: Vulnerability Detection and
Attack Construction

Zhigiang Lin Xiangyu Zhang

Dongyan Xu

Department of Computer Science and CERIAS, Purdue University
{zlin xyzhang dxu} @cs.purdue.edu

Abstract

We introduce the reuse-oriented camouflaging trojan — a
new threat to legitimate software binaries. To perform a ma-
licious action, such a trojan identifies and reuses an existing
function in a legal binary program instead of implementing
the function itself. Furthermore, this trojan is stealthy in
that the malicious invocation of a targeted function usually
takes place in a location where it is legal to do so, closely
mimicking a legal invocation. At the network level, the vic-
tim binary can still follow its communication protocol with-
out exhibiting any anomalous behavior. Meanwhile, many
close-source shareware binaries are rich in functions that
can be maliciously “reused”, making them attractive tar-
gets of this type of attack. In this paper, we present a frame-
work to determine if a given binary program is vulnerable
to this attack and to construct a concrete trojan if so. Our
experiments with a number of real-world software binaries
demonstrate that the reuse-oriented camouflaging trojans
are a real threat and vulnerabilities of this type in legal bi-
naries can be effectively revealed and confirmed.

1 Introduction

Trojan is the type of malware that appears to perform a
desirable function but actually contains malicious logics. It
has been a major threat to software security and reliability.
According to our study of malware samples in VxHeaven
[5], trojans remain a dominant malware category. As shown
in Fig. 1(a), trojans account for 63% of all 266980 malware
samples, whereas the shares of virus, worms, and rootkits
are 9%, 5%, and 1%, respectively. The diverse payload of
trojans is shown in Fig. 1(b). Another study by BitDefender
[1] shows that, from January to June 2009, trojan malware
is on the rise, accounting for 83% of the global malware
detected in the wild.

Most existing trojans are implemented as new, indepen-
dent pieces of code. In this paper, we demonstrate that tro-
jans can be more stealthily constructed by reusing functions
from existing, third-party software binaries. We call such
attacks on existing binaries Reuse-Oriented Camouflaging
(or ROC for the rest of the paper) attacks. Moreover, we
show that real-world software binaries may be vulnerable to
ROC attacks and we define such vulnerability as the ROC

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

281

Others
3%

Trojan-

Others
Backdoor 28%
19%
Trojan-Proxy \
‘ Trojan-Clicker _——
Trojan 2% '
63% 'Worm Trojalz\‘—;anker “_Trojan-
5% Y GameThief
. Trojan-Dropper 17%
Rootkit 5% Trojan-Spy Trojan-PSW
1% 7% 10%
(@ (b)

Figure 1. Distribution of (a) malware types and
(b) trojan payloads in VxHeaven.

vulnerability. We demonstrate that the detection of ROC
vulnerabilities as well as the construction of ROC attacks
(i.e., creation of ROC trojans) for confirming the vulnera-
bilities are not only feasible but can be made highly sys-
tematic.

The key observation behind ROC attacks is that cer-
tain functional features in legal software binaries can be
subverted for malicious purposes. For example, an FTP
program has all the basic capabilities to steal and transfer
privacy-sensitive files; an email client has all the functions
to send spams. For a ROC trojan for spamming, the sub-
ject and content of a spam message could be supplied to
the proper mail-sending function, which will then send out
the message just like a regular email. The attacker does not
have to perform any environment setup such as socket cre-
ation, hand-shaking, and payload encoding.

ROC trojans have unique properties. In particular:

e Statically, they do not have a stand-alone code body
that implements the malicious semantics. In compar-
ison, traditional code injection attacks or persistent
software parasites [6] usually require injecting a piece
of code to the victim program and the injected code
often manifests rich, distinct footprint that can be used
to detect such code. In a ROC attack, since the ma-
licious semantics is fulfilled by reusing existing func-
tions in the victim binary, the attack only needs to ap-
ply a simple patch with a few writes to memory re-

DSN 2010: Lin et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

gions that correspond to /egal variables in the original
binary. These writes could be indistinguishable from
the existing writes in the binary.

e Dynamically, the runtime behavior of the binary un-
der attack complies with constraints dictated by the
program semantics. The attack is mostly carried out
by manipulating program states and duplicating exist-
ing function invocations. The duplicated “malicious”
function invocations occur at a place where it is legal
to do so.

e Furthermore, since the attack reuses communication
protocol implementation in the binary, from the net-
work’s perspective, the victim binary could still fol-
low the communication protocol without exhibiting
any anomalous behavior.

A typical scenario of launching a ROC attack is as fol-
lows: The attacker downloads the binary of a popular close-
source freeware (e.g., a P2P sharing or streaming program)
and then patches it with logic for malicious reuse of legit-
imate function(s). According to a study on how the top
100 malware programs in 2008 infect computers [4], the
patched binary (i.e., the ROC trojan) could be disseminated
by the attacker via a number of ways: downloaded (with-
out user consent) from the Internet which accounts for 53%
of malware infection; dropped by other malware (43%);
through email attachments (12%), browser iframe compro-
mises (7%), software vulnerabilities (5%), and so forth.

ROC attacks are likely to succeed considering (1) the
prevalence of “drive-by downloads” and the wide exis-
tence of stealthy downloading malware (e.g., the trojan-
downloader in Fig. 1(b)) and (2) the lack of universal bi-
nary integrity checking infrastructure for many close-source
shareware programs today. Meanwhile, many close-source
shareware programs are rich in functions that can be reused
for malicious purposes, making them attractive targets of
ROC attacks.

To illustrate the real threat of ROC attacks, we propose
a systematic framework for detecting ROC vulnerabilities:
Given a close-source binary, our framework will identify
ROC vulnerabilities in it and further construct a ROC tro-
jan to confirm the true existence of the vulnerability. Our
framework also serves the purpose of demonstrating the
feasibility of ROC attacks and thus raising public aware-
ness. The detection of ROC vulnerabilities involves two
main steps:

e Step I — reuse-able feature extraction. Given a sub-
ject binary and its output that can be used in mali-
cious contexts (e.g., an email client and the emails it
sends out), our framework will check if modular func-
tions exist which are dedicated to producing that out-
put. Such functions are potential targets of malicious
reuse if their execution leads to very few reversible

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

side-effects. For example, the email client logs emails
sent in the sent-email folder — a side-effect that should
be reversed for a spammer. Our framework employs
dynamic binary analysis techniques to narrow down
the reuse-able functions and quantify their side-effects.

e Step II - reuse-able function argument identifica-
tion. The key part of a ROC attack is the malicious
setup of parameters to invoke the reuse-able feature
function. We show that it is possible to identify such
arguments without source code and symbolic informa-
tion. Our framework adopts a runtime program state
diff-ing approach, which involves running the subject
binary twice — with the same setting but different input
value assignments. The differences in the two result-
ing memory states will reveal a wealth of information
about the arguments of the reuse-able function, includ-

ing their memory regions and reference paths.

Our framework also includes a ROC attack composer.
To implant malicious logic, reusable function invocations
in the original binary are patched to expose critical inter-
nal states and allow mutation. Such functions and states
are identified by the ROC vulnerability detector. If needed,
function invocations can be duplicated in the same context
of the original invocation such that the semantic constraints
imposed on legal calling of the target function are satisfied,
i.e., the legal calling context is maliciously reused. We pro-
vide API functions to enable easy ROC attack composition.
Non-trivial attacks can be constructed by writing a few lines
of code, which will be translated into binary and patched

into the victim binary.

We have implemented a prototype of the ROC vul-
nerability detector and attack composer and applied them
against a number of real-world binaries. Our experiments
show that ROC attacks are real and easy to construct. For
example, the email client pine and mailx can be con-
verted into a stealthy email interceptor; the P2P software
Mutella can be exploited to perform covert Command
and Control (C&C) for a botnet; and the P2P software gift
can be converted to transfer sensitive files to other hosts

without being noticed.

2 Approach Overview

®

1101010010

3) (4
® RCOC @(pawhed binary)
omposer The final trojan

®
Reference
Path

Desirable
1
Vulnerability O
Specification

@ 0101010000
(app. binary)

Figure 2. Typical workflow of ROC vulnerabil-
ity detection and attack construction.

282 DSN 2010: Lin et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Fig. 2 illustrates a typical workflow of ROC vulnerabil-
ity detection and attack composition. Given a target bi-
nary, the user will first specify a desirable ROC vulnera-
bility. Unlike traditional “syntactic” vulnerabilities such as
buffer-overflows, ROC vulnerabilities are highly dependent
on the victim program’s semantics, namely the program’s
functional feature that can be reused in a malicious context.

Using the desirable vulnerability (feature) specification
as input, the feature extraction component automatically
identifies a set of candidate functions to reuse. The best
candidate function is the one that leads to the least amount
of side effects. The functions’ side-effects are quantified by
the side effect analysis component. Meanwhile, the argu-
ment reverse engineering component identifies the memory
locations of the functions’ arguments. The output of this
component is a reference graph, which presents a hierarchi-
cal view of the memory for the argument variables. Finally,
using the outputs of side-effect analysis and argument re-
verse engineering, the ROC attack composer generates the
actual malicious patch that invokes the best reuse-able func-
tion.

3 ROC Vulnerability Detection
3.1 Specitying ROC Vulnerabilities

Since we assume neither the source code nor in-depth
understanding of a victim binary, the only thing we can
leverage to define a functional feature is the input and out-
put of the software. In many cases, the input/output does
provide a lot of information about the relevant features. For
instance, if we want to decide if the email sending feature
of pine can be exploited, the email messages emitted by
pine can be used to trace back to the functions that are re-
sponsible for sending them. As another example, if we want
to detect whether the file transfer feature of a P2P client is
vulnerable, we can annotate the network packets generated
by the file transfer protocol. With the annotations, the func-
tions corresponding to file transfer can be disclosed by exe-
cution monitoring.

To generalize the above examples, our approach to ROC
vulnerability specification is to represent candidate features
of software by identifying the output generated (the input
processed) by these features. The specified output (input)
often follows standard formats that can be inferred from
high-level knowledge about the software. More formally,
we consider the output (input) as a sequence of bytes and
the relevant output (input) as a sub-sequence. The sub-
sequence is described by a grammar G. The corresponding
parser filters the irrelevant output (input). To use our ROC
vulnerability detection components, the user only needs to
provide the grammar G. For instance, the grammar of email
messages can be easily derived from RFC-2822. The gener-
ated parser is responsible for recognizing the relevant output
and parsing it into fields (nonterminals). As to be shown,
such fields will be used to compose ROC attacks.

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

283

Message — Header Body
Header — Subject Receiver Sender
Receiver — Addrt
Sender — Addr
Title — String
Body — String

Figure 3. Simplified grammar G of email mes-
sages, provided as the input to the ROC vul-
nerability detector.

A sample output grammar provided to our detector is
shown in Fig. 3. It is to detect ROC vulnerabilities in pine
regarding the email sending feature. It is a simplified ver-
sion for sake of presentation. A full grammar can be found
in RFC-2822.

3.2 Detecting ROC Vulnerabilities

This section describes how the detector works given the
specification described in the previous section. For brevity,
our discussion in this section focuses on output based spec-
ification, i.e., G is a grammar that filters output. Handling
input-oriented ROC vulnerabilities is similar and examples
of input-oriented ROC vulnerabilities can be found in Sec-
tion 5.

3.2.1 Feature Extraction

Given a grammar G describing an output sub-sequence, fea-
ture extraction identifies the set of modular functions in the
binary that are exclusively dedicated to the task of manip-
ulating and emitting the output described by G. Other less
dedicated functions are less vulnerable as subverting them
may cause unexpected effects. For example, the function
sendpacket is used by multiple features in pine includ-
ing sending emails and communicating with email servers.
The function is not vulnerable to ROC attacks regarding
email sending because subverting the function would intro-
duce undesirable effects for all the services relying on it.

Feature extraction is mainly carried out by profiling. Let
o be the output sub-sequence accepted by G and o; repre-
sent the ith byte of 0. Our technique instruments the bi-
nary to support a mapping from an observed byte to the
definition point of the byte, represented as pc;, meaning
the ith instance of the instruction at pc during execution.
The instrumentation is via standard dynamic program de-
pendency tracking (namely taint analysis), which has been
widely used in data life time tracking [13], exploit detec-
tion (e.g., [25]), malware analysis (e.g., [30]), and so on.
In particular, we instrument each memory read, write, data
movement, and data arithmetic, to catch dependencies be-
tween data definition and usage. We also capture the call
stack context of data definition and usage.

The next step is to analyze the binary’s executions to
identify functions that are dedicated to producing the rel-
evant output. In our solution, given an execution £ whose
relevant output is o, a dynamic call tree is constructed, with
a node representing a dynamic function instance and an

DSN 2010: Lin et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Content Call Tree Paths (Calling Contexts) of Definitions
EHLO [10.0.0.4]\r\n ...call_mailer— smtp_open_full —smtp_ehlo— sprintf— vsprintf— vfprintf— _[0_default_xsputn
RSET\r\n ...call_mailer— smtp_mail —smtp_send—0x804ad38 — strcpy

MAIL FROM:<alice@bob.com>\r\n

...call_mailer— smtp_mail —smtp_send —0x804ac58 — sprintf— vsprintf— vfprintf— _[O_default_xsputn

RCPT TO:<alice@bob.com>\r\n

...call_mailer— smtp_mail —smtp_send—0x804ac58 — sprintf— vsprintf— vfprintf— _IO_default_xsputn

DATA\r\n

...call_mailer— smtp_mail —rfc822_output— post_rfc822_output... —pine_header_line—0x804ac58 — sprintf— ...

Date: Wed, 22 Oct 2008 14:00:...

...call_mailer— smtp_mail —rfc822_output— post_rfc822_output... —pine_header_line—fold—sstrcpy

From: Alice <alice@bob.com>\r\n

...call_mailer— smtp_mail— post_rfc822 output— pine_rfc822 _output— pine_rfc822_header— pine_address_line

X-X-Sender: alice@bob.com\r\n

...call_mailer— smtp_mail— post_rfc822 output— pine_rfc822 _output— pine_rfc822_header— pine_address_line

To: bobRalice.com\r\n

...call_mailer— smtp_mail — post_rfc822 output— pine_rfc822 _output— pine_rfc822_header— pine_address_line

Subject: a test\r\n

...call_mailer— smtp_mail —rfc822_output—post_rfc822_output... —pine_header_line—fold—sstrcpy

Message-ID: <Pine.LNX...137@lo...

...call_mailer— smtp_mail —rfc822_output—post_rfc822_output... —pine_header_line—fold—sstrcpy

Content-Type: TEXT/ .. format=...

...call_mailer— smtp_mail —post_rfc822 _output— pine_rfc822_output—pine_rfc822_header— pine_address_line

aaaaaaaaaaaaaaaaaaaaaaaaa\r\n

...call_mailer— smtp_mail —rfc822_output— post_rfc822_output... —gf_local_nvtnl— gf_terminal —1_putc

.\r\n

...call_mailer— smtp_mail —smtp_send—0x804ad38 — strcpy

QUIT\r\n

...call_mailer—smtp_close— smtp_send—0x804ad38 — strcpy

Table 1. An email string and the call tree paths to function instances that define the individual string.

edge f — g representing a dynamic invocation from f to g.
Note that it is a tree instead of a graph as dynamically one
callee instance has only one caller instance. Each byte o; in
o is then annotated on a node in the dynamic call tree if o,
is defined in the function instance represented by that node.

A function instance f is called a containing function of
o if it is the common ancestor of all the function instances
annotated. Intuitively, it means the entire o is defined inside
f, either directly in f or in function instances transitively
invoked by f. Note that if f is a containing function, its
ancestors in the dynamic call tree are also containing func-
tions. For example, suppose we want to subvert the email
sending feature in pine. Email messages are annotated
as the relevant output of pine. Table 1 shows a sample
email and the paths in the dynamic call tree that lead to
function instances that define individual bytes in the email
message. These paths correspond to the calling contexts
of the definition points. Consecutive bytes with the same
path are aggregated and shown in column Content. Note
that the call paths are partial as they all share the same prefix

main—compose mail—pine send—call mailer.

According to the above definitions, call mailer, to-
gether with pine_send, composemail, etc., are
containing functions.

Not all containing functions are vulnerable. We exclude
functions that can be invoked in executions that do not pro-
duce the relevant output. Let the set of containing functions
for an execution E be CF(E), and the set of functions in-
voked by an execution F be F(E). Assume a test suite 7
with 79 being the set of executions that manifest the rel-
evant output. The set of feature functions is computed as
follows.

Sfeature(G) = m CF(E) —

EeTY

U 7@
EeT—-T9

That is, the set of feature functions include the com-
mon containing functions shared by all cases that produce
the relevant output — excluding those that do not produce
the relevant output in some case(s). In the pine exam-
ple, compose mail, pine_send, and call mailer

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

284

are the feature functions. Function main is not part of the
feature as it occurs in executions that do not send emails.

3.2.2 Side Effect Analysis

ROC attacks aim to reuse existing application logics im-
plemented in modular functions to achieve malicious goals.
They often entail duplicating calls to feature functions in
their original context. One of the necessary conditions is
that the function invocation to be duplicated has to have no
or very few side effects. Otherwise, benign execution will
get perturbed and stealth cannot be preserved.

Therefore, the next step of ROC vulnerability detection
is to analyze the side effects of the functions in the fea-
ture we extract in the previous step. In this work, a side
effect of a function instance is defined as a memory write
in the function instance and the written value is used after
the function instance returns; or a library call that results
in observable external behavior (e.g., update to a log file).
Writes to stack variables in the frame of a function instance
f or to heap structures allocated and then freed inside f do
not induce any side effects. The analysis is implemented by
tracing memory writes, system calls, heap allocations and
de-allocations.

Applying side effect analysis to pine’s feature shows
that the functions in the feature all have side effects.
As shown in Section 5, methods compose mail and
pine_send have a large number of side effects. In con-
trast, a maximum of 18 writes to global variables and a
maximum of 9 heap allocations are observed as the side ef-
fects of call mailer. They can be reversed by restoring
the values of the updated memory locations. Therefore, we
consider call mailer as potentially vulnerable. In com-
parison, some side effects are not reversible like GUI dis-
plays. Functions having such side effects are not vulnerable
(namely not maliciously re-usable).

3.2.3 Reverse-Engineering Critical Arguments

After identifying feature functions and excluding those with
irreversible side effects, we have narrowed down the vul-
nerable functions to a small set. To decide whether they

DSN 2010: Lin et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

are truly vulnerable, we need to check if the behavior of
these functions can be mutated by changing program state.
Therefore, the last step in ROC vulnerability detection is to
identify critical arguments of these feature functions. With-
out loss of generality, we consider one feature function f in
this section.

The ROC vulnerability detector relies on checking two
conditions. One is to identify the important variables (mem-
ory regions) whose values need to be modified in order to
manipulate the specified output. For example, email re-
direction entails finding the memory region that stores the
recipient’s email address. The other condition is to iden-
tify the reference paths to these variables (memory regions).
A variable or a memory region cannot be accessed simply
through their absolute addresses, which may change from
run to run. Therefore, an attack cannot be constructed (and
hence f is not vulnerable) unless a reference path that con-
sistently leads to the same variable (memory region) across
all runs can be identified.

Our ROC vulnerability detector identifies critical mem-
ory regions through memory differencing. We obtain an ex-
tra execution by changing some of the program inputs and
directing the software to produce different outputs. The
original execution is called the reference execution. The
memory snapshots of the two executions at the invocation
of the feature function f are compared to isolate the relevant
memory regions. For example, in the pine case, the ref-
erence execution sends a message to an address x, whereas
the extra execution is acquired by sending the same mes-
sage to a different address y. The memory states before
the invocations of call mailer in the two runs are com-
pared to identify the memory region that stores the recipi-
ent address, which should be the only difference of the two
runs. Recall that call mailer is the candidate vulnera-
ble function identified in the previous phase.

In practice, a dynamic data structure d may be allocated
to different locations in the two runs. Comparing the same
memory location (of d in one run) in both runs may lead to
the wrong conclusion that d does not hold the same value in
the two runs. To properly compare two memory snapshots,
we need to construct the correspondence between memory
cells. We define the problem as a memory alignment prob-
lem. More formally, given two executions E and E’ and
a memory variable i in F, the memory alignment func-
tion identifies a memory variable in E' that corresponds
to i. The function is denoted as MAg_, g (i), or MA(%)
for short if the two executions are clear from the context.
MA(i) is a partial function, for 4 that does not correspond
to any memory variable in E’, MA(4) is undefined, de-
noted as MA(7) = L.

Theoretically, memory alignment is an undecidable
problem. We propose an approximate solution based on
Reference Graph (RG). Intuitively, RG identifies reference
paths to all live memory regions. For any live memory re-
gion, there must exist a reference path starting from a global

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

285

Subject: SPAM

From: <alice@bob.com>
To: bob@alice.com
This is a spam email.

Subject: Hello

From: <alice@bob.com>
To: bob@alice.com
Hello, world

Table 2. The two different test emails

variable, a stack variable on the current frame, or a register.
Hence the roots of an RG have to be one of the above three
types of variables. The RG serves as an indexing scheme
over the memory space so that indices can be used to iden-
tify memory alignment. The formal definition of RG is as
follows.

Definition 1 A reference graph is a pair (N, E) with N be-
ing the set of nodes and E being the set of edges. A node
represents a memory region or a field. There are two types
of edges.

o There is a field edge between nodes n and m, denoted
as n — m, if m is a field of n. The field name is
annotated on the edge. If symbolic information is not
available, the offset is annotated.

e There is a pointer edge between nodes n and m, de-
noted as n — m, if n stores a pointer that points to
m.

In our pine example, we acquire two executions by run-
ning pine twice, with the same configuration and the same
sender and recipient addresses, but different subjects and
email contents. We show these two test emails in Table 2:
one is a spam email and the other is a regular one.

The two RGs at the invocation point of call mailer
are presented in Fig. 4. The root nodes represent the cur-
rent stack frame (the roots for the global regions are irrele-
vant for our discussion and thus omitted). In Fig. 4(a), three
fields have been reverse engineered with the byte offsets of
0, 4 and 8. The first two are pointers, the last one contains
a value 0. The first pointer field 0xbf£fc£58 points to a
memory region that has two fields, and so on.

The two memory snapshots are aligned by aligning their
RGs. Since RGs are graphs with labels, their alignment can
be carried out by a simple labeled graph alignment algo-
rithm. A memory difference is defined as a memory re-
gion that has a different value in its alignment in the other
RG. Observe the two RGs in Fig. 4 are highly similar. The
differences are highlighted in the figure. Note that pointer
value differences are ignored to tolerate non-determinism in
memory allocation. Two out of the four differences are for
the subject and the content. The other two are for different
time-stamps and book-keeping information. Note that the
content is encoded, which justifies our approach of memory
diff-ing because a simple scan over the memory would fail
to find the content.

Besides identifying critical memory regions, another
goal of RG is to provide reference paths to these regions.
A reference path is a RG path that starts from a root and

DSN 2010: Lin et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

leads to the destination region. It indicates how to ad-
dress the region at the current execution point. The soft-
ware is vulnerable only if such paths can be reverse en-
gineered. Then a ROC attack can be easily composed by
mutating the values of these regions. In Fig. 4, the refer-
ence paths from the roots to the differences can be discov-
ered from the RGs. For example, the reference paths to
the subject and the content are *(*(*(ESP+0)+0)+28) and
CCFCF(F((ESP+4)+52)+8) +0)+0)+8), respectively. Dic-
tated by the definition of memory alignment, the paths to
the corresponding memory regions (e.g., the paths to email
subject) are identical in the two graphs. We point out that
the normal execution can be mutated to the malicious one
if the values in the shaded regions in (a) are copied over to
the regions in (b) at the execution point where the snapshot
is taken.

Reference Graph Construction. RGs play an important
role in ROC vulnerability detection. On the surface, an RG

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

(b)
Figure 4. RGs at the invocation of call mailer for sending (a) a spam and (b) a regular email.

286

is very similar to the object reference graph for garbage
collection in object-oriented programs [8] or the memory
graph [31] in C programs. The difference is in our context
as we do not assume any data structure knowledge. Only
based on the identifiable memory regions and size infor-
mation, e.g., global variable region and size, stack frame
address and size, heap chunk address and size, we build
the corresponding RG rooted from the global variables and
stack variables on the current frame. The details on how
to build RGs are elided and can be found in our technical
report [22].

4 ROC Attack/Trojan Composition

Given a grammar specification, our ROC vulnerability
detector identifies feature functions and critical arguments
with their reference paths. If both can be identified, the
software is highly susceptible to ROC attacks. To confirm a
ROC vulnerability, we further develop an attack composer

DSN 2010: Lin et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Macro/Method

BEFORE(int func) {code}
AFTER(int func) {code}
ENTRY (int func) {code}

void get(int* field)

void set(int* field, void* val)
void duplicate(int func)

Table 3. ROC attack composition API.

Description

insert the code block before func
insert the code block after func
insert right inside func

retrieve the argument field

set the argument with val
duplicate the invocation of func

that allows user to construct ROC attacks.

Recall that feature functions are those that emit the spec-
ified output and their invocations can be duplicated for sub-
version if needed as they do not have irreversible side ef-
fects. Furthermore, critical arguments of these functions
and their reference paths also allow mutating the arguments.
Therefore, we propose a programming interface that facil-
itates easy ROC attack composition. As shown in Table 3,
the interface provides macros that allow inserting code be-
fore or after a function invocation, or right at the begin-
ning of the invoked function. It also supports simple ar-
gument manipulation and function call duplication. A ROC
attack can be written using a C-like language with the APIs.
The following code snippet illustrates a ROC attack that re-
directs an email message.

BEFORE (call_mailer){
set(&receiver, "ghost@somewhere.com");
duplicate(call_mailer);}

The attack duplicates the call mailer invocation and
mutates the receiver of the email address before the du-
plicated call. The attack code is inserted before the original
invocation to call mailer. Note that our tool identifies
the address for the given call mailer function and the
reference path for receiver. The result is that a copy of
the email is sent to the malicious address before it is sent
to the right receiver. The snippet will be translated into as-
sembly code and then compiled to a piece of independent
binary. The binary will then be patched to the original soft-
ware. The patch contains three parts: an entry patch that
precedes the duplicate and intercepts the control flow right
before the original benign invocation; a malicious logic that
implements the main body of the attack; and an exit patch
that reverses the side effects. The malicious logic includes
accessing and changing the critical argument denoted by
the field name receiver and making a duplicated call. The
field represents the argument that decides the output value
parsed by the non-terminal Receiver in grammar G, denot-
ing the receiver’s address. The patch is further weaved into
the original binary. Details can be found in [22].

5 Evaluation

We have implemented the ROC vulnerability detector us-
ing Valgrind-3.2.3 [24]. We instrument a binary to (1) col-
lect memory reads, writes, data dependencies, heap alloca-
tions, and de-allocations, along with the call stack contexts;
(2) keep track of function live ranges, caller-callee relations;
and (3) take snapshots of memory along with regular regis-
ters for reference graph construction at the selected func-

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

287

[Benchmark I T #Traced .
| Software Name | Size || me Threads | 108 Size
pine-4.63 6.3M 8m25s 1 6.4G
mailx-12.4 712K 5m48s 1 29G
mutella-0.4.5 843K 10m16s 9 8.2G
peercast-0.1217 58K 15m18s 5 3.5G
gift-0.11.8.1 321K Tm57s 1 2.2G
libGnutella.so.0.11 | 657K 12m36s 1 3.1G

Table 4. Cost of profiling for feature extrac-
tion.

tion invocation points. Feature extraction, side effect anal-
ysis, and RG-based memory diff-ing are conducted off-line
based on the trace file. The ROC attack composer is imple-
mented independently. We have applied our framework to a
number of real-world binaries. In the following, we present
the results from our ROC vulnerability detector and attack
composer.

5.1 Overall Result

In our experiments, we assume some high-level knowl-
edge about a target binary’s semantics such as the commu-
nication protocol used. In particular, our evaluation mainly
involves two protocols, an email protocol (RFC-2822) and
a P2P protocol (Gnutella-0.6). We aim to detect ROC vul-
nerabilities in various implementations of these protocols.
We take 5 widely used software programs as benchmarks as
shown in Tables 4 and 5. The “Size” column in Table 4 is
the binary size. In the email implementations (pine and
mailx), we aim to find the feature responsible for email
sending so that we can use it to redirect email or send spam.
In the P2P programs (mutella, peercast, and gift),
we aim to implant malicious logic such as a C&C channel.

Table 4 shows the cost of profiling in the feature ex-
traction phase. The profiling consists of one expensive in-
struction level profiling and 10 featherweight function level
profiling. The instruction level profiling collects memory
reads, writes and dependencies and produces large log files.
It is to facilitate containing function identification. The
function level profiling is to identify containing functions
that are not dedicated to the feature, i.e., containing func-
tions executed in runs that do not produce the specified out-
put (or do not accept the specified input). The overall cost
is presented in Table 4. The overall profiling time, the max-
imal number of traced threads for one run, and the total
log size are shown in the 3"%, 4'", and 5" columns, re-
spectively. Note that LibGnutella is a plug-inin gift.
They are treated as two different benchmarks because we
are interested in their different features, namely, the file in-
dex management feature in gift and the file transfer fea-
ture in 1ibGnutella. The first instruction level profil-
ing is the dominant factor in the cost. Currently, it collects
traces for the entire execution which is sub-optimal. We
will work on optimizing this component in the future.

Table 5 summarizes the input and outcome of the detec-
tor. The columns in Prior Knowledge presents the in-
formation provided by user: Protocol is the feature rep-

DSN 2010: Lin et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

[Prior Knowledge Observed Feature Function [[Max Length | #Identified | #Containing Side Effect Write
Benchmark | Protocol [#Var [| Func Addr] Func Name [| of Ref Path Var Functions #G #H | #F
RFC-2822 0x081c613c compose_mail 1 1 7 183 9 1

pine-4.63 Email 4 0x081cbf67 pine_send 3 0 8 181 37 1
Sending 0x081d5b6f call_mailer 6 4 9 18 9 0

0x08090f59 talk_smtp 3 3 10 3 2 0

RFC-2822 0x08092306 smtp_mta 3 3 9 9 1 0

mailx-12.4 Email 4 0x0808e864 start_mta 3 3 8 18 1 0
Sending 0x0808e6a2 transfer 3 3 7 18 1 0

0x0808ee02 maill 3 3 6 70 1 2

: 0x080d0cc2 MGnuNode::SendPacket 5 1 15 1 1 0

mutella-0.4.5 Ping Send 1 0x080d2eb8 MGnuNode::Send_Ping 4 1 14 1 1 0
i 0x080d64e2 MGnuNode::HandlePacket 5 1 8 - - -

Ping Recv ! 0x080dTbIc | MGnuNodc::Reccive_Ping 7 T 9 - B

X Oxb7eeel3e GnuStream::ping 1 1 9 0 6 0

peercast-0.1217 Ping Send 1 Oxb7eedisa GnuStream: :sendPacket 3 T 8 0 6 0
Ping Recv 1 0xb7eef3b6 GnuStream::processPacket 6 1 8 - - -

. Index 0x08054923 share_update_index 5 0 16 - - -
gift-0.11.8.1 Management 0 0x0805489% update_index 5 0 17 - - -
0xb7dc522a recv_packet 3 2 21 - - -

libGnutella.so.0.11 || Query Reev 1 Oxb7d027Te ZLmsg_query 3 T o) : B -
Ping Recv 1 0xb7d01659 gt_msg_ping 4 1 22 - - -

Table 5. Summary of results from ROC vulnerability detector.

resented by the provided grammar; #Var shows the num-
ber of critical arguments, which correspond to some non-
terminals in the grammar. The columns in Observed
Feature Functions show the extracted feature func-
tions. Note our techniques do not require any symbolic in-
formation, and we present function names mainly for read-
ability. The next three columns show the maximal length of
the reference paths of the critical arguments; the number of
critical variables identified; and the number of containing
functions. The side effect columns present the number of
writes to global variables (#G), heap variables that are live
at the end of the function (#H), and external files (#F). Note
if the patch is not a function duplication, we do not collect
the side effect data.

After the ROC vulnerabilities are identified, we use our
attack composer to construct ROC trojans thus confirming
the vulnerabilities. Except that mailx has an irreversible
side effect, other binaries have been successfully exploited.
Due to space limitation, we next present one representative
case study on how we analyze the mutella binary, and we
leave the details of other case studies in our technical report
[22].

5.2 A Case Study

Malicious intent and desirable features: In this case, we
are interested in stealthily introducing a covert Botnet com-
mand and control (C&C) mechanism to the mutella im-
plementation. The idea is to reuse the Gnutella (the pro-
tocol used by mutella) internal management protocol so
that network packets would look normal and the C&C over-
lay is completely invisible to the peers. In particular, from
the Gnutella protocol specification [2], we know a “PING”
packet is used to announce the presence of a node on the
network; and other peers respond with a “PONG” packet to
notify they are reachable. The “PING” message is also for-
warded to other connected peers before reaching the max-

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

288

imum hops. We can encode various botnet commands by
sending the identical “PING” packet in sequences of vari-
ous length. Note that doing so is completely legal according
to the protocol specification (as such behavior corresponds
to a node trying to find its neighbors). The un-infected peers
would work normally whereas only the infected peers (bots)
would understand such encoding among themselves.

Reuse-able function identification: We provide the PING
message grammar to the ROC vulnerability detector with
the critical argument being GUID (the identification of a
message). Note that we are interested in both PING mes-
sage sending and receiving features. They are considered
separate features as they are implemented by different sets
of functions. For the PING send and PING receive features,
two feature functions and the critical argument are iden-
tified, indicating that mutella is vulnerable. We select
Send_Ping and Receive_Ping to compose the attack.
Part of the attack code is presented as follows.

BEFORE (Send_Ping) {
for(i=0;i<2;i++){//Command A
duplicate(Send_Ping);
}
}

ENTRY (Receive_Ping) {
get (&GUID);
if (two consecutive messages with identical GUID)
do_command_A();
}
Attack logic composition: The patch duplicates the invoca-
tion of Send_Ping and wraps the duplication into a loop,
with the number of iterations dependent on the specific
C&C command. The second half of the attack code handles
the receiving end of the “PING” messages by interpreting
the command. It gets the argument GUID at the invoca-
tion to Receive_ Ping, decodes the command based on
the number of consecutive messages with the same id, and
takes the corresponding action. The get function concerns
input instead of output. It is translated to a memory access

DSN 2010: Lin et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

following the reference path to the reverse engineered argu-
ment GUID, which is * (ESP+0) in this case. Moreover,
since feature functions concerning input are not likely to get
duplicated, our detector does not analyze their side effects,
which explains the ‘-’ symbols in the side effect columns in
Table 5.

6 Discussion

Having demonstrated the feasibility of ROC attacks and
their potential threats, we now discuss possible approaches
to ROC attack detection and prevention.

Binary integrity check. The most intuitive way to de-
tect ROC attacks is to hash all legal binaries (e.g., using
Tripwire [20], or NSRL [3]) and periodically check their
integrity. In practice, however, it is difficult to maintain
up-to-date, globally consistent hash values, considering the
frequent, automatic software patching and update, as well
as the decentralized distribution of binaries and patches.
Moreover, users may not always enforce timely binary in-
tegrity check. In fact, one purpose of this work is to pro-
mote such practice. This, in part, explains the prevalence of
trojans and other drive-by downloads on today’s Internet.
Meanwhile, it is also impossible to hash all malware (in-
cluding trojans) samples for their detection, due to the large
amount and the dynamics of today’s malware [12].

Control flow integrity check. A ROC attack does not vio-
late control flow integrity except at the entry and exit points
where the malicious patch gets the control. Therefore it may
be possible to detect such violations by monitoring and pro-
filing the binary’s normal control flows and enforcing them
at runtime. For example, we could use CFI [7] to enforce
legal control flow transfers at those entry/exit points. One
challenge would be that, since the CFI enforcement itself is
part of the victim binary, the ROC attacker may bypass the
CFI check as part of its side-effect elimination patch.

Host-based IDS. ROC attacks are carried out by du-
plicating existing, legal function invocations. As such,
the attacks may be oblivious to many host-based intru-
sion detection systems (e.g., VtPath [16]). However, the
timing/sequencing characteristics of the duplicated feature
function invocations may provide a lead for their detec-
tion. Hence, detectors based on behavioral sequence analy-
sis (e.g., [18]) may be able to detect ROC attacks.

Network-based IDS. ROC attacks are able to preserve the
normal network behavior of the victim binary, as demon-
strated by the mutella case study. As such, most
network-based IDSes (e.g., PAYL [28]) would not pickup
behavior abnormality. However, depending on the nature
of a specific ROC trojan, it is possible that an NIDS using
content-based signatures be able to detect its malicious traf-
fic (e.g., spams). Such detection, unfortunately, cannot be
generalized to all ROC trojans.

To prevent ROC attacks, one way is to break the software
modularity, e.g., by transforming a program so that it con-

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

289

tains very few function calls, which can no longer be singled
out to perform a malicious action without side-effects. An-
other approach is to obfuscate the binaries so that it would
be difficult to identify reuse-able functions. In fact, many
malware programs in the wild adopt such strategy to avoid
detection. We argue that legitimate programs may also ben-
efit from obfuscation in preventing ROC attacks.

7 Related Work

Return-into-libc attack. The ROC attack is related to the
return-into-libc attack [15, 23]. The return-into-libc attack
requires prior knowledge about the implementation of the
returned library functions and is defeat-able by random-
ization techniques [19]. On the other hand, the ROC at-
tack uses dynamic program analysis techniques to infer the
reuse-ability of application level functions. More impor-
tantly, the control flow deviation caused by return-into-libc
attacks is fairly obvious and easily detectable; whereas ROC
attacks by design try to mimic the control flow of the victim
program and reverse any side-effects.

Return-oriented programming. Shacham et al. recently
proposed a return-oriented programming paradigm [27, 10],
which reuses existing instruction sequences in large code
segments (e.g., library) to compose malicious logics. This
paradigm enables reuse of very basic functionalities at the
granularity of short instruction sequences; whereas ROC at-
tacks reuse high-level functional features of software at the
(much coarser) granularity of modular functions.

Feature extraction. Prior work exists in feature extrac-
tions from binaries. Wong et. al. proposed an execution
slice-based technique to identify the basic blocks which are
used to implement a program feature [29]. Greevy et. al.
proposed a compact feature-driven approach based on dy-
namic analysis to characterize features and computational
units of an application [17]. Pattabiraman et. al. presented
using symoblic execution to enumerate all possible applica-
tion level “insider” attacks [26].

More recently, Caballero et al. [11] independently pro-
posed a binary code extraction technique, BCR, by com-
bining dynamic and static analysis, to extract the malware
encryption and decryption functions and reuse them in a
network proxy (to decrypt the encrypted traffic). They
mainly focus on how to extract the transformation function
in which the entry point needs to be given, inside the bi-
nary, for the purpose of malware analysis. In addition, they
reuse the transformation code in a different program (i.e.,
the malware analysis program); whereas we reuse the code
within the same binary, with additional requirements (e.g.,
side-effect minimization and reversal). The Inspector gad-
get [14] is another independent effort that focuses on ex-
tracting and reusing features inside malware programs.

Memory Graph. Our reference graph (RG) concept is sim-
ilar to the object reference graph for garbage collection in
object-oriented programs [8] and the memory graph [31]

DSN 2010: Lin et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

in C programs. An object reference graph has objects as its
nodes connected through their field edges. It mainly focuses
on the management of dynamically allocated memory. A
memory graph has dynamic data structures as its nodes
and “points-to” relations as its edges. Memory graphs re-
quire prior knowledge about data structure definitions [31];
whereas our technique for ROC attack construction assumes
only binaries. In addition, the requirement of RG is less
stringent, meaning that an RG is valid as long as it pro-
vides valid reference paths to specific memory regions with-
out requiring the nodes and edges to precisely follow the
actual data structure definition. The garbage collector by
Boehm [9] also traverses memory to find reachable regions
without demanding symbolic information. It does not ex-
plicitly build the reference graph and its traversal is coarse-
grained, without capturing field information.

8 Conclusion

The ROC attack/trojan poses a new threat, virtually
transforming a legal binary into a stealthy, malicious one.
The neutral functional features in a legal binary are poten-
tial targets of ROC attacks. ROC trojans are heavily de-
pendent on the semantics of their victim binary programs
and there exists no generic content or behavior “signature”
across all ROC attacks. To defend against ROC attacks, we
present an integrated framework for the detection of ROC
vulnerabilities in a binary and for the construction of con-
crete ROC trojans. Our experiments with a number of real-
world software binaries indicate that the ROC attacks are
real and ROC vulnerabilities can be detected and confirmed
in a systematic fashion.

9 Acknowledgment

We thank the anonymous reviewers for their insight-
ful comments. We also thank Guofei Gu, Xuxian Jiang,
and Vinod Yegneswaran for earlier discussion on this work.
This research is supported, in part, by the Office of Naval
Research (ONR) under grant NO0014-09-1-0776 and by the
National Science Foundation (NSF) under grants 0716444,
0720516 and 0845870. Any opinions, findings, and con-
clusions in this paper are those of the authors and do not
necessarily reflect the views of the ONR or NSF.

References

[1]

Bitdefender malware and spam survey.
http://news bitdefender.com/NW1094-en—BitDefender-Malware-
and-Spam-Survey-finds-E-Threats-Adapting-to-Online-Behavioral-
Trends .html.

[2]
[3]
[4]

National Software Reference Library. http://www.nsrl.nist.gov/.

Most abused infection vector.
abused-infection-vector/.

http://blog trendmicro.com/most-

[5]

Virus collection (vx heavens). http://vx.netlux.org/vl.php, visited in
Nov. 2009.

Parasitic malware: The resurgence of an old threat. Network Security,
2008(3):15 - 18, 2008.

[6]

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

Gnutella protocol spec. http://wiki.limewire.org/index.php?title=GDF.

290

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

M. Abadi, M. Budiu, Ulfar Erlingsson, and J. Ligatti. Control-flow
integrity. In ACM CCS’05,2005.

0. Agesen, D. Detlefs, and J. E. Moss. Garbage collection and local
variable type-precision and liveness in java virtual machines. SIG-
PLAN Not.,33(5):269-279, 1998.

H.-J. Boehm. Space efficient conservative garbage collection. In
ACM PLDI’93,1993.

E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good
instructions go bad: Generalizing return-oriented programming to
RISC. In ACM CCS’08,2008.

J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary
code extraction and interface identification for security applications.
In ISOC NDSS’10, 2010.

J. Canto, M. Dacier, E. Kirda, and C. Leita. Large scale malware
collection : lessons learned. In /EEE SRDS’08, 2008.

J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.
Understanding data lifetime via whole system simulation. In /3th
USENIX Security Symposium,2004.

C. Kolbitsch, T. Holz, C. Kruegel and E. Kirda. Inspector gadget:
Automated extraction of proprietary gadgets from malware binaries.
In IEEE Symposium on Security and Privacy, 2010.

S. Designer. “return-to-libc” attack. Bugtraq, August 1997.

H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong.
Anomaly detection using call stack information. In IEEE Symposium
on Security and Privacy,2003.

O. Greevy and S. Ducasse. Correlating features and code using a
compact two-sided trace analysis approach. In European Conference
on Software Maintenance and Reengineering, 2005.

S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection us-
ing sequences of system calls. J. Computer Security, 6(3):151-180,
1998.

A. D. Keromytis. Randomized instruction sets and runtime environ-
ments past research and future directions. /EEE Security and Pri-
vacy, 7(1):18-25,2009.

G. H. Kim and E. H. Spafford. The design and implementation of
tripwire: a file system integrity checker. In ACM CCS’94, 1994.

B. Korel and J. Laski. Dynamic program slicing. Information Pro-
cessing Letters,29(3):155-163, 1988.

Z.Lin, X. Zhang, and D. Xu. Reuse-Oriented Camouflaging Attack:
Vulnerability Detection and Attack Construction. Technical report,
CERIAS TR 2009-29, Purdue University, 2009.

Nergal. The advanced return-into-lib(c) exploits: Pax case study.
Phrack, 10(58), 2001.

N. Nethercote and J. Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In ACM PLDI’07,2007.

J. Newsome and D. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. In ISOC NDSS’05, 2005.

K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer. Discover-
ing Application-Level Insider Attacks Using Symbolic Execution. In
Proc. of the 24th IFIP SEC, 2009

H. Shacham. The geometry of innocent flesh on the bone: return-
into-libc without function calls. In ACM CCS’07,2007.

K. Wang and S. J. Stolfo. Anomalous payload-based network intru-
sion detection. In Recent Advances in Intrusion Detection,2004.

W. E. Wong, S. S. Gokhale, and J. R. Horgan. Quantifying the
closeness between program components and features. J. Syst. Softw.,
54(2):87-98, 2000.

H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda. Panorama:
Capturing system-wide information flow for malware detection and
analysis. In ACM CCS’07,2007.

T. Zimmermann and A. Zeller. Visualizing memory graphs. In

Revised Lectures on Software Visualization, International Seminar,
2002.

DSN 2010: Lin et al.

