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ABSTRACT

Locating, extracting, and reusing the implementation of a
feature within an existing binary program is challenging.
This paper proposes a novel algorithm to identify modular
functions corresponding to such features and to provide us-
able interfaces for the extracted functions. We provide a
way to represent a desired feature with two executions that
both execute the feature but with different inputs. Instead of
reverse engineering the interface of a function, we wrap the
existing interface and provide a simpler and more intuitive
interface for the function through concretization and redirec-
tion. Experiments show that our technique can be applied to
extract varied features from several real world applications
including a malicious application.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement— Restructuring, reverse engineering, and
reengineering; D.2.13 [Software Engineering]: Reusable
Software

General Terms
Algorithms

Keywords

Feature Extraction, Reverse Engineering, Dynamic Analysis

1. INTRODUCTION

Developers have long struggled with the desire to reuse
previously implemented features within new code. By reusing
an old implementation, developers can avoid creating new
bugs and can create easier to maintain programs [32, 26,
19, 8]. Implementation reuse can also be crucial when a
new program must replicate features within a legacy sys-
tem, but the specification for the legacy system no longer
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exists. Driven by this desire to reuse existing implementa-
tions, previous research has delved into techniques for both
locating the implementation of a feature within a body of
source code [40, 41, 8, 10, 15, 33, 9, 38, 35, 13, 6, 14, 16] and
extracting that source implementation into a conveniently
reusable function [26, 23, 17, 18, 31, 25, 10].

These techniques generally assume the availability of the
original source code, but in practice the source code itself may
no longer be available or may no longer even exist. Indeed,
facing the maintenance of legacy programs without source
code, DARPA recently called for a solution to this exact
problem [3]. For example, some components are provided to
developers only in the binary form, and the source of these
programs or libraries may not be available due to intellectual
property restrictions [36]. In other cases, companies may have
existing programs that implement de facto specifications, but
both the original source code and any documentation of the
specifications have been lost over time [3]. Finally, when
reverse engineering the behavior of a foreign program, a
program from a third party, security researchers sometimes
wish to extract certain features, such as encoding/decoding
routines [22] or anti-debugger techniques [20] from a foreign
program in binary form. Reusing these features from foreign
binaries allows the security analysts to gain insight into the
behavior of malicious code and potentially develop defensive
techniques [22]. In each of these scenarios, a developer needs
to locate and extract the existing implementation of a feature
that exists only in binary form within an existing program.
Although source code provides rich information about the
behavior and structure of a program, much of this information
is stripped away when the program is compiled to a binary
form.Thus, techniques for locating and extracting features
that rely on source code analysis and manipulation no longer
apply.

New solutions must be found for both locating and ex-
tracting features. Prior work on locating a desired feature
includes techniques built on statement coverage informa-
tion [41] and dynamic slicing techniques [43]. While both
of these techniques apply to both source code and binaries,
they may both locate features too coarsely, including more
of the original implementation than is necessary or desirable.
Dynamic slicing techniques compute transitive closures over
the dynamic dependence graph of an execution [24, 5, 46].
These closures are known to be large in practice [45]. State-
ment coverage techniques contrast the statements performed
within an execution that exhibits a desired feature against
those performed in an execution that does not exhibit the



feature. The intuition is that statements executed only, or
more frequently, within the execution exhibiting the feature
should implement the feature itself. We observe and later
show that such approaches can be too coarse grained and
identify portions of the original implementation that are
unnecessary for implementing the feature.

Once the functions implementing a feature have been iden-
tified, they may be extracted from the original binary, but
extraction alone is insufficient. To reuse the extracted com-
ponent, we must provide an interface through which it may
be invoked, but even state of the art binary analysis tools
have difficulty reverse engineering such interfaces. We show
that the original interface for a component can also involve
complex heap structures, and the parameters that correspond
to a feature of interest may be deeply embedded within these
heap structures and subject to subtle constraints. Developers
should not need to deal with such complexities when reusing
an extracted component.

In this paper, we propose a novel approach to locating
modular functions that correspond to a desired feature and
providing a usable interface for the extracted component. We
describe the desired feature through multiple executions that
use the feature. The user executes the feature twice with
different inputs, and our technique semantically contrasts the
executions to discover where the different input values are
used and which part of the code produces the desired output
from the input. Owur technique then isolates the feature
using concretization to replace the original parameters of
the function with values from a real run. Finally, it wraps
the original interface of the binary with a new and simpler
interface for the developer to invoke and then uses redirection
to ensure that the parameters of the new interface are used
consistently throughout the extracted function.

Our main contributions are highlighted as follows.

e We provide a way to precisely represent a desired fea-
ture using multiple executions that exhibit the feature.
Providing these executions is intuitive to a user who
knows how to use the existing binary.

e We perform a semantic comparison of the provided
executions using dual slicing [39]. This allows us to
precisely locate the desired feature within the code.

e We propose a technique called interface casting that
uses concretization to isolate desired parameters for a
function. It then wraps an extracted binary feature
with an adapter and exploits redirection to use the
parameters of the adapter. This provides the developer
a convenient means of invoking the extracted feature.

e We implement and evaluate a prototype of the approach.
We apply our technique to 8 applications and extract
10 reusable components from the binaries. We show
that even when there are originally no parameters to
the extracted functions, our technique still applies.

2. MOTIVATING EXAMPLE

Suppose a developer desires to extract and reuse the email
sending feature of pine, an email client. Because pine has
many diverse email features, this reuser must first locate
the function that contains the desired feature. To reuse the
function, they must also uncover the function’s interface or
prototype. Knowing the interface, they can provide parame-
ters such as the sender address, recipient, subject, and body
for a sent email. In this section, we show how to locate the

desired function by using dual slicing. We then show how
to extract the function into an isolated component with a
reusable interface by using concretization and redirection.

2.1 Function Location

Before extraction, we must locate the function responsible
for sending an email. To find the function, we contrast two
different executions of pine, each of which sends a different
email. We follow the same steps both times, except that the
sender addresses, recipients, subjects, and bodies of the sent
emails differ. Thus, we choose the same menu items in the
same order, and we provide the same sequence of key strokes
except for the four parameters of interest. As a result, the
two executions follow the same paths through the program
except for differences related to the differing user input.

Dual slicing is a technique that contrasts two executions
and identifies only those instructions that both behave dif-
ferently across the two executions and contribute to their
different outputs. Intuitively, the user inputs for the two
executions of pine differ only with respect to the emails sent,
so the two executions should mainly differ in the portion
of code that is responsible for processing and sending the
different emails. Thus, the differences identified by the dual
slice should be the behaviors of pine that we wish to extract.

Next, our technique find the function that encloses all of
the relevant differences between the two executions. Fig. 1
shows the part of the dynamic call tree containing the dual
slice. Each node represents a function and each arrow repre-
sents a caller-callee relationship between functions. Shaded
nodes represent those functions containing the relevant in-
structions within the dual slice. The topmost shaded function
is call_mailer(), and it transitively calls all other shaded func-
tions. Since the shaded functions are necessary for the mail
sending component, we identify call_mailer() and its callees
as the components of pine to extract.

Compose_mail

pine_send

tfeS22_output_full
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@unul(&?ZJxm«lnD (pinuchZLoutpuLbod))

pine_header_lind

Figure 1: Dual slice of the mail sending feature in pine.
Shaded nodes show the dual slice within the call tree.

2.2 Interface Casting

We must next extract call_mailer() and provide it with a
usable interface. The new interface is particularly important
because the original interface is complex and does not match
the expectations of reuser.

Suppose that we tried to invoke the extracted function
directly. Fig. 2 presents the original interface of call_mailer().
The function has 6 parameters. The first and the second



struct BODY {
PARTTEXT contents; /* body part contents */
union { /% different ways of accessing contents */
PART *part; /% body part list */
MESSAGE *msg; /* body encapsulated message */
} nested;

1
struct PART {
BODY body; /* body information for this part */
PART *next; /* next body part */
1
struct MESSAGE {
BODY *body; /* message body */
PARTTEXT text /* body text */

1
struct PARTTEXT {
unsigned long offset; /* offset from body origin */
struct {
unsigned char *data; /* text */
unsigned long size; /* size of text in octets */
} text;
}
int
call_mailer (METAENV *header, BODY *body,
char **alt_smtp_servers, int flags,
void (*bigresult_f)(char *, int),
void (*pipecb_f)(PIPE_S *, int, void *))

Figure 2: Interface of call_mailer(d

arguments are pointers to internal data structures, and we
would need to reverse engineer those data structures to reuse
the original interface. In particular, the body of an email
is stored in body->contents.text.data and the size of the body
is stored in body->contents.text.size. To specify the body, we
would first need to allocate memory regions for the Bopy
structure and its child data structures, e.g. PART and MESSAGE,
and specify correct values for both data and size. This also
requires understanding the semantic relationship between
data and size. To reuse call_mailer(), we would further need
to correctly initialize the entire data structure and identify
the semantics of each field even if the field is unrelated to the
four parameters we want to provide. In fact, there is even
more complexity, as email contents may be specified in two
different ways: one through the contents field of Bopy and the
other through a further nested field of Bopy. Expecting the
reuser to manage this complexity on their own is unrealistic.

To provide a usable interface for the function, we must
simplify away the unnecessary parameters and introduce
new parameters matching the reuser’s intentions. We call
this process interface casting. To simplify existing param-
eters, our technique first statically concretizes those values
generated outside call_mailer() and used inside call_mailer().
Thus, if call_mailer() is invoked by the reuser, the parameter
bigresult_f does not actually take a variable argument. In-
stead, we provide it a concrete value observed in one of the
original executions. We concretize not only the values of all
function parameters but any memory values defined outside
call_mailer(). By concretizing all of the direct and indirect
inputs, we hermetically seal the function of interest. That is,
by providing concrete values for all inputs of a function, we
ensure that it behaves the same way every time.

To provide the parameters desired by the reuser, our tech-
nique then relaxes this seal to allow only the chosen param-
eters to again affect the function’s behavior. We redirect
accesses of the original inputs to use memory locations for the
new parameters provided by an interface that we construct.
Since we already concretize the parameters and memory
values, the location for a parameter is statically fixed. For

example, the value of the parameter body may be concretized
to 0x0408CCOO, and the subject of an email may be con-
cretized to ®x0409DBOO. Thus, the program will always read
the email subject from the same location in memory, and we
can redirect accesses of that memory location to use a new
memory location that contains a new subject string.

Before we can relax and redirect accesses of inputs, we must
first allow the reuser to determine just which data should
be parameters for the extracted function. Once again, the
reuser can use dual slicing to provide this information. Recall
that in the function identification phase we contrasted two
executions with all desired parameters changed to identify
the code to extract. In contrast, to identify the instructions
that read each input, we need only change one input at a
time. This way the dual slice between the original execution
and the execution with one differing input will capture only
those instructions processing the changed input.

Once we identify all desired parameters of call_mailer() and
create a new interface using concretization and redirection,
we can simply extract the function from its original binary
by using binary rewriting tools[11]. The new interface we
provide acts as a wrapper that invokes this binary function,
allowing the reuser to call it like any other library function.

3. THE REUSE PROCESS

In this section we discuss the details of reusing functions
from binary code. We present algorithms for both locating
the function that contains a feature through dual slicing and
for providing a reusable interface through concretization and
redirection.

3.1 Component Location

We first present background information on dual slicing
to clarify details of our approach for locating components
within a binary. We then explore our algorithms for locating
components and why they can localize a component to a
more concise portion of code than existing techniques.

Dual slicing. Dual slicing is a slicing technique that con-
trasts two executions and produces a slice containing only
those differences between the two executions that are re-
sponsible for some observably different behavior [39]. Alg. 1
presents the core algorithm. Given a slice criterion (e, e2)
that identifies some output differences across the two execu-
tions, the algorithm computes a set of dynamic dependences
from both executions. (e1, e2) denotes that two execution
points e; and ez, in the first and the second executions re-
spectively, align or correspond across the executions [44].
(e1,L) denotes that there is no execution point in the second
execution that aligns with e; in the first execution.

The algorithm first ensures that the slice criterion exists
in the first execution. Lines 2-6 process data dependences
at the slice criterion. Here, {(e1, e2) —> (e1, e3)} denotes
that e; has a data dependence upon e in the first execution,
ez has a data dependence upon e in the second execution,
and ef aligns with e5. e} can be L when e] does not align
with any point in the second execution or ez is not data
dependent on the alignment of ef. On line 3, if the data
dependence exists only in the first execution or if the values
of two data dependences differ, the data dependence is added
to the dual slice. The algorithm proceeds to include the dual
slice from (eg, e3) recursively, similar to traditional dynamic
slicing. Lines 7-10 process the control dependence of the slice
criterion, denoted as =. Similar to the data dependence,



if the control dependence exists only in the first execution
or the branch outcomes differ, the control dependence and
the recursive dual slice of the control dependence are added
to the dual slice. So far, the algorithm considers only data
dependences and control dependences when e; is not null.
Lines 12-14 compute the dual slice when ez is not null.

Algorithm 1 Dual Slicing

Input: e, ex- slice criteria
Output:D- the dual slice, a set of deps in either execution

DUALSLICE( ey, €2)
1: if e; # 1 then
2:  for all data dep dd < {(e1, e2) —> (e1,€3)} do

3: if e} = L or values at e] and ej differ then

4: D + DUdd U DUALSLICE(e], €3)

5: end if

6: end for

7:  control dep cd < {(e1, e2) => (e1, €3)}

8: if e} = L or branch outcomes at e and e} differ
then

9: D < DUcd U DUALSLICE(e], €5)

10:  end if

11: end if

12: if ez # | then

13:  /* operations symmetric to when e; # L */
14: end if

15: return D

Component location using dual slicing. To use dual
slicing to identify the component that corresponds to the
desired feature, we use two executions that each exercise the
desired feature but that use different inputs. For example,
in the pine case study, we send an email in both executions,
but the emails have different recipients, subjects, and bodies.
The resulting dual slice contains only those instructions that
process the input because all the execution differences origi-
nate from the differing inputs. The slice also includes only
instructions that help produce the desired output because
slicing excludes instructions unrelated to the output.

Alg. 2 presents the component identification algorithm.
The algorithm requires two executions, F1 and FEs, which
exercise the same feature but with different inputs. Lines 1
and 2 choose the output corresponding to the desired feature
as the slice criterion. In the pine example, we use the
network packet containing the composed email as the slice
criterion. Line 3 computes the dual slice, and line 4 trims off
a prefix of the slice that only moves the arguments around
without using them for any computation. Line 5 locates the
function that contains this trimmed dual slice. It chooses the
closest common ancestor function in the dynamic call tree of
those functions whose instructions reside in this dual slice.
Line 6 further selects this common ancestor as well as all
functions that it transitively called in E; and E2 as targets
of extraction. In other words, the identified components
comprise nodes of the dynamic call tree with the identified
common ancestor function as their root.

Suppose that we wish to identify the function containing
the ‘email sending’ functionality of the sample program in
Fig. 3 that models pine. load_config() first initializes global
variables that will be used in pine_send(). menu() waits for an
input from a user with timer of 1 second. If the timer expires,
menu() performs background tasks. If the user instead selects

Algorithm 2 Component Location

Input: a pair of executions E; and E> with both exercising
the target functionality but with different inputs.

IDENTIFICATION(E1,E»)

1: (01,02) = outputs corresponding to the desired feature
in F1 and Es, resp.

: (e1, e2) = execution points that emit O; and O, resp.

dse = DUALSLICE(e1, e2)

tse = TRIM(ds.)

func = the modular function that encloses ts.

: extract = func and all user functions directly/indirectly
called by func

7: return extract

the send menu option, pine_send() calls editor() to edit the
recipient, subject, and body of an email. Later call_mailer(
composes an email with the information from editor( and
sends it to an SMTP server. In this example, call_mailer() has
the email sending functionality since editor() only stores the
user input into a buffer and does not apply any calculation
or transformation to the given inputs.

To get two execution traces for dual slicing, we run the
program twice with different recipients, subjects, and body
texts. We run the program in exactly the same way the
second time except for those inputs. Those three parameters
are all that we want our extracted component to require, and
we want to use the same values for other configurations such
as the SMTP server address and sender address.

Fig. 4a and Fig. 4b present the resulting traces. Line 43 is
the slice criterion because it sends the packet containing the
email to the SMTP server. The dual slice includes that line
because the sent packets differ in the two executions. Line 43
further depends on lines 42, 36, 37, and 38. Line 42 uses
the same value of smtp_server in both executions, so the dual
slice excludes it. Because lines 36, 37, and 38 produce value
differences, the dual slice includes them. Also, line 43 is
(directly or transitively) control dependent upon lines 12, 14,
16, and 18, but those lines do not reflect differences across
the two executions, so the dual slice excludes them.

The dual slice shows that lines 36, 37, 38, and 43 are
important for the mail sending functionality. Note, however,
that lines 36, 37, and 38 simply copy the input to a buffer.
Because they only move the input around and do not make
decisions or perform computations with it, these lines form
an irrelevant prefix of the desired behavior. They reflect
preparatory bookkeeping work rather than behavior of the
desired component itself. We can thus omit them entirely
and still locate the functions containing the behavior we wish
to extract. The TRIM function removes such instructions
from the front of the dual slice up until the first decisions or
computations with inputs that differ across the executions.
In practice, this localizes the component to a smaller portion
of code. In our example, the only remaining instruction is
line 43, so the technique identifies that the email sending
feature is located within call_mailer().

Coverage based approaches. Prior work on feature loca-
tion computed the difference in statement coverage between
two executions: one sending an email and the other not
sending the email [41]. This coverage based comparison can
identify more functions than we desire because the reuser
cannot control the program’s behavior at a fine-grained level.



12 while (true) {

13 c = select(stdin, t); stdin
14 if (¢ == t)
16 else if (c == stdin)
17 command = read(stdin); SEND
18 if (command == SEND) {
19 pine_send(Q);
28 pine_send() {
31 editor (&env, &body);
35 editor (ENVELOPE* env, BODY* body) {
36 env->recipient = read(stdin); "recipientl"
37 env->subject = read(stdin); "subjectl"
38 body->text = read(stdin); "body1l"

32 call_mailer(smtp_server, env, body);
41 call_mailer(...) {
42 s = connect(smtp_server);

43 send_to(s, ... );
46 }
33 }
20 log("send_mail");

(a) execution 1

12 while (true) {

stdin 13 c = select(stdin, t);
14 if (¢ == t)
16 else if (c == stdin)
SEND 17 command = read(stdin);
18 if (command == SEND) {
19 pine_send(Q);

28 pine_send() {
31 editor (&env, &body);
35 editor (ENVELOPE* env, BODY* body) {

"recipient2" 36 env->recipient = read(stdin);
"subject2" 37 env->subject = read(stdin);
"body2" 38 body->text = read(stdin);

39 }

32 call_mailer(smtp_server, env, body);
41 call_mailer(...) {
42 s = connect(smtp_server);

43 send_to(s, ... );
46 }
33 }
20 log("send_mail");

(b) execution 2

Figure 4: Dual slice of the simplified pine example from Fig. 3.

That is, a small behavioral difference to the user may cor-
respond to many differences in terms of which functions a
program executes, only a few of which may be interesting.

Consider xv, an image viewer that can convert one image
format to another. Suppose our target functionality is con-
verting a BMP format image to JPEG format. To compute
the coverage difference, we load the same file in both execu-
tions. We convert the file into JPEG format in one execution
but cancel the conversion in the other. Fig. 5a presents the
coverage comparison results. The results show a large call
graph with many functions related to processing the user
interface and handling user input such as mouse clicks in addi-
tion to the important function, writeJPEGQ. Furthermore, the
approach misses the function LoadBMP(), which is responsible
for loading a BMP image. In contrast, dual slicing computes
a concise set of functions for the conversion and identifies
LoadBMP() as well. Fig. 5b shows the dual slice, which high-
lights only the important functions: writeJPEG() and LoadBMP().
We later discuss pruning the extracted component to contain
only these two functions and their callees.

The simple coverage difference includes many non-essential
functions because the reuser cannot control every detail
of program behavior by enabling and disabling the target
feature. Hence, in this paper we use dual slicing[39] to focus
more concisely on the interesting differences.

3.2 Interface Casting

Once we have located the function the reuser wishes to
extract, we must take the potentially complicated interface
of that original function and compose a simpler alternative
interface with only the reuser’s desired parameters. Our
approach to this problem is to first concretizing all of the
values that feed into the selected function to hermetically
seal and isolate the function’s behavior. This makes the
function behave the same way every time it executes. Our
technique then relaxes this seal for only the reuser’s desired
inputs by redirecting accesses of the original inputs so that
they instead access inputs of a freshly constructed interface.

Alg. 3 presents an overview of the interface casting pro-
cess. The algorithm takes three parameters: (1) the code to
extract, a result of the component identification algorithm,
(2) an execution E that exercises the desired feature, and

(3) one additional execution for each parameter we wish to
specify. In the pine case study, if we wished to specify the
recipient, subject, and body of an email, we would need three
additional executions. One would send an email with the
same subject and body as execution E but with a different
recipient. Another would send the email with a different
subject. The last would send the email with a different body.
These additional executions identify those instructions that
access each of the different specified parameters.

Algorithm 3 Interface Casting

Input: extract denotes the code to extract, which is identified
in the previous section; an execution E exercising the target
functionality; a list S of pairs (E;,T;) with E; the same as E
except that E; has a different value for the ith input (with
type T;) intended by the user.

INTERFACECASTING (extract,F,S)

1: ext_dep= instruction instances in E that are part of
ezrtract and have external dependences

/* Seal off all external dependences */

2: CONCRETIZE(extract, ext_dep)

/* Patch to allow reuser specified inputs */

for each (E;, T;) € S do
(e, ;)= instruction instances emitting the feature
related output in £ and F;, resp.
diff= E’s instruction instances in DUALSLICE(e, €;)
if = instruction instances in diff N ext_dep
REDIRECT (eztract, if, Ty)

end for

Line 1 computes the set of instruction instances with ex-
ternal dependences. If an instruction reads a value from
memory that was written outside the modular component,
it is an external dependence. Since the selected component
does not create values for external dependences, they must
be provided for the component to execute correctly. Line 2
concretizes all external memory dependences to seal the be-
havior of the function. This replaces values of accesses with
those observed in E. Extracting the function at this point
would create a new function with no arguments that behaves
as in E every time it is called. The loop in lines 3-8 consid-



1 main(Q) {

2 load_config(Q);

3 menu () ;

4}

5

6 load_config() {

7 smtp_server = X.X.X.X;

8 }

9

10 menu(Q) {

11 t = timer(1l);

12 while (true) {

13 c = select(stdin, t);

14 if (¢ == t) // timer expired

15 do_something () ;

16 else if (c == stdin) {

17 command = read(stdin);

18 if (command == SEND) {

19 pine_send(Q);

20 log("send.mail"™);

21 }

22 else if (command == CANCEL)
23 continue;

24 }

25 }

26}

27

28 pine_send() {

29 ENVELOPE env;
30 BODY body;
31 editor (&env, &body);
32 call_mailer(smtp_server, env, body);
33 }
34
35 editor (ENVELOPE* env, BODY* body) {
36 env->recipient = read();
37 env->subject = read(Q);
38 body->text = read();
39 %
40
41 call_mailer(char* server, ENVELOPE* e, BODY* b) {
42 s = connect(server);
43 send_to(s,
44 compose_mail (e->recipient,
45 e->subject, b->text));
46 %

Figure 3: A program modeling ‘email sending’ in pine.
ers each parameter specified by the reuser and identifies all
instructions with external dependences upon each parameter.
The loop redirects those accesses to instead use new memory
locations that hold the values of the parameters within a
wrapper function that matches the reuser’s demands.

Concretization. To seal the function and remove undesired
inputs from the interface, we concretize the values of those
inputs by monitoring memory accesses. For example, in
Fig. 2, call_mailer() has a variable alt_smtp_servers that holds
alternative SMTP server addresses. We do not want the
function we extract to expose this complex behavior to the
reuser. To provide an interface without this parameter,
we concretize the value of the parameter, so alt_smtp_servers
always holds the same value in the extracted version of the
function. Note that if the reuser intends the SMTP server to
be an input of the extracted component, he/she could simply
provide an additional execution that differs from the original
execution only at the SMTP server address.

Alg. 4 explains the concretization process. Lines 1-5 pro-
cess the instructions with external dependences. By the
definition of an external dependence, we can assume that
the instruction ¢ will have the form MOV r2, [r1] because
it reads external memory. Lines 3-4 replace the original
instruction with (1) a guard to see if the dynamic instance
of the instruction uses external memory and (2) new MOV
instructions to redirect the memory access to a saved value if
so. Lines 6-13 process the instructions that write to external

(D)

Y AN
asllam=s
\ A e

(a) Coverage difference between converting BMP to JPEG and
not converting BMP to JPEG. Shaded nodes are the functions
executed only when converting BMP to JPEG and the lone black
node is writeJPEG, which is important for the conversion.
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(b) The result of dual slicing. The call graph is concise and
highlights only two functions, LoadBMP() and writeJPEG().

Figure 5: Call graph from xv case study

_rows

memory. In other words, such an instruction writes a value
to some location in memory allocated outside the identified
function in the original execution F, implying that the ad-
dress is invalid in the extracted binary. Thus, we first map
the observed memory address of the access into the address
of a new variable that we create within the data section of
the extracted binary on lines 9-10. Line 12, similar to the
read case, replaces the instruction to use this new mapped
address instead of the original one.

Redirection. In order to redirect parameters, we first iden-
tify the parameters using dual slicing. The approach is
similar to the one used for locating the desired function.
For each parameter, we use two inputs that differ only with
respect to that parameter. For example, we may use two in-
puts that have different recipients to identify the instructions
responsible for the recipient parameter.

After our technique identifies these parameter providing
instructions, it redirects the memory accesses in the instruc-
tions to new locations. When an instruction reads a parame-
ter from memory, it instead redirects the memory access to
a new variable or buffer prepared to hold the parameter.

Alg. 5 presents the redirection algorithm. Line 1 adds a new
variable to the data section of the binary. This new variable
will hold the input for the extracted version of the function,
so accesses of the original data must be redirected to this
new variable. We break the inputs down into two different
categories during the process: (1) scalar variables, which are
always accessed through their starting address, and (2) buffer
variables, which have many internal addresses that may be
accessed independently. Lines 2-7 process scalar variables.
On line 3, the algorithm iterates over the instructions if;
discovered by dual slicing with two inputs that identify one



Algorithm 4 Patch the extracted code for external depen-
dences through concretization

Input: extract denotes the code to extract; ext_dep denoting
instruction instances in E that are part of extract and have
external dependence

CONCRETIZE(extract, ext_dep)

/* concretize reads of external dependences */
1: for each unique instruction 7 in ext_dep do
let i be 'MOV 75, [r1]’
3:  let T' = {addr — val} be a map from addresses to
the values of i’s external dependences
4:  replace i with the following:
if ri €T:

MOV I‘Q,T[I‘l]
else: MOV ro,[r;]

5: end for
/* patch instructions writing through addresses
derived from external dependences */

6: for each instruction ¢ in extract that may write to an
address that is directly/indirectly computed from an
external dependence in ¥ do

o

7:  let i be MOV [ro],r1’

8: for each external address a that ¢ has written to
do

9: add an entry z, to the data section

10: maplal = zq

11:  end for

12:  replace ¢ with the following:

if ro € map:
MOV [map[r2]],r:
else: MOV [ro],ry

13: end for

parameter. On line 6, it replaces the instruction. If the
instruction reads from the location that we identified as
the ith parameter, it is redirected to instead read the new
variable prepared for the ith parameter on line 1. External
dependences through registers are handled similarly and
thus elided. Lines 8-14 process a variable holding a buffer
that may be read from at any consecutive memory locations
within the buffer. Many strings provided by the user fall
into this category, including the body data parameter in the
pine case study. Similar to scalar variables, the algorithm
iterates over and replaces the discovered instructions. If
the instruction reads from a memory address corresponding
to the ith parameter, it is redirected to read from the new
location. Because the instruction reads from a buffer, we
must guard the redirection by checking whether the address
lies between the lowest address observed for the ith parameter
and the size of the new parameter.

Next we use the pine example to illustrate concretization
and redirection. Fig. 6 presents a portion of code from pine
that reads the email subject along with the corresponding
binary code and the rewritten binary after concretization and
redirection. On line 3, call_mailer reads header->env, on line 14
smtp_mail reads env->subject, and on line 23 rfc822_output_...(Q)
reads a subject from a buffer where subject is pointing.

To find the instructions that read the email subject in
this example, we slice two executions with different subjects.
The resulting dual slice includes only line 23 because that
instruction reads the subject, and the value changes when the

Algorithm 5 Redirect instructions related to the ¢th input.

Input: extract denotes the code to extract; Tfl the instruc-
tions load the ith input; T; the type of the ith input
REDIRECT (eatract, if;, T;)
1: add a global variable v; of type T; to the data section
if T; is a scalar type then
for each unique instruction z in if, do
let = be 'MOV 7o, [r1]’
let addr be the address accessed by z in if;
replace z with the following:

if ry == addr:
ry = &Xi
MOV I‘2,[I‘1]
ri; = addr
else: MOV ro,[rq]

I~

end for
else if T; is a buffer type then
for each unique buffer access instruction z in if,
do
/* x must be an instruction repetitively
executed to access a buffer */
10: let © be 'MOV 7o, [r1]’
11: let addr be the lowest address accessed by x in
i
12: replace x with the following:

if addr < r; < addr + T;.size:
t =1r
ri = &x; + (r1 - addr)
MOV ro,[rq]
ri =t
else: MOV ro,[r]

13:  end for
14: end if

user input changes. Although lines 3 and 14 are not in the
dual slice, the values they use come from outside call_mailer(),
causing external dependences. Hence, our technique auto-
matically concretizes accesses in lines 3 and 14 and redirects
the one in line 23, as shown in lines 5 (for header), 7 (for
header->env), 16 (env->subject), and 25 (subject).

The key idea of concretization and redirection is that
the concretized values are used only as keys for redirection
and never actually dereferenced. Concretized pointer values
ensure the same original buffer address is accessed and the
accesses can simply be redirected. For example, we concretize
the instruction on line 4 that reads the header parameter. On
line 6, pine reads header->env through header. Since the ebx
register is already concretized on line 4, ecx is also concretized
on line 6. Note, however, that one instruction may execute
many times, and some instances of the instruction should be
concretized while other instances should not, we ensure that
the instruction performs the original behavior as necessary
through the else branch of the instrumentation.

4. PRACTICAL CHALLENGES

Nondeterminism. In the previous section, we claimed that
the dual slice presents only differences originating from input
differences. However, when a program is nondeterministic,
there can also be differences caused by that nondeterminism.
For example, Fig. 7 shows that two executions of pine that
send an email can have differences as a result of nondetermin-
ism within an event handling loop controlled by a timer. In



1 call_mailer (METAENV* header, ...) {
2 .

3 smtp_mail (..., header->env, ...);
4 /* 633b98: MOV ebx, [ebp + 0x8]

5 — MOV ebx, 0x7ffee®®

6 633ba0®: MOV ecx, [ebx]

7 — if ebx == 0x7ffeel0:

8 MOV ecx, Ox7ffef40

9 else: MOV ecx, [ebx] */

10 -

11 3}

12 smtp_mail (..., ENVELOPE* env, ...) {
13 .

14 rfc822_output_header_line(..., env->subject);

15 /* 642182: MOV eax, [ecx + 8]
16 — if ecx + 8 == 0x7ffab40:

17 MOV eax, 0x7fff080

18 else: MOV eax, [ecx + 8] */

19 ca

20 }

21 rfc822_output_header_line(..., char * subject) {
22 -

23 while(n-- > 0 && (**d = *subject++) != ’\0’)

24 /* 664£fc9: MOV eax, [edx]
25 — if 0x7£f£ff080 < edx < Ox7fff080 + 10:

26 MOV eax, nSubject[edx-0x7fff080]
27 else: MOV eax, [edx] */

28 .

29 }

Figure 6: Source code of pine reading subject from data
structure

the first execution, we select the send command of the menu
before the timer expires in iteration A, but in the second
execution, we select the send command after the first timeout
in iteration B and before a second timeout in iteration C.
Thus, lines 16-20 in the first execution do not align with
any lines in the second execution. The resulting dual slice
includes lines 16-18 because line 19 control depends upon
lines 16 and 18, and line 18 data depends upon line 17. This
is not a desired result because lines 16-18 also execute in
iteration C of the second execution, and these lines show no
value differences.

To address this issue, our technique identifies possible non-
determinism through a calibration phase. We execute the
program twice with the same input. Differences between the
two executions show that the program has nondeterministic
behavior, and specific differences indicate where nondeter-
minism occurs. When an instruction has a value difference
across the executions, i.e. their occurrences in the two exe-
cutions align but have different values, the value difference
originates from nondeterminism and the instruction can be
ignored during the component location process.

In contrast, control flow differences, i.e. unaligned instruc-
tion instances, usually arise from nondeterminism in event
handling loops. In our pine example, the send menu item
may be selected in either the first or second iteration of a
loop depending on the timer. Thus, our technique first finds
the loop containing the nondeterministic behavior through
calibration. In our example, the while loop starting on line
12 is identified as the nondeterministic event handling loop.

During component identification, when aligning execu-
tions with different inputs, our technique does not simply
align each iteration of a nondeterministic loop in order, but
rather based on edit-distance[28]. The technique finds which
alignment of iterations in both executions yields the fewest
misaligned instructions. If multiple iterations align equally
well, the earliest is selected. In Fig. 7, our technique aligns
iterations A of the first execution and C of the second.

Locating Multiple Components. In some cases, the com-

12 while (true) { @ 12 while (true) { ®
13 ¢ = select (stdin, t); 13 ¢ = select (stdin, t);
14 if (c == t) 14 if (c == t)
15 do_something ();
16 else if (c == stdin)
17 command = read (stdin);
18 if (command == SEND) {
19 pine_send (); @
20 log ("send_mail”); 12 while (true) {
13 c = select (stdin, t);
14 if (c == t)
16 else if (¢ == stdin)
17 command = read (stdin);
18 if (command == SEND) {
19 pine_send ();
20 log (”send_mail” );

Figure 7: Two executions with nondeterminism. Iteration A
should align with iteration C.

ponent containing the dual slice includes most of the binary.
For these cases, our technique supports identifying multiple
modular functions to extract instead of just one function,
in order to reduce the size of the component. Recall, for
example, the xv case in Fig. 5b. Locating a single compo-
nent will extract everything called by the function mainLoop(),
which is undesirable. Instead, our technique can extract only
writeJPEG() and LoadBMP(), which precisely capture exactly the
behavior of interest.

When extracting multiple functions, the data flow between
the functions must be property connected. For example,
writeJPEG() must use image data generated by LoadBMP(). The
concretization and redirection process handles this. To sim-
plify our discussion, assume two functions A and B are
extracted with A writing to a chunk of memory m, which is
later read by B. The memory is allocated outside both A
and B. During concretization, instructions writing values to
m (in A) are replaced with writes to a new and valid memory
location. Instructions reading m (in B) are redirected to the
new memory. If data flow between A and B goes through
another function C, e.g. C modifies the values between A
and B, C will be included in the dual slice as well, and thus
the aforementioned process still applies.

Concretizing Other Resources. During concretization,
accesses to external memory get replaced with valid accesses
to freshly created variables. However, not all external de-
pendences may be on memory. For example, the extracted
component may depend upon a file handle that is not af-
fected by the reuser’s chosen parameters. In such cases, we
must identify the external dependences on other necessary
resources and safely acquire them as well. Pragmatically,
our present implementation handles dependences on external
files and sockets, but it can be extended to other resources
once they have been identified.

S. EXPERIMENTS AND RESULTS

We have implemented a prototype of our system using
Pin[30] for tracing, while the dual slicing is written in C. We
use Bistro[11] for extracting the desired components as well as
for binary rewriting to perform concretization and redirection.
Note that Bistro is a robust binary transformation tool. It
can safely extract portions from or patch arbitrary binaries
by correcting internal references in the binary like indirect
jump and call targets. Using our prototype, we were able to
extract 10 components of interest from 7 real world programs
into object files. We were further able to link with and
invoke those components from new programs that reused the



extracted behavior.

5.1 Observations

Table 1 presents the 10 components we examined in our
study. Although we used binaries with debugging information
to clarify the dual slicing results during experimentation,
our technique does not rely on any debugging symbols or
information and can be applied to stripped binaries.

We first examine results for locating desired features using
the coverage based approach and our dual slicing based
approach. ‘Cov’ is the number of instructions covered by
the execution exhibiting the feature and not covered by
the execution not exhibiting the feature [41]. These locate
the feature in the coverage based approach. Extracting
the functions located by this approach yields the extracted
component size ‘Cov F. Size’. In contrast, our approach
uses the dual slice to locate the desired component. ‘DS’
presents the number of instructions in the dual slice. Note
that it is usually orders of magnitude smaller than ‘Cov’.
Extracting the functions identified by the dual slice yields
the extracted component size ‘F. Size’. This is also smaller
than the size of components extracted using coverage based
techniques. We note that in some cases, like Murofet, dual
slicing can locate the desired component even when there are
no coverage differences. Thus, dual slicing can have greater
generality than a coverage based approach. Also note that
existing coverage based approaches do not inherently support
working on binaries or performing function extraction [41].

The ‘Funcs’ column is the number of the modular functions
ultimately discovered with our algorithm. In one half of cases,
we identified one function, but in the other half, we identified
two modular functions to extract. These numbers do not
include the callees of the identified functions, which are
also extracted. This indicates that many features require
multiple functional components. Extracting such features
requires understanding relationships such as the data flow
between components. Our technique automates this through
concretization as presented in the previous section.

The ‘C.Size’ and ‘C.Instrs’ columns list the sizes of con-
cretized memory and the number of concretized instructions
respectively. Observe that the size of the concretized mem-
ory is relatively high compared to the number of concretized
instructions. The pine case study in the first row shows that
a concretized instruction reads roughly 32 bytes on average.
This indicates that some of the concretized instructions are in
loops, so they execute multiple times to read additional data.
Moreover, the size of the concretized memory indicates that
the extracted functions require substantial data and that
extracting functions without considering these data is un-
likely to work. This concretized information mostly reflects
pointers through data structures and global configuration
data, such as the SMTP server in pine example. The smaller
number of concretized instructions further indicates that the
size overhead caused by concretization is low.

The ‘R.Instrs’ column lists the number of redirected in-
structions. It shows that a very small number of instructions
are responsible for reading the parameters of the extracted
function and must be redirected for the desired interface.

For the centerim and smbc cases, extracting the feature
required two components. For centerim, the login component
does not have practical use. However, the send-message
component relies upon the login component. To locate the
two centerim components, we leveraged experience using

the program. When sending a message with centerim, the
program requires a password. From this, we infer that we
must log into the message server to send a message. Thus,
we use two inputs with different login credentials to locate
the login component, and we use another two inputs with
different messages to locate the send-message component.
However, this knowledge is not always available. For smbc,
we use two inputs different both in login information and
directory name. From the resulting callgraph, we can locate
both login and create-directory components.

5.2 Case Study: Murofet Worm

Many worms such as Torpig[37], Conficker[34], and Muro-
fet use a technique called domain fluz, which generates a list
of domain names at runtime to hinder analysis of communi-
cation between a worm and the attacker. With domain flux,
the defender cannot simply block IP addresses to stop the
malicious behavior of the worm. Extracting the proprietary
domain flux algorithm helps defend against the worm by
predicting malicious domain names in advance. To further
clarify the use and practicality of our technique, we have
posted a demo of this Murofet case study online [4].

When Murofet executes, it generates a domain name and
connects to the domain to check whether another malicious
payload exists on the server. If the connection fails, the
worm repeats the process until it finds a valid server.

To apply our technique, we need two executions generating
domain names with different input. Since the worm does not
provide a user interface for the domain flux algorithm, we
cannot just change the input values. Moreover, we do not
know the inputs for the domain flux algorithm. From multi-
ple executions, we observe that the worm produces different
domain names each time it executes, so the worm uses differ-
ent inputs whenever it executes. With two executions that
produce different domain names, our technique found the
function responsible for generating domain names. We used
the generated domain name in the DNS lookup packet as the
slice criterion. From the dual slice, our technique found the
modular function corresponding to the domain flux process
and also found that the input for the process came from the
system time by analyzing the data dependences in the slice.

This case study shows that even when a program has no
user interface for providing parameters, our technique can
still identify and extract the target feature. It can create
an interface for parameters as long as the inputs can change
across multiple executions. Once it identifies the modular
component, we can also narrow our focus to that component
to ease further manual analysis of the feature.

5.3 Case Study: Word97

Legacy Microsoft Word saves files in a proprietary DOC
format. The format is not well documented, and reading
such files is difficult to implement. Third party applications
support DOC files, but they face limitations. To ensure
that data in such files can be read, we consider the case of
transforming a Word97 DOC file into a plain text file. With
Microsoft Word, this can be achieved by opening a DOC file
and directly saving it as a text file. To identify the function
responsible, we use two different DOC files and save these
files as different text files. Windows GUI applications have
event handling loops that cause nondeterminism because we
cannot control order of events. However, our calibration
phase effectively identifies the events even when they occur



Program| Size | Feature || Cov |Cov F. Size” DS |F Size|Funcs|C. Size|C. Instrs.|R. Instrs.
alpine  |5.4MB Send mail 17210 556 KB|| 360|350KB 1| 10KB 314 4

Create a directory 5168 508KB|| 204|100KB 2| 4KB 195 2
centerim |2.1MB Login 21814 414KB|| 96| 80KB 2| 90KB 142 2

Send message 11745 529KB 20| 15KB 2| 4KB 60 2
murofet |3.9MB|Domain flux - - 18| 12KB 1| 20KB 19 1
mysql 3.1MB |Get a list of databases 1000 116KB|| 270 39KB 2| 5KB 187 1
ncmpe  |1.2MB|Add a song to playlist 1245 160KB 65| 1KB 1| 500B 10 1
smbe 7 5MB Connect to samba server|| 6090 407KB||1609|210KB 1| 4KB 174 2

Create a directory 6090 407KB||1609|110KB 1| 300KB 354 1
word97 |5.3MB|Convert DOC to text 19752 754KB|| 725| 52KB 2| 68KB 823 2
XV 2.7MB |Convert BMP to JPEG || 6083 346KB|[3196| 50KB 2| B5KB 337 5

Table 1: Extraction results

in different iterations of event handling loops.

The dynamic call tree containing the dual slice forks into
two main branches. The first reads and stores the file content
into memory. The second then stores this data in a text file.
We thus extracted the common ancestor function within each
branch into a new component that is able to read a DOC
file and write it into a specified text file. Not only that, but
the extracted component is self-contained and works even
across different versions of the Windows platform.

This component also exemplifies the necessity of concretiz-
ing additional resources as noted in Sec. 4. Word97 creates
many handles that are initialized by the kernel and that are
used by the underlying components that read and write the
DOC files. These external dependences on kernel objects
must be valid in order for the extracted component to run,
so we extended our resource concretization system to handle
these kernel level resources as well in order to create the
kernel objects before we execute the extracted component.

5.4 Limitations

Our technique shows that it is feasible in practice to locate
and extract complex binary features into reusable software
components. However, dynamic analysis imposes some limi-
tations. In particular, we only extract a portion of the full
semantics of a function. For example, the accesses observed
in the provided executions are used by the technique to de-
termine what portions of memory to concretize and make
available to the extracted component. The provided execu-
tions may not access the full range of addresses in a global
table. In this case, we can only guarantee that we extract
the portion of the table observed in the provided executions,
and accesses outside this range lead to undefined behavior.

6. RELATED WORK

Most related work within the software engineering com-
munity comes from feature location [40, 41, 8, 10, 15, 33,
9, 38, 35, 13, 6, 14, 16], which identifies where a feature is
implemented within source code, and function extraction or
extract method refactoring [26, 23, 17, 18, 31, 25, 10], which
extracts some selected functionality out of existing source
code into a self contained function. Approaches for feature
location range from coverage based techniques [40, 41, 6, 14]
to machine learning techniques [35]. While we showed that
dual slicing can perform better than the former, the latter
often require either source code or many more executions to
be provided by the reuser, which is undesirable. Source code
function extraction simply is not applicable to binaries.

Recent work has focused on identifying and extracting
binary features of existing programs. Manual extraction [1, 2,

12] has been used to aid in understanding malware. Dynamic
binary slicing [5, 47] and chopping [21] have been used for
binary analysis. Execution slicing can help identify basic
blocks composing a feature [42]. Chopping can help identify
relationships between given inputs and outputs [27]. These
work in small applications, but in complicated programs
both dynamic slicing and chopping can produce a large set
of instructions. Zhao et al. [48] combined static analysis
and dynamic backward slicing to identify encryption and
decryption logic in malware.

BCR [7] identifies interfaces and extracts functions. It
identifies parameters through dynamic analysis. Compared
to our technique: (1) BCR identifies all parameters, while
we remove unwanted parameters to yield a concise interface.
(2) BCR targets small and well defined functions, but our
technique handles more complex features. As seen in Sec. 5,
such features have many external dependences, and manually
specifying values for each is unrealistic. BCR also does not
address locating the function containing a feature.

Inspector Gadget [22] identifies and extracts a gadget with
a desired feature. This work identifies gadgets using dynamic
slicing, but recall that this often produces a large set of
instructions. This work also focuses on the replay of the
gadget and does not issues like providing an interface.

Lin et al. [29] extract and reuse functionality of a benign
program within a malicious one. They identify functions by
finding the common ancestor of all functions that produce
the desired output. As shown in the xv case study, this
approach may produce an undesirably large component.

7. CONCLUSIONS

We presented a novel technique for locating and extracting
a binary fragment that implements a desired feature within
a program. Our technique enables both an intuitive repre-
sentation of the desired feature through executions and an
automated location and extraction process for the feature.
We also presented a technique called interface casting, which
bypasses the problem of reverse engineering the complicated
interface of a function and instead provides a new usable in-
terface. Evaluation on a set of real world applications shows
that our technique can extract various reusable components.
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