
Automatic Reverse Engineering of Data Structures from Binary Execution

Zhiqiang Lin Xiangyu Zhang Dongyan Xu

Department of Computer Science and CERIAS

Purdue University, West Lafayette, IN

{zlin,xyzhang,dxu}@cs.purdue.edu

Abstract

With only the binary executable of a program, it is

useful to discover the program’s data structures and infer

their syntactic and semantic definitions. Such knowledge is

highly valuable in a variety of security and forensic applica-

tions. Although there exist efforts in program data structure

inference, the existing solutions are not suitable for our

targeted application scenarios. In this paper, we propose

a reverse engineering technique to automatically reveal

program data structures from binaries. Our technique,

called REWARDS, is based on dynamic analysis. More

specifically, each memory location accessed by the program

is tagged with a timestamped type attribute. Following the

program’s runtime data flow, this attribute is propagated

to other memory locations and registers that share the

same type. During the propagation, a variable’s type gets

resolved if it is involved in a type-revealing execution point

or “type sink”. More importantly, besides the forward

type propagation, REWARDS involves a backward type

resolution procedure where the types of some previously

accessed variables get recursively resolved starting from a

type sink. This procedure is constrained by the timestamps

of relevant memory locations to disambiguate variables re-

using the same memory location. In addition, REWARDS is

able to reconstruct in-memory data structure layout based

on the type information derived. We demonstrate that

REWARDS provides unique benefits to two applications:

memory image forensics and binary fuzzing for vulnerabil-

ity discovery.

1 Introduction

A desirable capability in many security and forensics

applications is automatic reverse engineering of data struc-

tures given only the binary. Such capability is expected to

identify a program’s data structures and reveal their syntax

(e.g., size, structure, offset, and layout) and semantics

(e.g., “this integer variable represents a process ID”). Such

knowledge about program data structures is highly valuable.

For example, in memory-based forensics, this knowledge

will help locate specific information of interest (e.g., IP

addresses) in a memory core dump without symbolic infor-

mation; In binary vulnerability discovery, this knowledge

will help construct a meaningful view of in-memory data

structure layout and identify those semantically associated

with external input for guided fuzz testing.

Despite the usefulness of automatic data structure re-

verse engineering, solutions that suit our targeted applica-

tion scenarios fall short. First, a large body of work on

type inference [29, 3, 13, 33, 32, 24] requires program

source code. Second, in the binary-only scenario, variables

are mapped to low-level entities such as registers and

memory locations with no syntactic information, which

makes static analysis difficult. In particular, alias analysis

is hard at binary level while it is essential to type inference

– especially semantics inference – because precise data

flow cannot be decided without accurate alias information.

Variable discovery [5] is a static, binary level technique

that recovers syntactic characteristics of variables, such as

a variable’s offset in its activation record, size, and hier-

archical structure. This technique relies on alias analysis

and abstract interpretation at binary level and is hence

heavy-weight. Moreover, due to the conservative nature of

binary alias analysis, the technique does not infer variable

semantics. More recently, Laika [16] aims at dynamically

discovering the syntax of observable data structures through

unsupervised machine learning on program execution. The

accuracy of this technique, however, may fall below the

expectation of our applications. It does not consider data

structure semantics either. The limitations of these efforts

motivate us to develop new techniques for our targeted

application scenarios.

In this paper, we propose a reverse engineering scheme

to automatically reveal program data structures from bi-

naries. Our technique, called REWARDS1, is based on

dynamic analysis. Given a binary executable, REWARDS

executes the binary, monitors the execution, aggregates and

analyzes runtime information, and finally recovers both

the syntax and semantics of data structures observed in

the execution. More specifically, each memory location

1REWARDS is the acronym for Reverse Engineering Work for Auto-

matic Revelation of Data Structures.

accessed by the program is tagged with a timestamped

type attribute. Following the program’s runtime data flow,

this attribute is propagated to other memory addresses and

registers that share the same type in a forward fashion,

i.e., the execution direction. During the propagation, a

variable’s type gets resolved if it is involved in a type-

revealing execution point or “type sink” (e.g., a system

call, a standard library call, or a type-revealing instruction).

Besides leveraging the forward type propagation technique,

to expand the coverage of program data structures, RE-

WARDS involves the following key techniques:

• An on-line backward type resolution procedure where

the types of some previously accessed variables get

recursively resolved starting from a type sink. Since

many variables are dynamically created and de-

allocated at runtime, and the same memory location

may be re-used by different variables, it is complicated

to track and resolve variable types based on memory

locations alone. Hence, we constraint the resolution

process by the timestamps of relevant memory loca-

tions such that variables sharing the same memory

location in different execution phases can be disam-

biguated.

• An off-line resolution procedure that complements the

on-line procedure. Some variables cannot be resolved

during their lifetime by our on-line algorithm. How-

ever, they may later get resolved when other variables

having the same type are resolved. Hence, we propose

an off-line backward resolution procedure to resolve

the types of some “dead” variables.

• A method for typed variable abstraction that maps

multiple typed variable instances to the same static

abstraction. For example, all N nodes in a linked

list actually share the same type, instead of having N

distinct types.

• A method that reconstructs the structural and semantic

view of in-memory data, driven by the derived type

definitions. Once a program’s data structures are

identified, it is still not clear exactly how the data

structures would be laid out in memory – this is a

useful piece of knowledge in many application sce-

narios such as memory forensics. Our method creates

an “organization chart” that illustrates the hierarchical

layout of those data structures.

We have developed a prototype of REWARDS and used

it to analyze a number of binaries. Our evaluation results

show that REWARDS is able to correctly reveal the types

of a high percentage of variables observed during a pro-

gram’s execution. Furthermore, we demonstrate the unique

benefits of REWARDS to a variety of application scenarios:

In memory image forensics, REWARDS helps recovering

semantic information from the memory dump of a binary

program. In binary fuzzing for vulnerability discovery,

REWARDS helps identifying vulnerability “suspects” in a

binary for guided fuzzing and confirmation.

2 REWARDS Overview

REWARDS infers both syntax and semantics of data

structures from binary execution. More precisely, we aim

at reverse engineering the following information:

• Data types. We first aim to infer the primitive data

types of variables, such as char, short, float,

and int. In a binary, the variables are located in

various segments of the virtual address space, such as

.stack, .heap, .data, .bss, .got, .rodata,

.ctors, and .dtors sections. (Although we focus

on ELF binary on Linux platform, REWARDS can

be easily ported to handle PE binary on Windows.)

Hence, our goal is essentially to annotate memory

locations in these data sections with types and sizes,

following program execution. For our targeted appli-

cations, REWARDS also infers composite types such

as socket address structures and FILE structures.

• Semantics. Moreover, we aim to infer the semantics

(meaning) of program variables, which is critical to

applications such as computer forensics. For example,

in a memory dump, we want to decide if a 4-byte

integer denotes an IP address.

• Abstract representation. Although we type memory

locations, it is undesirable to simply present typed

memory locations to the user. During program ex-

ecution, a memory location may be used by multi-

ple variables at different times; and a variable may

have multiple instances. Hence we derive an abstract

representation for a variable by aggregating the type

information at multiple memory locations instantiated

based on the same variable. For example, we use the

offset of a local variable in its activation record as its

abstract representation. Type information collected in

all activation records of the same function is aggre-

gated to derive the type of the variable.

Given only the binary, what can be observed at runtime

from each instruction includes (1) the addresses accessed

and the width of the accesses, (2) the semantics of the in-

struction, and (3) the execution context such as the program

counter and the call stack. In some cases, data types can be

partially inferred from instructions. For example, a floating

point instruction (e.g., FADD) implies that the accessed lo-

cations must have floating point numbers. We also observe

that the parameters and return values of standard library

calls and system calls often have their syntax and semantics

 1 struct {

 2 unsigned int pid;

 3 char data[16];

 4 }test;

 5

 6 void foo(){

 7 char *p="hello world";

 8 test.pid=my_getpid();

 9 strcpy(test.data,p);

10 }

rodata_0x08048118{

+00: char[12]

}

bss_0x08049124{

+00: pid_t,

+04: char[12],

+16: unused[4]

}

fun_0x080480b4{

-28: unused[20],

-08: char *,

-04: stack_frame_t,

+00: ret_addr_t

}

 1 80480a0: e8 0f 00 00 00 call 0x80480b4

 2 80480a5: b8 01 00 00 00 mov $0x1,%eax

 3 80480aa: bb 00 00 00 00 mov $0x0,%ebx

 4 80480af: cd 80 int $0x80

 5 ...

 6 80480b4: 55 push %ebp

 7 80480b5: 89 e5 mov %esp,%ebp

 8 80480b7: 83 ec 18 sub $0x18,%esp

 9 80480ba: c7 45 fc 18 81 04 08 movl $0x8048118,0xfffffffc(%ebp)

10 80480c1: e8 4a 00 00 00 call 0x8048110

11 80480c6: a3 24 91 04 08 mov %eax,0x8049124

12 80480cb: 8b 45 fc mov 0xfffffffc(%ebp),%eax

13 80480ce: 89 44 24 04 mov %eax,0x4(%esp)

14 80480d2: c7 04 24 28 91 04 08 movl $0x8049128,(%esp)

15 80480d9: e8 02 00 00 00 call 0x80480e0

16 80480de: c9 leave

17 80480df: c3 ret

18 80480e0: 55 push %ebp

19 80480e1: 89 e5 mov %esp,%ebp

20 80480e3: 53 push %ebx

21 80480e4: 8b 5d 08 mov 0x8(%ebp),%ebx

22 80480e7: 8b 55 0c mov 0xc(%ebp),%edx

23 80480ea: 89 d8 mov %ebx,%eax

24 80480ec: 29 d0 sub %edx,%eax

25 80480ee: 8d 48 ff lea 0xffffffff(%eax),%ecx

26 80480f1: 0f b6 02 movzbl (%edx),%eax

27 80480f4: 83 c2 01 add $0x1,%edx

28 80480f7: 84 c0 test %al,%al

29 80480f9: 88 04 0a mov %al,(%edx,%ecx,1)

30 80480fc: 75 f3 jne 0x80480f1

31 80480fe: 89 d8 mov %ebx,%eax

32 8048100: 5b pop %ebx

33 8048101: 5d pop %ebp

34 8048102: c3 ret

35 ...

36 8048110: b8 14 00 00 00 mov $0x14,%eax

37 8048115: cd 80 int $0x80

38 8048117: c3 ret

[Nr] Name Type Addr Off Size

...

[1] .text PROGBITS 080480a0 0000a0 000078

[2] .rodata PROGBITS 08048118 000118 00000c

[3] .bss NOBITS 08049124 000124 000014

...

(a) Source code of function foo and the _start assembly code

(d) Output of REWARDS

(c) Section map of the example binary

(b) Disassembly code of the example binary

fun_0x08048110{

+00: ret_addr_t

}

fun_0x080480e0{

-08: unused[4],

-04: stack_frame_t,

+00: ret_addr_t,

+04: char*,

+08: char*

}

 1 extern foo

 2 section .text

 3 global _start

 4

 5 _start:

 6 call foo

 7 mov eax,1

 8 mov ebx,0

 9 int 80h

Figure 1. An example showing how REWARDS works

well defined and publicly known. Hence we define the type

revealing instructions, system calls, and library calls as type

sinks. Furthermore, the execution of an instruction creates a

dependency between the variables involved. For instance, if

a variable with a resolved type (from a type sink) is copied

to another variable, the destination variable should have a

compatible type. As such, we model our problem as a type

information flow problem.

To illustrate how REWARDS works, we use a simple

program compiled from the source code shown in Figure

1(a). According to the code snippet, the program has a

global variable test (line 1-4) which consists of an int

and a char array. It contains a function foo (line 6-

10) that calls my getpid and strcpy to initialize the

global variable. The full disassembled code of the example

is shown in Figure 1(b) (a dotted line indicates a “NOP”

instruction). The address mapping of code and data is

shown in Figure 1(c).

When foo is called during execution, it first saves ebp

and then allocates 0x18 bytes of memory for the local

variables (line 8 in Figure 1(b)), and then initializes one

local variable (at address 0xfffffffc(%ebp)=ebp-4)

with an immediate value 0x8048118 (line 9). Since

0x8048118 is in the address range of the .rodata

section (it is actually the starting address of string “hello

world”), ebp-4 can be typed as a pointer, based on the

heuristics that instruction executions using similar immedi-

ate values within a code or data section are considered type

sinks. Note that the type of the pointer is unknown yet.

At line 10, foo calls 0x8048110. Inside the body of the

function invocation (lines 36-38), our algorithm detects a

getpid system call (a type sink) with eax being 0x14 at

line 36. The return value of the function call is resolved as

pid t type, i.e., register eax at line 11 is typed pid t.

When eax is copied to address 0x8049124 (a global

variable in .bss section as shown in Figure 1(c)), the

algorithm further resolves 0x8049124 as pid t. Before

the function call 0x80480e0 at line 15 (strcpy), the

parameters are initialized in lines 12-14. As ebp-4 has

been typed as a pointer at line 9, the data flow in lines 12

and 13 dictates that location esp+4 at line 13 is a pointer

as well. At line 14, as 0x8049128 is in the global variable

section and of a known type, location esp has an unknown

pointer type. At line 15, upon the call to strcpy (a

type sink), both esp and esp+4 are resolved to char*.

Through a backward transitive resolution, 0x8049128 is

resolved as char, ebp-4 as char*, and 0x8048118 as

char. Also at line 26, inside the function body of strcpy,

the instruction “movzbl (%edx),%eax” can be used as

another type sink as it moves between char variables.

When the program finishes, we resolve all data types

(including function arguments, and those implicit vari-

ables such as return address and stack frame pointer)

as shown in Figure 1(d). The derived types for vari-

ables in .rodata, .bss and functions are presented

in the figure. Each function is denoted by its entry

address. fun 0x080480b4, fun 0x08048110, and

fun 0x080480e0 denote foo(), my getpid(), and

strcpy(), respectively. The number before each de-

rived type denotes the offset. Variables are listed in in-

creasing order of their addresses. Type stack frame t

indicates a frame pointer stored at that location. Type

ret addr t means that the location holds a return ad-

dress. Such semantic information is useful in applica-

tions such as vulnerability fuzz. Locations that are not

accessed during execution are annotated with the unused

type. In fun 0x080480e0, the two char* below

the ret addr t represent the two actual arguments of

strcpy(). Although it seems that our example can be

statically resolved due to its simplicity, it is very difficult in

practice to analyze data flows between instructions (espe-

cially those involving heap locations) due to the difficulty

of binary points-to analysis.

3 REWARDS Design

In this section, we describe the design of REWARDS.

We first identify the type sinks used in REWARDS and

then present the on-line type propagation and resolution

algorithm, which will be enhanced by an off-line procedure

that recovers more variable types not reported by the on-line

algorithm. Finally, we present a method to construct a typed

hierarchical view of memory layout.

3.1 Type Sinks

A type sink is an execution point of a program where

the types (including semantics) of one or more variables

can be directly resolved. In REWARDS, we identify three

categories of type sinks: (1) system calls, (2) standard

library calls, and (3) type-revealing instructions.

System calls. Most programs request OS services via

system calls. Since system call conventions and semantics

are well-defined, the types of arguments of a system call

are known from the system call’s specification. By moni-

toring system call invocations and returns, REWARDS can

determine the types of parameters and return value of each

system call at runtime. For example, in Linux, based on

the system call number in register eax, REWARDS will be

able to type the parameter-passing registers (i.e., ebx, ecx,

edx, esi, edi, and ebp, if they are used for passing the

parameters). From this type sink, REWARDS will further

type those variables that are determined to have the same

type as the parameter passing registers. Similarly, when a

system call returns, REWARDS will type register eax and,

from there, those having the same type as eax. In our type

propagation and resolution algorithm (Section 3.2), a type

sink will lead to the recursive type resolution of relevant

variables accessed before and after the type sink.

Standard library calls. With well-defined API, standard

library calls are another category of type sink. For example,

the two arguments of strcpy must both be of the char*
type. By intercepting library function calls and returns,

REWARDS will type the registers and memory variables

involved. Standard library calls tend to provide richer type

information than system calls – for example, Linux-2.6.15

has 289 system calls whereas libc.so.6 contains 2016

functions (note some library calls wrap system calls).

Type-revealing instructions. A number of machine in-

structions that require operands of specific types can serve

as type sinks. Examples in x86 are as follows: (1)

String instructions perform byte-string operations such as

moving/storing (MOVS/B/D/W, STOS/B/D/W), loading

(LOADS/B/D/W), comparison (CMPS/B/D/W), and scan-

ning (SCAS/B/D/W). Note that MOVZBL is also used in

string movement. (2) Floating-point instructions oper-

ate on floating-point, integer, and binary coded decimal

operands (e.g. FADD, FABS, and FST). (3) Pointer-related

instructions reveal pointers. For a MOV instruction with

an indirect memory access operand (e.g., MOV (%edx),

%ebx or MOV [mem], %eax), the value held in the

source operand must be a pointer. Meanwhile, if the

target address is within the range of data sections such as

.stack, .heap, .data, .bss or .rodata, the pointer

must be a data pointer; If it is in the range of .text

(including library code), the pointer must be a function

pointer. Note that the concrete type of such a pointer will

be resolved through other constraints.

3.2 Online Type Propagation and Resolution Al
gorithm

Given a binary program, our algorithm reveals variable

types, including both syntactic types (e.g., int and char)

and semantics (e.g., return address), by propagating

and resolving type information along the data flow during

program execution. Each type sink encountered leads

to both direct and transitive type resolution of variables.

More specifically, at the binary level, variables exist in

either memory locations or registers without their symbolic

names. Hence, the goal of our algorithm is to type these

memory addresses and registers. We attach three shadow

variables – as the type attribute – to each memory address

at byte granularity (registers are treated similarly): (1)

Constraint set is a set of other memory addresses that

should have the same type as this address; (2) Type set

stores the set of resolved types of the address2, including

both syntactic and semantic types; (3) Timestamp records

the birth time of the variable currently in this address. For

example, the timestamp of a stack variable is the time

when its residence method is invoked and the stack frame

is allocated. Timestamps are needed because the same

memory address may be reused by multiple variables (e.g.,

the same stack memory being reused by stack frames of

different method invocations). More precisely, a variable

instance should be uniquely identified by a tuple <address,

timestamp>. These shadow variables are updated during

program execution, depending on the semantics of executed

instructions.

Algorithm 1 On-line Type Propagation and Resolution

1: /* Sv : constraint set for memory cell (or register) v; Tv : type set of v; tsv :

(birth) time stamp of v; MOV(v,w): moving v to w; BIN OP(v,w,d): a binary

operation that computes d from v and w; Get Sink Type(v,i): retrieving the

type of argument/operand v from the specification of sink i; ALLOC(v,n):

allocating a memory region starting from v with size n – the memory region

may be a stack frame or a heap struct; FREE(v,n): freeing a memory region –

this may be caused by eliminating a stack frame or de-allocating a heap struct*/

2: Instrument(i){
3: case i is a Type Sink:

4: for each operand v

5: T ← Get Sink Type(v, i)

6: Backward Resolve (v, T)

7: case i has indirect memory access operand o

8: To← To ∪ {pointer type t}
9: case i is MOV(v, w):

10: if w is a register

11: Sw← Sv

12: Tw← Tv

13: else

14: Unify(v, w)

15: case i is BIN OP(v, w, d):

16: if pointer type t ∈ Tv

17: Unify(d, v)

18: Backward Resolve (w, {int, pointer index t})
19: else

20: Unify3(d, v, w)

21: case i is ALLOC(v, n):

22: for t=0 to n− 1

23: tsv+t← current timestamp

24: Sv+t← φ

25: Tv+t← φ

26: case i is FREE(v, n):

27: for t=0 to n− 1

28: a← v+t

29: if (Ta) log (a, tsa, Ta)

30: log (a, tsa, Sa)

31: }
32: Backward Resolve(v,T){
33: for < w, t > ∈ Sv

34: if (T 6⊂ Tw and t ≡ tsw) Backward Resolve(w,T -Tw)

35: Tv ← Tv∪ T

36: }
37: Unify(v,w){
38: Backward Resolve(v, Tw-Tv)

39: Backward Resolve(w, Tv-Tw)

40: Sv ← Sv∪ {< w, tsw >}
41: Sw← Sw∪ {< v, tsv >}
42: }

The algorithm is shown in Algorithm 1. The algorithm

takes appropriate actions to resolve types on the fly accord-

ing to the instruction being executed. For a memory address

or a register v, its constraint set is denoted as Sv , which is

2We need a set to store the resolved types because one variable may

have multiple compatible types.

a set of <address, timestamp> tuples each representing a

variable instance that should have the same type as v; its

type set Tv represents the resolved types for v; and the birth

time of the current variable instance is denoted as tsv.

1. If the current execution point i is a type sink (line

3). The arguments/operands/return value of the sink

will be directly typed according to the sink’s definition

(Get Sink Type() on line 5)3. Type resolution is

then triggered by calling the recursive method Back-

ward Resolve(). The method recursively types all

variables that should have the same type (lines 32-36):

It tests if each variable w in the constraint set of v has

been resolved as type T of v. If not, it recursively

calls itself to type all the variables that should have

the same type as w. Note that at line 34, it checks if

the current birth timestamp of w is equal to the one

stored in the constraint set to ensure the memory has

not been re-used by a different variable. If w is re-

used (t 6= tsw), the algorithm does not resolve the

current w. Instead, the resolution is done by a different

off-line procedure (Section 3.3). Since variable types

are resolved according to constraints derived from data

flows in the past, we call this step backward type

resolution.

2. If i contains an indirect memory access operand o

(line 7), either through registers (e.g., using (%eax)

to access the address designated by eax) or memory

(e.g., using [mem] to indirectly access the memory

pointed to by mem), then the corresponding operand

will have a pointer type tag (pointer type t) as a

new element in To.

3. If i is a move instruction (line 9), there are two cases

to consider. In particular, if the destination operand

w is a register, then we just move the properties (i.e.,

the Sv and Tv) of the source operand to the destination

(i.e., the register); otherwise we need to unify the types

of the source and destination operands because the

destination is now a memory location that may have

already contained some resolved types. The intuition

is that the source operand v should have the same type

as the destination operand w if the destination is a

memory address. Hence, the algorithm calls method

Unify() to unify the types of the two. In Unify() (lines

37-42), the algorithm first unions the two type sets by

performing backward resolution at lines 38 and 39.

Intuitively, the call at line 38 means that if there are any

new types in Tw that are not in Tv (i.e. Tw-Tv), those

new types need to be propagated to v and transitively

to all variables that share the same type as v, mandated

by v’s constraint set. Such unification is not performed

if the w is a register to avoid over-aggregation.

3The sink’s definition also reveals the semantics of some argu-

ments/operands, e.g., a PID.

4. If i is a binary operation, the algorithm first tests if

an operand has been identified as a pointer. If so, it

must be a pointer arithmetic operation, the destination

must have the same type as the pointer operand and

the other operand must be a pointer index – denoted

by a semantic type pointer index t (line 18).

The semantic type is useful in vulnerability fuzz to

overflow buffers. If i is not related to pointers, the

three operands shall have the same type. The method

Unify3() unifies three variables. It is very similar to

Unify() and hence not shown. Note that in cases where

the binary operation implicitly casts the type of some

operand (e.g., an addition of a float and an integer),

the unification induces over-approximation (e.g., asso-

ciating the float point type with the integer variable).

In practice, we consider such cases reasonable and

allow multiple types for one variable as long as they

are compatible.

5. If i allocates a memory region (line 21) – either a stack

frame or a heap struct, the algorithm updates the birth

time stamps of all the bytes in the region, and resets the

memory constraint set (Sv) and type set (Tv) to empty.

By doing so, we prevent the type information of the

old variable instance from interfering with that of the

new instance at the same address.

6. If i frees a memory region (line 26), the algorithm

traverses each byte in the region and prints out the type

information. In particular, if the type set is not empty,

it is emitted. Otherwise, the constraint set is emitted.

Later, the emitted constraints will be used in the off-

line procedure (Section 3.3) to resolve more variables.

Example. Table 1 presents an example of executing our

algorithm. The first column shows the instruction trace

with the numbers denoting timestamps. The other columns

show the type sets and the constraint sets after each in-

struction execution for three sample variables, namely the

global variable g1 and two local variables l1 and l2. For

brevity, we abstract the calling sequence of strcpy to a

strcpy instruction. After the execution enters method M

at timestamp 10, the local variables are allocated and hence

both l1 and l2 have the birth time of 10. The global variable

g1 has the birth time of 0. After the first mov instruction, the

type sets of g1 and l1 are unified. Since neither was typed,

the unified type set remains empty. Moreover, l1, together

with its birth time 10, is added to the constraint set of g1

and vice versa, denoting they should have the same type.

Similar actions are taken after the second mov instruction.

Here, the constraint set of l1 has both g1 and l2. The

strcpy invocation is a type sink and g1 must be of type

char*, the algorithm performs the backward resolution by

calling Backward Resolve(). In particular, the variable in

Sg1, i.e. l1, is typed to char*. Note that the timestamp

10 matches tsl1, indicating the same variable is still alive.

Transitively, the variables in Sl1, i.e. g1 and l2, are resolved

to the same type. Note that if the backward resolution was

not conducted, we would not be able to resolve the type

of l2 because when the move from l1 to l2 (timestamp 12)

occurred, l1 was not typed and hence l2 was not typed.

3.3 Offline Type Resolution

Most variables accessed during the binary’s execution

can be resolved by our online algorithm. However, there

are still some cases in which, when a memory variable gets

freed (and its information gets emitted to the log file), its

type is still unresolved. We realize that there may be enough

information from later phases of the execution to resolve

those variables. We propose an off-line procedure to be

performed after the program execution terminates. It is

essentially an off-line version of the Backward Resolve()

method in Algorithm 1. The difference is that it has to

traverse the log file to perform the recursive resolution.

Consider the example in Table 2. It shares the same

execution as the example in Table 1 before timestamp 13.

At time instance 13, the execution returns from M , de-

allocating the local variables l1 and l2. According to the

online algorithm, their constraint sets are emitted to a log

file since neither is typed at that point. Later at timestamp

99, another method N is called. Assume it reuses l1 and

l2, namely, N allocates its local variables at the locations of

l1 and l2. The birth time of l1 and l2 becomes 99. Their

type sets and constraint sets are reset. When the sink is

encountered at 100, l1 and l2 are not typed as their current

birth timestamp is 99, not 10 as in Sg1, indicating they

are re-used by other variables. Fortunately, the variable

represented by < l1, 10 > can be found in the log and hence

resolved. Transitively, < l2, 10 > can be resolved as well.

3.4 Typed Variable Abstraction

Our algorithm is able to annotate memory locations with

syntax and semantics. However, multiple variables may

occupy the same memory location at different times and

a static variable may have multiple instances at runtime4.

Hence it is important to organize the inferred type informa-

tion according to abstract, location-independent variables

other than specific memory locations. In particular, prim-

itive global variables are represented by their offsets to

the base of the global sections (e.g., .data and .bss

sections). Stack variables are abstracted by the offsets from

their residence activation record, which is represented by

the function name (as shown in Figure 1).

For heap variables, we use the execution context, i.e., the

PC (instruction address) of the allocation point of a heap

4A local variable has the same life time of a method invocation and a

method can be invoked multiple times, giving rise to multiple instances.

instruction Tg1 Sg1 tsg1 Tl1 Sl1 tsl1 Tl2 Sl2 tsl2

10. enter M φ φ 0 φ φ 10 φ φ 10

11. mov g1, l1 φ {< l1, 10 >} 0 φ {< g1, 0 >} 10 φ φ 10

12. mov l1, l2 φ {< l1, 10 >} 0 φ {< g1, 0 >, < l2, 10 >} 10 φ {< l1, 10 >} 10

...

100. strcpy(g1,...) {char*} {< l1, 10 >} 0 {char*} {< g1, 0 >, < l2, 10 >} 10 {char*} {< l1, 10 >} 10

Table 1. Example of running the online algorithm. Variable g1 is a global, l1 and l2 are locals.

instruction Tg1 Sg1 tsg1 Tl1 Sl1 tsl1 Tl2 Sl2 tsl2

...

12. mov l1, l2 φ {< l1, 10 >} 0 φ {< g1, 0 >, < l2, 10 >} 10 φ {< l1, 10 >} 10

13. Exit M φ {< l1, 10 >} 0 φ {< g1, 0 >, < l2, 10 >} 10 φ {< l1, 10 >} 10

...

99. Enter N φ {< l1, 10 >} 0 φ φ 99 φ φ 99

100. strcpy(g1,...) {char*} {< l1, 10 >} 0 φ φ 99 φ φ 99

Table 2. Example of running the offline type resolution procedure. The execution before timestamp
12 is the same as Table 1. Method N reuses l1 and l2

structure plus the call stack at that point, as the abstraction

of the structure. The intuition is that the heap structure

instances allocated from the same PC in the same call stack

should have the same type. Fields of the structure are

represented by the allocation site and field offsets. As an

allocated heap region may be an array of a data structure,

we use the recursion detection heuristics in [9] to detect the

array size. Specifically, the array size is approximated by

the maximum number of accesses by the same PC to unique

memory locations in the allocated region. The intuition is

that array elements are often accessed through a loop in

the source code and the same instruction inside the loop

body often accesses the same field across all array elements.

Finally, if heap structures allocated from different sites have

the same field types, we will heuristically cluster these heap

structures into one abstraction.

3.5 Constructing Hierarchical View of In
Memory Data Structure Layout

An important feature of REWARDS is to construct a

hierarchical view of a memory snapshot, in which the prim-

itive syntax of individual memory locations, as well as their

semantics and the integrated hierarchical structure are visu-

ally represented. This is highly desirable in applications like

memory forensics as interesting queries, e.g., “find all

IP addresses”, can be easily answered by traversing

the view (examples in Section 5.1). So far, REWARDS

is able to reverse engineer the syntax and semantics of

data structures, represented by their abstractions. Next, we

present how we leverage such information to construct a

hierarchical view.

Our method works as follows. It first types the top level

global variables. In particular, a root node is created to

represent a global section. Individual global variables are

represented as children of the root. Edges are annotated

with offset, size, primitive type, and semantics of the

corresponding children. If a variable is a pointer, the

algorithm further recursively constructs the sub-view of the

data structure being pointed to, leveraging the derived type

of the pointer. For instance, assume a global pointer p is of

type T*, our method creates a node representing the region

pointed to by p. The region is typed based on the reverse

engineered definition of T. The recursive process terminates

when none of the fields of a data structure is a pointer. Stack

is similarly handled: A root node is created to represent

each activation record. Local variables of the record

are denoted as children nodes. Recursive construction is

performed until all memory locations through pointers are

traversed. Note that all live heap structures can be reached

(transitively) through a global pointer or a stack pointer.

Hence, the above two steps essentially also construct the

structural views of live heap data.

Our method can also type some of the unreachable

memory regions, which represent “dead” data structures,

e.g., activation records of previous method invocations

whose space has been freed but not reused. Such dead

data is as important as live data as they disclose what had

happened in the past. In particular, our method scans the

stack beyond the current activation record to identify any

pointers to the code section, which often denote return

addresses of method invocations. With a return address, the

function invocation can be identified and we can follow the

aforementioned steps to type the activation record.

4 Implementation and Evaluation

We have implemented REWARDS on PIN-2.6 [27], with

12.1K lines (LOC) of C code and 1.2K LOC of Python

code. In the following, we present several key implementa-

tion details. REWARDS is able to reveal variable semantics.

In our implementation, variable semantics are represented

as special semantic tags complementary to regular type tags

such as int and char. Both semantic tags and regular tags

are stored in the variable’s type set. Tags are enumerated

to save space. The vast diversity of program semantics

makes it infeasible to consider them all. Since we are

mainly interested in forensics and security applications, we

focus on the following semantic tags: (1) file system related

(e.g., FILE pointer, file descriptor, file name, file status);

(2) network communication related (e.g., socket descriptor,

IP address, port, receiving and sending buffer, host info,

msghdr); and (3) operating systems related (e.g., PID, TID,

UID, system time, system name, and device info).

Meanwhile, we introduce some of our own semantic

tags, such as ret addr t indicating that a memory loca-

tion is holding a return address, stack frame t indicat-

ing that a memory location is holding a stack frame pointer,

format string t indicating that a string is used in

format string argument, and malloc arg t indicating an

argument of malloc function (similarly, calloc arg t

for calloc function, etc.). Note that these tags reflect the

properties of variables at those specific locations and hence

do not particitate in the type information propagation. They

can bring important benefits to our targeted applications

(Section 5).

REWARDS needs to know the program’s address space

mapping, which will be used to locate the addresses of

global variables and detect pointer types. In particular,

REWARDS checks the target address range when deter-

mining if a pointer is a function pointer or a data pointer.

Thus, when a binary starts executing with REWARDS,

we first extract the coarse-grained address mapping from

the /proc/pid/maps file, which defines the ranges of

code and data sections including those from libraries, and

the ranges of stack and heap (at that time). Then for

each detailed address mapping such as .data, .bss and

.rodata for all loaded files (including libraries), we

extract the mapping using the API provided by PIN when

the corresponding image file is loaded.

We have performed two sets of experiments to evaluate

REWARDS: one is to evaluate its correctness, and the

other is to evaluate its time and space efficiency. All

the experiments were conducted on a machine with two

2.13Ghz Pentium processors and 2GB RAM running Linux

kernel 2.6.15.

We select 10 widely used utility programs from the

following packages: procps-3.2.6 (with 19.1K LOC and

containing command ps), iputils-20020927 (with 10.8K

LOC and containing command ping), net-tools-1.60 (with

16.8K LOC and containing netstat), and coreutils-

5.93 (with 117.5K LOC and containing the remaining test

commands such as ls, pwd, and date). The reason

for selecting these programs is that they contain many

data structures related to the operating system and network

communications. We run these utilities without command

line option except ping, which is run with a localhost and

a packet count 4 option.

4.1 Evaluation of Accuracy

To evaluate the reverse engineering accuracy of RE-

WARDS, we compare the derived data structure types with

those declared in the program source code. To acquire

the oracle information, we recompile the programs with

debugging information, and then use libdwarf [1] to

extract type information from the binaries. The libdwarf

library is capable of presenting the stack and global variable

mappings after compilation. For instance, global variables

scattering in various places in the source code will be

organized into a few data sections. The library allows us see

the organization. In particular, libdwarf extracts stack

variables by presenting the mapping from their offsets in

the stack frame and the corresponding types. For global

variables, the output by libdwarf is program virtual

addresses and their types. Such information allows us to

conduct direct and automated comparison. Note that we

only verify the types in .data, .bss, and .rodata sec-

tions, other global data in sections such as .got, .ctors

are not verified. For heap variables, since we use the

execution context at allocation sites as the abstract repre-

sentation, given an allocation context, we can locate it in

the disassembled binary, and then correlate it with program

source code to identify the heap data structure definition,

and finally compare it with REWARDS’s output. Although

REWARDS extracts variable types for the entire program

address space (including libraries), we only compare the

results for user-level code.

The result for stack variables is presented in Figure

2(a). The figure presents the percentage of (1) functions

that are actually executed, (2) data structures that are used

in the executed functions (over all structures declared in

those functions), and (3) data structures whose types are

accurately recovered by REWARDS (over those in (2)). At

runtime, it is often the case that even though a buffer is

defined in the source code with size n, only part of the

n bytes are used. Consequently, only those used ones are

typed (the others are considered unused). We consider the

buffer is correctly typed if its bytes are either correctly typed

or unused. From the figure, we can observe that, due to

the nature of dynamic analysis, not all functions or data

structures in a function are exercised and hence amenable

to REWARDS. More importantly, REWARDS achieves an

average of 97% accuracy (among these benchmarks) for

the data structures that get exercised. For heap variables,

the result is presented in Figure 2(b), the bars are similarly

defined. REWARDS’s output perfectly matches the types in

the original definitions when they are exercised. Note some

of the benchmarks are missing in Figure 2(b) (e.g., date)

because their executions do not allocate any user-level heap

structures. The result for global variables is presented in

Figure 2(c), and REWARDS achieves over 85% accuracy.

To explain why REWARDS cannot achieve 100% accu-

 0

 20

 40

 60

 80

 100

 120

hostnam
e

users

unam
e

uptim
e

date
pw

d
lsnetstat

ping
ps

P
e
rc

e
n
ta

g
e

Benchmark Program

Dynamically Executed Funs
Dynamically Exposed Types

REWARDS Accuracy

(a) Accuracy on Stack Variables

 0

 20

 40

 60

 80

 100

 120

hostnam
e

users

uptim
e

lsnetstat

ping
ps

P
e

rc
e

n
ta

g
e

Benchmark Program

Dynamically Allocated Types
Dynamically Exercised Types

REWARDS Accuracy

(b) Accuracy on Heap Variables

 0

 20

 40

 60

 80

 100

hostnam
e

users

unam
e

uptim
e

date
pw

d
lsnetstat

ping
ps

P
e

rc
e

n
ta

g
e

Benchmark Program

Dynamically Exercised Types
REWARDS Accuracy

(c) Accuracy on Global Variables

 0

 50

 100

 150

 200

 250

 300

 350

 400

hostnam
e

users

unam
e

uptim
e

date
pw

d
lsnetstat

ping
ps

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Benchmark Program

 REWARDS
 MemTrace

 Normal Execution

(d) Performance Overhead

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

hostnam
e

users

unam
e

uptim
e

date
pw

d
lsnetstat

ping
ps

S
h

a
d

o
w

 M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

b
y
te

s
)

Benchmark Program

 REWARDS

(e) Space Overhead

Figure 2. Evaluation results for REWARDS accuracy and efficiency

racy, we carefully examined the benchmarks and identified

the following two reasons:

• Hierarchy loss. If a hierarchical structure becomes

flat after compilation, we are not able to identify its

hierarchy. This happens to structures declared as

global variables or stack variables. And the binary

never accesses such a variable using the base address

plus a local offset. Instead, it directly uses a global

offset (starting from the base address of the global data

section or a stack frame). In other words, multiple

composite structures are flattened into one large struc-

ture. In contrast, such flattening does not happen to

heap structures.

• Path-sensitive memory reuse. This often happens

to stack variables. In particular, the compiler might

assign different local variables declared in different

program paths to the same memory address. As a

result, the types of these variables are undesirably

unified in our current design. A more thorough design

would use a path-sensitive local offset to denote a stack

variable.

Despite the imperfect accuracy, REWARDS still suits

our targeted application scenarios, i.e., memory forensics

and vulnerability fuzzing. For example, although RE-

WARDS outputs a flat layout for all global and stack

variables, we can still conduct vulnerability fuzzing because

the absolute offsets of these variables are sufficient; and we

can still construct hierarchical views of memory images as

pointer types can be obtained.

4.2 Evaluation of Efficiency

We also measured the time and space overhead of

REWARDS. We compared it with (1) a standard memory

trace tool, MemTrace (shipped along with PIN-2.6) and

(2) the normal execution of the program, to evaluate the

performance overhead. The result is shown in Figure 2(d).

Note the normal execution data is nearly not visible in this

figure because they are very small (roughly at the 0.01 sec-

ond level). We can observe that REWARDS causes slow-

down in the order of ten times compared with MemTrace,

and in the order of thousands (or tens of thousands) times

compared with the normal execution.

For space overhead, we are interested in the space con-

sumption by shadow type sets and constraint sets. Hence,

we track the peak value of the shadow memory consump-

tion. The result is shown in Figure 2(e). We can observe

that the shadow memory consumption is around 10 Mbytes

for these benchmarks. A special case is ping, which uses

much less memory. The reason is that it has fewer function

calls and memory allocations, which is also why it runs

much faster than the other programs shown in Figure 2(d).

5 Applications of REWARDS

REWARDS can be applied to a number of applications.

In this section, we demonstrate how REWARDS provides

unique benefits to (1) memory image forensics and (2)

binary vulnerability fuzz.

5.1 Memory Image Forensics

Memory image forensics is a process to extract mean-

ingful information from a memory dump. Examples of

such information are IP addresses that the application under

investigation is talking to and files being accessed. Data

structure definitions play a critical role in the extraction

process. For instance, without data structure information,

it is hard to decide if four consecutive bytes represent an

IP address or just a regular value. REWARDS enables

analyzing memory dumps for a binary without symbolic

information. In this subsection, we demonstrate how RE-

WARDS can be used to type reachable memory as well as

some of the unreachable (i.e., dead) memory.

5.1.1 Typing Reachable Memory

In this case study, we demonstrate how we use REWARDS

to discover IP addresses from a memory dump using the

hierarchical view (Section 3.5). We run a web server

nullhttpd-0.5.1. A client communicates with this

server through wget (wget-1.10.2). The client has

IP 10.0.0.11 and the server has IP 10.0.0.4. The

memory dump is obtained from the server at the moment

when a system call is invoked to close the client connection.

Part of the memory dump is shown in Figure 3. The IPs are

underlined in the figure. From the memory dump, it is very

hard for human inspectors to identify those IPs without a

meaningful view of the memory. We use REWARDS to

derive the data structure definitions for nullhttpd and

then construct a hierarchical view of the memory dump

following the method described in Section 3.5.

The relevant part of the reconstructed view is presented

in Figure 4(a). The root represents a pointer variable in

the global section. The outgoing edge of the root leads

to the data structure being pointed to. The edge label

“struct 0x0804dd4f *” denotes that this is a heap

data structure whose allocation PC (also its abstraction)

is 0x0804dd4f. According to the view construction

method, the memory region being pointed to is typed

according to the derived definition of the data structure

denoted by 0x0804dd4f, resulting in the second layer in

Figure 4(a). The memory region starts at 0x08052170 is

denoted by the node with the address label. The individual

child nodes represent the different fields of the structure,

e.g. the first field is a thread id according to the semantic

tag pthread t, the fourth field (with offset +12) denotes

...

08052170 b0 5b fe b7 b0 5b fe b7 05 00 00 00 02 00 92 7e

08052180 0a 00 00 0b 00 00 00 00 00 00 00 00 c7 b0 af 4a

08052190 c7 b0 af 4a 00 00 00 00 58 2a 05 08 00 00 00 00

080521a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

...

08052a50 00 00 00 00 59 31 01 00 4b 65 65 70 2d 41 6c 69

08052a60 76 65 00 00 00 00 00 00 00 00 00 00 00 00 00 00

08052a70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

08052ee0 00 00 00 00 00 00 00 00 00 00 00 00 31 30 2e 30

08052ef0 2e 30 2e 34 00 00 00 00 00 00 00 00 00 00 00 00

08052f00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

08052fe0 00 00 00 00 00 00 00 00 00 00 00 00 48 54 54 50

08052ff0 2f 31 2e 30 00 00 00 00 00 00 00 00 00 00 00 00

08053000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

08053470 00 00 00 00 00 00 00 00 00 00 00 00 31 30 2e 30

08053480 2e 30 2e 31 31 00 00 00 00 00 00 00 00 00 00 00

08053490 47 45 54 00 00 00 00 00 2f 00 00 00 00 00 00 00

080534a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

08053910 00 00 00 00 00 00 00 00 57 67 65 74 2f 31 2e 31

08053920 30 2e 32 00 00 00 00 00 00 00 00 00 00 00 00 00

08053930 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

08053990 00 00 00 00 00 00 00 00 c8 00 00 00 00 00 00 00

080539a0 00 00 00 00 00 00 00 00 00 00 43 6c 6f 73 65 00

080539b0 00 00 00 00 00 00 00 00 00 00 00 00 52 00 00 00

080539c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

08053a90 48 54 54 50 2f 31 2e 30 00 00 00 00 00 00 00 00

08053aa0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

08053b20 74 65 78 74 2f 68 74 6d 6c 00 00 00 00 00 00 00

08053b30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

08063ba0 01 00 01 00 01 00 00 00 00 00 00 00 00 00 00 00

08063bb0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

...

Figure 3. Part of a memory dump from nullhttpd

a sockaddr structure. The last field (with offset +40)

denotes another heap structure whose allocation site is

0x0804ddfb. Transitively, our method reconstructs the

entire hierarchy.

The extraction of IP addresses is translated into a

traversal over the view to identify those with the IP ad-

dress semantic tags. Along the path 08050260 →

08052170 → 7e9200...0 → 0x0b0000a ,

a variable with the sin addr type can be identified,

which stores the client IP. The same IP can also be iden-

tified along the path 08050260 → 08052170 →

08052a58 → 10.0.0.11 , with the field offset

+2596. The field has the ip addr str t tag, which is

resolved at the return of a call to inet ntoa(). RE-

WARDS is able to isolate the server IP 10.0.0.4 as a

string along the path 08050260 → 08051170 →

10.0.0.4 with the field offset +1172. Interestingly,

this field does not have a semantic tag related to an IP

address. The reason is that the field is simply a part of the

request string (the host field in HTTP Request Message),

but it is not used in any type sinks that can resolve it as an IP.

However, isolating the string also allows a human inspector

to extract it as an IP.

To validate our result, we present in Figure 4(b) the

corresponding symbolic definitions extracted from the

source for comparison. Fields that are underlined are

used during execution. In particular, struct CONNECTION

corresponds to the abstraction struct 0x0804dd4f

(node 08052170) and struct CONNDATA corresponds

to struct 0x0804ddfb (node 08052a58). Observe

that all fields of CONNECTION are precisely derived, except

the pointer PostData, which is represented as an unused

array in the inferred definition because the field is not used

during execution. For the CONNDATA structure, all the

exercised fields are extracted and correctly typed. Recall

that we consider a field is correctly typed if its offset is

correctly identified and its composition bytes are either

correctly typed or unused.

5.1.2 Typing Dead Memory

In this case, we demonstrate how to type dead memory,

i.e., memory regions containing dead variables, using the

slapper worm bot-master program. Slapper worm relies on

P2P communications. The bot-master uses a program called

pudclient to control the P2P botnet, such as launching

TCP-flood, UDP-flood, and DNS-flood attacks. Our goal is

to extract evidence from a memory dump of pudclient

from the attacker’s machine.

Our experiment has two scenes: the investigator’s scene

and the attacker’s scene. More specifically,

• Scene I: In the lab, the investigator runs the bot-master

program pudclient to communicate with slapper

bots to derive the data structures of pudclient.

• Scene II: In the wild, the attacker runs pudclient to

control real slapper bots.

In Scene I, we run a number of slapper worm in-

stances in a contained environment (at IP addresses rang-

ing from 10.0.0.1 - 10.0.1.255). Then we launch

pudclient with REWARDS and issue a series of

commands such as listing the compromised hosts, and

launching the UDPFlood, TCPFlood, and DNSFlood at-

tacks. REWARDS extracts the data structure definitions for

pudclient. Then in Scene II, we run pudclient again

without REWARDS. Indeed, the attacker’s machine does

not have any forensics tool running. Emulating the attacker,

we issue some commands and then hibernate the machine.

We then get the memory image of pudclient and use the

data structure information derived in Scene I to investigate

the image.

08050260 08052170

b7fe5bb0

b7fe5bb0

00000005

7e920002 0b00000a 0...0

4aafb0c7

4aafb0c7

00000000

08052a58

0002

7e92

0b00000a

0...0

Keep−Alive

0...0

10.0.0.4

0...0

HTTP/1.0

0...0

10.0.0.11

0...0

GET

00000000

/

0...0

Wget/1.10.2

0...0

00c8

0...0

Close

0...0

00000052

0...0

HTTP/1.0

0...0

text/html

0...0

0001

0001

0001

0...0

struct _0x0804dd4f *

+0	pthread_t

+4	int

+8	socket

+12	struct sockaddr

+28	time_t

+32	time_t

+36	unused [4]

+40	struct _0x0804ddfb *

sin_family

sin_port

sin_addr

sin_zero

+0	char [11]

+11	unused [1161]

+1172	char [9]

+1181	unused [247]

+1428	char [9]

+1437	unused [1159]

+2596	ip_addr_str_t

+2606	unused [10]

+2616	char [4]

+2620	unused [4]

+2624	char [2]

+2626	unused [1150]

+3776	char [12]

+3788	unused [116]

+3904	short int

+3906	unused [16]

+3922	char [6]

+3928	unused [12]

+3940	int

+3944	unused [208]

+4152	char [9]

+4161	unused [135]

+4296	char [10]

+4306	unused [65654]

+69960		short int

+69962		short int

+69964		short int

+69966		unused [8192]

(a) Hierarchical view from REWARDS

 180 typedef struct {

181 pthread_t handle;

182 unsigned long int id;

183 short int socket;

184 struct sockaddr_in ClientAddr;

185 time_t ctime; // Creation time

186 time_t atime; // Last Access time

 187 char *PostData;

188 CONNDATA *dat;

 189 } CONNECTION;

206 CONNECTION *conn; //matched the root node

 143 typedef struct {

 144 // incoming data

145 char in_Connection[16];

 146 int in_ContentLength;

 147 char in_ContentType[128];

 148 char in_Cookie[1024];

149 char in_Host[64];

 150 char in_IfModifiedSince[64];

 151 char in_PathInfo[128];

152 char in_Protocol[16];

 153 char in_QueryString[1024];

 154 char in_Referer[128];

155 char in_RemoteAddr[16];

 156 int in_RemotePort;

157 char in_RequestMethod[8];

158 char in_RequestURI[1024];

 159 char in_ScriptName[128];

160 char in_UserAgent[128];

 161 // outgoing data

162 short int out_status;

 163 char out_CacheControl[16];

164 char out_Connection[16];

165 int out_ContentLength;

 166 char out_Date[64];

 167 char out_Expires[64];

 168 char out_LastModified[64];

 169 char out_Pragma[16];

170 char out_Protocol[16];

 171 char out_Server[128];

172 char out_ContentType[128];

 173 char out_ReplyData[MAX_REPLYSIZE];

174 short int out_headdone;

175 short int out_bodydone;

176 short int out_flushed;

 177 // user data

 178 char envbuf[8192];

 179 } CONNDATA;

(b) Data structure definition

Figure 4. Comparison between the REWARDSderived hierarchical view and source code definition

bfffd140 05 00 00 00 6b 00 00 00 69 00 00 00 00 00 00 00

bfffd150 00 00 00 00 38 ea ff bf 00 00 00 00 00 00 00 01

bfffd160 2c 00 00 00 67 45 8b 6b 0e 00 00 00 00 00 00 00

bfffd170 0a 00 00 63 0f 27 00 00 9f 86 01 00 9f 86 01 00

bfffd180 1c ea ff bf 10 ea ff bf 6a f2 b2 4a 7a 4a 0e 00

bfffd190 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

bfffd1a0 6a f2 b2 4a 7a 4a 0e 00 f2 f3 8d 8c 00 00 00 00

bfffd1b0 00 00 00 00 00 00 00 00 01 00 00 00 02 00 00 00

bfffd1c0 64 6e 73 66 6c 6f 6f 64 00 00 00 00 00 00 00 00

bfffd1d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

bfffd5c0 c0 d1 ff bf 00 00 00 00 02 ca 04 08 00 00 00 00

bfffd5d0 00 00 00 00 00 00 00 00 02 ca 04 08 02 ca 04 08

bfffd5e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

bfffd5f0 00 00 00 00 00 00 00 00 00 00 00 00 04 d6 ff bf

bfffd600 64 6e 73 66 6c 6f 6f 64 00 00 00 00 00 00 00 00

bfffd610 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

bfffe5b0 00 00 00 00 00 00 00 00 0e 00 00 00 00 00 00 00

bfffe5c0 00 00 00 00 02 00 4e 34 0a 00 00 0b 00 00 00 00

bfffe5d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

bfffe5e0 00 00 00 00 00 00 00 00 00 00 00 00 e0 f5 ff bf

bfffe5f0 a0 2d 05 08 e0 f5 ff bf a0 13 05 08 00 00 00 00

bfffe600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

bfffea00 00 00 00 00 00 00 00 00 00 00 00 00 10 ea ff bf

bfffea10 01 00 00 00 00 00 00 00 e5 de f2 49 46 00 00 00

bfffea20 67 45 8b 6b 10 00 00 00 e8 be e6 71 0a 00 00 34

bfffea30 0a 00 01 33 0a 00 00 0b 0a 00 00 04 00 00 00 00

bfffea40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

...

bffff5c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

bffff5d0 01 00 00 00 80 00 00 00 80 00 00 00 ff f7 ff bf

bffff5e0 00 00 00 00 00 00 00 00 f3 f7 ff bf 67 45 8b 6b

bffff5f0 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

bffff600 01 00 00 00 c0 f6 ff bf 28 f6 ff bf fb c7 04 08

bffff610 02 00 00 00 dc 3a 1f b6 d4 df 04 08 dc 3a 1f b6

bffff620 00 00 00 00 dc 3a 1f b6 88 f6 ff bf a2 de 0d b6

bffff630 02 00 00 00 b4 f6 ff bf c0 f6 ff bf f6 5b ff b7

Figure 5. Memory dump for Slapper worm control program when exiting the control interface

We construct the hierarchical view and try to identify IP

addresses from the view. However, the hierarchical view

can only map the memory locations that are alive, namely

they are reachable from global and stack (pointer) variables.

Here, we take an extra step to type the dead (unreachable)

data. As described in Section 3.5, our technique scans

the stack space lower than the current (the lowest and

live) activation record and looks for values that are in the

range of the code section, as they are very likely return

addresses. Four such values are identified. One example

and its memory context is shown in Figure 5. In this

memory dump snippet, the return address, as underlined,

is located at address 0xbffff62c. Our technique further

identifies that the corresponding function invocation is to

0x0804a708. Hence, we use the data structure definition

of fun 0x0804a708 to type the activation record. The

definition and the typed values are shown in Table 3.

Observe that a number of IPs (fields with ip addr t) are

identified. We also spot the bot command “dnsflood”

at -9324 and -8236. Note that these two fields have the

input t tag as part of their derived definition, indicating

they hold values from input.

5.2 Vulnerability Fuzz

It is a challenging task to detect and confirm vulner-

abilities in a given binary without symbolic information.

Previously in [26], we have proposed a dynamic analysis

approach that can decide if a vulnerability suspect is true

positive by generating a concrete exploit. The basic idea

is to first use existing static tools to identify vulnerability

candidates, which are often of large quantity; then benign

executions are mutated to generate exploits. Mutations

are directed by dynamic information called input lineage,

which denotes the set of input elements that is used to

compute a value at a given execution point, usually a

vulnerability candidate. Vulnerability-specific patterns are

followed during mutation. One example pattern is to

exponentially expand an input string in the lineage of a

candidate buffer with the goal of generating an overflow

exploit. In that project, we had difficulty finding publicly

available, binary-level vulnerability detectors to use as the

front end. REWARDS helps address this issue by deriving

both variable syntax and semantics from a subject binary.

Next, we present our experience of using REWARDS to

identify vulnerability suspects and then using our prior

system (a fuzzer) to confirm them.

For this study, we design a static vulnerability suspect

detector that relies on the variable type information derived

by REWARDS. The result of the detector is passed to our

lineage-based fuzzer to generate exploits. In the following,

we present how REWARDS helps identify various types of

vulnerability suspects.

• Buffer overflow vulnerability. Buffer overflows

could happen in three different places: stack, heap,

and global areas. As such, we define three types of

buffer overflow vulnerability patterns. Specifically,

for stack overflow, if a stack layout contains a buffer

and its content comes from user input, we consider

it a suspect. Note that this can be easily facilitated

by REWARDS’s typing algorithm: A semantics tag

input t is defined to indicate that a variable re-

ceives its value from external input. The tag is only

susceptible to the forward flow but not the backward

flow. In the stack layout derived by REWARDS, if

a buffer’s type set contains an input t tag, it is

considered vulnerable. For heap overflow, we consider

two cases: one is to exploit heap management data

structure outside the user-allocated heap chunk; and

the other is to exploit user-defined function pointers

inside the heap chunk. Detecting the former case is

simply to check if a heap structure contains a buffer

Offset Type Size Mem Addr Content Offset Type Size Mem Addr Content

-9432 void* 4 bfffd154 38 ea ff bf -9324 char[9],input t 9 bfffd1c0 64 6e..64

-9428 char* 4 bfffd158 00 00 00 00 -8300 char* 4 bfffd5c0 c0 d1 ff bf

-9420 int 4 bfffd160 2c 00 00 00 -8236 char[9],input t 9 bfffd600 64 6e..64

-9416 int 4 bfffd164 67 45 8b 6b -8227 char[28] 28 bfffd609 00 .. 00

-9412 int 4 bfffd168 0e 00 00 00 -4236 void* 4 bfffe5a0 00 00 00 00

-9408 int 4 bfffd16c 00 00 00 00 -4156 struct 0x804834e* 4 bfffe5f0 a0 2d 05 08

-9404 ip addr t 4 bfffd170 0a 00 00 63 -4152 void* 4 bfffe5f4 e0 f5 ff bf

-9300 port t 4 bfffd174 0f 27 00 00 -3104 char* 4 bfffea0c 10 ea ff bf

-9396 int 4 bfffd178 9f 86 01 00 -3088 char[16] 16 bfffea1c 46 00 00 00

-9392 int 4 bfffd17c 9f 86 01 00 -3068 ip addr t 4 bfffea30 0a 00 01 33

-9388 void* 4 bfffd180 1c ea ff bf -3064 ip addr t 4 bfffea34 0a 00 00 0b

-9384 void* 4 bfffd184 10 ea ff bf -3058 ip addr t 4 bfffea38 0a 00 00 04

timeval.tv sec 4 bfffd18c 7a 4a 0e 00 -3054 ip addr t 4 bfffea3c 0a 00 00 04
-9376

timeval.tv usec 4 bfffd190 22 00 00 00 -0088 int 4 bffff5d4 80 00 00 00

-9368 int 4 bfffd194 00 00 00 00 -0084 int 4 bffff5d8 80 00 00 00

-9352 int 4 bfffd1a4 7a 4a 0e 00 -0080 int 4 bffff5dc ff f7 ff bf

-9348 int 4 bfffd1a8 f2 f3 8d 8c -0004 stack frame t 4 bffff628 88 f6 ff bf

-9344 int 4 bfffd1ac 00 00 00 00 +0000 ret addr t 4 bffff62c a2 de 0d b6

-9332 int 4 bfffd1b8 01 00 00 00 +0004 int 4 bffff630 02 00 00 00

-9328 int 4 bfffd1bc 02 00 00 00 +0008 char* 4 bffff634 b4 f6 ff bf

Table 3. Result on the unreachable memory type using type fun 0x804a708

field that is input-relevant, in a way similar to stack

vulnerability detection. For the later case, the detector

scans the derived layout of a heap structure to check

the presence of both an input-relevant buffer field and

a function pointer field. Vulnerabilities in the global

memory region are handled similarly.

• Integer overflow vulnerability. Integer overflow oc-

curs when an integer exceeds the maximum value that

a machine can represent. Integer overflow itself may

not be harmful (e.g., gcc actually leverages integer

overflow to manipulate control flow path condition

[38]), but if an integer variable is dependent on user

input without any sanity check and it is used as an

argument to malloc-family functions, then an integer

overflow vulnerability is likely. In particular, over-

flowed values passed to malloc functions usually result

in heap buffers being smaller than they are supposed

to be. Consequently, heap overflows occur. For this

type of vulnerabilities, our detector checks the actual

arguments to malloc family function invocations: if

an integer parameter has both malloc arg t and

input t tags, an integer overflow vulnerability sus-

pect will be reported.

• Format string vulnerability. The format string vul-

nerability pattern involves a user input flowing into

a format string argument. Thus, we introduce a

semantics tag format string t, which is only

resolved at invocations to printf-family functions.

If a variable’s type set contains both input t and

format string t tags, a format string vulnerabil-

ity suspect is reported.

Besides facilitating vulnerability suspect identification,

the information generated by REWARDS can also help

composing exploits. For instance, it is critical to know

Program #Buffer Overflow #Integer Overflow #Format String

ncompress-4.2.4 1 0 0

bftpd-1.0.11 3 0 0

gzip-1.2.4 3 0 0

nullhttpd-0.5.0 5 2 0

xzgv-5.8 3 8 0

gnuPG-1.4.3 0 3 0

ipgrab-0.9.9 0 5 0

cfingerd-1.4.3 4 0 1

ngircd-0.8.2 12 0 1

Table 4. Number of vulnerability suspects

reported with help of REWARDS

the distance between a vulnerable stack buffer and a return

address, i.e., a variable with the ret addr t tag, in

order to construct a stack overflow exploit. Similarly, it

is important to know the distance between a heap buffer

and a heap function pointer for composing a heap overflow-

based code injection attack. Such information is provided

by REWARDS.

We applied our REWARDS-based detector to examine

several programs shown in the 1
st column of Table 4. The

detector reported a number of vulnerable suspects based

on the aforementioned vulnerability patterns. The total

number of vulnerabilities of each type is presented in the

remaining columns. Observe that our detector does not

produce many suspects for these programs and hence can

serve as a tractable front end for our fuzzer. The fuzzer then

tries to generate exploits to convict the suspects. Details

of each confirmed vulnerable data structure is shown in

the 2
nd column of Table 5. The field symbols do not

represent their symbolic names, which we do not know, but

rather the type tags derived for these fields. For instance,

format string t denotes that the field is essentially

a format string; sockaddr in indicates that the field

holds a socket address. The 3
rd column presents the input

category that is relevant to the vulnerable data structure.

Benchmark Suspicious Data Structure Input Offset Vulnerability Type

fun 0x08048e76 { -1052: char[13],

-1039: unused[1023],...

-0008: char*,
ncompress-4.2.4 -0004: stack frame t, argv[1] {0..11} Stack overflow

+0000: ret addr t,

+0004: char**}
fun 0x080494b8 { -0064: char*,

-0060: char[12],

-0048: unused [44],
bftpd-1.0.11 -0004: stack frame t, recv {0..3} Stack overflow

+0000: ret addr t,

+0004: char*}
bss 0x08053f80 { ...

+244128: char[8],

gzip-1.2.4 +244136: unused[1016], argv[1] {0..6} Global overflow

+245152: char*,...}

heap 0x0804f205 { +0000: char[11],

+0011: unused[5], recv {607,608} Integer overflow

nullhttpd-0.5.0 +0016: int,... }
heap 0x0804c41f {+0000: void[29],

+0029: unused[1024]} recv {661..690} Heap Overflow

bss 0x0809ac80 { ...

xzgv-5.8 +91952: int, fread {4..11} Integer overflow

+91956: int,...}
fun 0x080673fc { ...,

-0176: char[6],unused[2], fread {2..5} Integer overflow

gnuPG-1.0.5 -0168: int,int,...}
heap 0x080afec1 { +0000:int,...,

+0036: void[5] } fread {6..10} Heap overflow

fun 0x0804d06b { ...,

-0056: int, fread {20..23} Integer overflow
ipgrab-0.9.9 -0052: int, int,...}

heap 0x0805a976 {+0000: void[60] } fread {40..100} Heap overflow

fun 0x080496b8 { ...,

-0440: struct sockaddr in,

cfingerd-1.4.3 -0424: format string t[34], read {0..3} Format String

-0390: unused[174],

-0216: char[4],,...}
fun 0x0805f9a5 { ...,

-0284: format string t[76]

ngircd-0.8.2 -0208: unused[204], recv {12..15} Format String

-0004: stack frame t,

+0000: ret addr t,...}

Table 5. Result from our vulnerability fuzzer with help of REWARDS

For example, the char[12] buffer in bftpd denotes a

packet received from outside (the recv category). Note

that the input categories are conveniently implemented as

semantics tags in REWARDS. The 4
th column offset

represents the input offsets reported by our fuzzer. They

represent the places that are mutated to generate the real

exploits. The REWARDS-based vulnerability detector also

emits vulnerability types (shown in the 5
th column) based

on the vulnerability patterns matched. Consider the first

benchmark ncompress: Its entry in the table indicates

that the char[13] buffer inside a function starting with

PC 0x08048e76 is vulnerable to stack buffer overflow.

The buffer receives values from the second command line

option (argv[1]). Our data lineage fuzzer mutates the

lineage of the buffer, which are the first 12 input items

(offset 0 to 11) to generate the exploit. From the data

structure in the 2
nd column, the exploit has to contain a

byte string longer than 1052 bytes to overwrite the return

address at the bottom. Other vulnerabilities can be similarly

apprehended.

6 Discussion

REWARDS has a number of limitations: (1) As a dy-

namic analysis-based approach, REWARDS cannot achieve

full coverage of data structures defined in a program.

Instead, the coverage of REWARDS relies on those data

structures that are actually created and accessed during a

particular run of the binary. (2) REWARDS is not fully on-

line as our timestamp-based on-line algorithm may leave

some variables unresolved by the time they are de-allocated,

and thus the off-line companion procedure is needed to

make the system sound. A fully on-line type resolution

algorithm is our future work. (3) Based on PIN, REWARDS

does not support the reverse engineering of kernel-level data

structures. (4) REWARDS does not work with obfuscated

code. Thus it is possible that an adversary can write an

obfuscated program to dodge REWARDS – for example,

by avoiding touching the type sinks we define. (5) Besides

the general data structures, REWARDS has yet to support

the extraction of other data types, such as the format of a

specific type of files (e.g., ELF files, multimedia files), and

browser-related data types (e.g., URL, cookie). Moreover,

REWARDS does not distinguish between sign and unsigned

integers in our current implementation.

7 Related Work

Type inference. Some programming languages, such as

ML, do not explicitly declare types. Instead, types are in-

ferred from programs. Typing constraints are derived from

program statements statically and programs are typed by

solving these constraints. Notable type inference algorithms

include Hindley-Milner algorithm [29], Cartesian Product

algorithm [3], iterative type analysis [13], object oriented

type inference [33], and aggregate structure identification

[35].

These techniques, like REWARDS, rely on type uni-

fication, namely, variables connected by operators shall

have the same type. However, these techniques assume

program source code and they are static, that is, typing

constraints are generated from source code at compile time.

For REWARDS, we only assume binaries without symbolic

information, in which high level language artifacts are all

broken down to machine level entities, such as registers,

memory addresses, and instructions. REWARDS relies

on type sinks to obtain the initial type and semantics

information. Variables are then typed through unification

with type sinks during execution.

Lately, Balakrishnan et al. [4, 5, 36] showed that

analyzing executables alone can largely discover syntactic

structures of variables, such as sizes, field offsets, and

simple structures. Their technique entails points-to analysis

and abstract interpretation at binary level. They cannot han-

dle obfuscated binaries and dynamically loaded libraries.

Furthermore, the inaccuracy of binary points-to analysis

makes it hard to type heap variables. In comparison, our

technique is relatively simple, with the major hindrances

to static analysis (e.g., points-to relations and dynamically

loaded libraries) addressed via dynamic analysis.

Abstract type inference. Abstract type inference [32]

is to group typed variables according to their semantics.

For example, variables that are meant to store money, zip

codes, ages, etc., are clustered based on their intention’s,

even though they may have the same integer type. Such

an intention is called an abstract type. The technique relies

on the Hindley-Milner type inference algorithm. Recently,

dynamic abstract type inference is proposed [24] to infer

abstract types from execution. Regarding the goal of

performing semantics-aware typing, these techniques and

ours are similar. However, they work at the source code

level whereas ours works at the binary level. Our technique

further derives syntactic type structures.

Decompilation. Decompilation is a process of recon-

structing program source code from lower-level languages

(e.g., assembly or machine code) [14, 20, 6]. It usually

involves reconstructing variable types [31, 19]. By using

unification, Mycroft [31] extends the Hindley-Milner algo-

rithm [29] and delays unification until all constraints are

available. Recently, Dolgova and Chernov [19] present an

iterative algorithm that uses a lattice over the properties of

data types for reconstruction.

All these techniques are static and hence share the same

limitations of static type inference and they only derive

simple syntactic structures. Moreover, they aim to get

an execution-equivalent code and do not pay attention to

whether the recovered types reflect the original declarations

and have the same structures.

Protocol format reverse engineering. Recent efforts in

protocol reverse engineering involve using dynamic binary

analysis (in particular input data taint analysis) to reveal

the format of protocol messages, facilitated by instruction

semantics (e.g., Polyglot [9]) or execution context (e.g.,

AutoFormat [25]). Recently, it has been shown that the

BNF structure of a given protocol with multiple messages

can be derived [40, 17, 28]; and the format of out-going

messages as well as encrypted messages can be revealed

[8, 39]. In particular, REWARDS shares the same insight as

Dispatcher [8] for type inference and semantics extraction.

The difference is that Dispatcher and other protocol reverse

engineering techniques mainly focus on live input and

output messages, whereas we strive to reveal general data

structures in a program. Meanwhile, we care more about

the detailed in-memory layout of program data, motivated

by our different targeted application scenarios.

Memory forensics and vulnerability discovery.

FATKit [34] is a toolkit to facilitate the extraction,

analysis, aggregation, and visualization of forensic data.

Their technique is based on pre-defined data structures

extracted from program source code to type memory

dumps. This is also the case for other similar systems

(e.g., [12, 30, 2]). KOP [11] is an effective system that

can map dynamic kernel objects with nearly complete

coverage and perfect accuracy. It also relies on program

source code and uses an inter-procedural points-to analysis

to compute all possible types for generic pointers. There

are several other efforts [37, 18] that use data structure

signatures to scan and type memory. Complementing these

efforts, REWARDS extracts data structure definitions and

reconstructs hierarchical in-memory layouts from binaries.

There is a large body of research in vulnerability dis-

covery such as Archer [41], EXE [10], Bouncer [15],

BitScope [7], DART [22], and SAGE [23, 21]. REWARDS

complements these techniques by enabling identification of

vulnerability suspects directly from binaries.

8 Conclusion

We have presented the REWARDS reverse engineering

system that automatically reveals data structures in a bi-

nary based on dynamic execution. REWARDS involves

an algorithm that performs data flow-based type attribute

forward propagation and backward resolution. Driven by

the type information derived, REWARDS is also capable

of reconstructing the structural and semantic view of in-

memory data layout. Our evaluation using a number of real-

world programs indicates that REWARDS achieves high

accuracy in revealing data structures accessed during an

execution. Furthermore, we demonstrate the benefits of

REWARDS to two application scenarios: memory image

forensics and binary vulnerability discovery.

9 Acknowledgment

We would like to thank the anonymous reviewers for

their insightful comments. We are grateful to Xuxian Jiang

and Heng Yin for earlier discussions and help on this and

related problems. This research is supported, in part, by the

Office of Naval Research (ONR) under grant N00014-09-1-

0776 and by the National Science Foundation (NSF) under

grant 0720516. Any opinions, findings, and conclusions or

recommendations in this paper are those of the authors and

do not necessarily reflect the views of the ONR or NSF.

References

[1] Libdwarf. http://reality.sgiweb.org/davea/dwarf.html.

[2] Mission critical linux. In Memory Core Dump,

http://oss.missioncriticallinux.com/projects/mcore/.

[3] O. Agesen. The cartesian product algorithm: Simple and

precise type inference of parametric polymorphism. In

Proceedings of the 9th European Conference on Object-

Oriented Programming (ECOOP’95), pages 2–26, London,

UK, 1995. Springer-Verlag.

[4] G. Balakrishnan, , G. Balakrishnan, and T. Reps. Analyzing

memory accesses in x86 executables. In Proceedings of In-

ternational Conference on Compiler Construction (CC’04),

pages 5–23. Springer-Verlag, 2004.

[5] G. Balakrishnan and T. Reps. Divine: Discovering variables

in executables. In Proceedings of International Conf. on

Verification Model Checking and Abstract Interpretation

(VMCAI’07), Nice, France, 2007. ACM Press.

[6] P. T. Breuer and J. P. Bowen. Decompilation: the enumer-

ation of types and grammars. ACM Trans. Program. Lang.

Syst., 16(5):1613–1647, 1994.

[7] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome,

P. Poosankam, D. Song, and H. Yin. Bitscope: Automatically

dissecting malicious binaries, 2007. Technical Report CMU-

CS-07-133, Carnegie Mellon University.

[8] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dis-

patcher: Enabling active botnet infiltration using automatic

protocol reverse-engineering. In Proceedings of the 16th

ACM Conference on Computer and and Communications

Security (CCS’09), pages 621–634, Chicago, Illinois, USA,

2009.

[9] J. Caballero and D. Song. Polyglot: Automatic extraction

of protocol format using dynamic binary analysis. In

Proceedings of the 14th ACM Conference on Computer and

and Communications Security (CCS’07), pages 317–329,

Alexandria, Virginia, USA, 2007.

[10] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and

D. R. Engler. Exe: automatically generating inputs of death.

In Proceedings of the 13th ACM conference on Computer

and communications security (CCS’06), pages 322–335,

Alexandria, Virginia, USA, 2006. ACM.

[11] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and

X. Jiang. Mapping kernel objects to enable systematic in-

tegrity checking. In The 16th ACM Conference on Computer

and Communications Security (CCS’09), pages 555–565,

Chicago, IL, USA, 2009.

[12] A. Case, A. Cristina, L. Marziale, G. G. Richard, and

V. Roussev. Face: Automated digital evidence discovery

and correlation. Digital Investigation, 5(Supplement 1):S65

– S75, 2008. The Proceedings of the Eighth Annual DFRWS

Conference.

[13] C. Chambers and D. Ungar. Iterative type analysis and

extended message splitting: Optimizing dynamically-typed

object-oriented programs. In Proceedings of the SIGPLAN

Conference on Programming Language Design and Imple-

mentation, pages 150–164, 1990.

[14] C. Cifuentes. Reverse Compilation Techniques. PhD thesis,

Queensland University of Technology, 1994.

[15] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.

Bouncer: securing software by blocking bad input. In Pro-

ceedings of the 21st ACM SIGOPS symposium on Operating

systems principles (SOSP’07), pages 117–130, Stevenson,

Washington, USA, 2007. ACM.

[16] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging

for data structures. In Proceeding of 8th Symposium on

Operating System Design and Implementation (OSDI’08),

pages 231–244, San Diego, CA, December, 2008.

[17] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-

Briz. Tupni: Automatic reverse engineering of input formats.

In Proceedings of the 15th ACM Conference on Computer

and Communications Security (CCS’08), pages 391–402,

Alexandria, Virginia, USA, October 2008.

[18] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin. Ro-

bust signatures for kernel data structures. In Proceedings of

the 16th ACM conference on Computer and communications

security (CCS’09), pages 566–577, Chicago, Illinois, USA,

2009. ACM.

[19] E. N. Dolgova and A. V. Chernov. Automatic reconstruction

of data types in the decompilation problem. Program.

Comput. Softw., 35(2):105–119, 2009.

[20] M. V. Emmerik and T. Waddington. Using a decompiler

for real-world source recovery. In Proceedings of the 11th

Working Conference on Reverse Engineering, pages 27–36,

2004.

[21] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based

whitebox fuzzing. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation (PLDI’08), pages 206–215, Tucson, AZ, USA,

2008. ACM.

[22] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed

automated random testing. In Proceedings of the 2005 ACM

SIGPLAN conference on Programming language design and

implementation (PLDI’05), pages 213–223, Chicago, IL,

USA, 2005. ACM.

[23] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox

fuzz testing. In Proceedings of the 15th Annual Network

and Distributed System Security Symposium (NDSS’08), San

Diego, CA, February 2008.

[24] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst.

Dynamic inference of abstract types. In Proceedings of

the 2006 international symposium on Software testing and

analysis (ISSTA’06), pages 255–265, Portland, Maine, USA,

2006. ACM.

[25] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol

format reverse engineering through context-aware monitored

execution. In Proceedings of the 15th Annual Network

and Distributed System Security Symposium (NDSS’08), San

Diego, CA, February 2008.

[26] Z. Lin, X. Zhang, and D. Xu. Convicting exploitable

software vulnerabilities: An efficient input provenance based

approach. In Proceedings of the 38th Annual IEEE/IFIP

International Conference on Dependable Systems and Net-

works (DSN’08), Anchorage, Alaska, USA, June 2008.

[27] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:

building customized program analysis tools with dynamic

instrumentation. In Proceedings of ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation

(PLDI’05), pages 190–200, Chicago, IL, USA, 2005.

[28] P. Milani Comparetti, G. Wondracek, C. Kruegel, and

E. Kirda. Prospex: Protocol Specification Extraction. In

IEEE Symposium on Security & Privacy, pages 110–125,

Oakland, CA, 2009.

[29] R. Milner. A theory of type polymorphism in programming.

Journal of Computer and System Sciences, 17:348–375,

1978.

[30] P. Movall, W. Nelson, and S. Wetzstein. Linux physical

memory analysis. In Proceedings of the USENIX Annual

Technical Conference, pages 39–39, Anaheim, CA, 2005.

USENIX Association.

[31] A. Mycroft. Type-based decompilation (or program recon-

struction via type reconstruction). In Proceedings of the

8th European Symposium on Programming Languages and

Systems (ESOP’99), pages 208–223, London, UK, 1999.

Springer-Verlag.

[32] R. O’Callahan and D. Jackson. Lackwit: a program under-

standing tool based on type inference. In Proceedings of

the 19th international conference on Software engineering,

pages 338–348, Boston, Massachusetts, United States, 1997.

ACM.

[33] J. Palsberg and M. I. Schwartzbach. Object-oriented type

inference. In OOPSLA ’91: Conference proceedings on

Object-oriented programming systems, languages, and ap-

plications, pages 146–161, Phoenix, Arizona, United States,

1991. ACM.

[34] N. L. Petroni, Jr., A. Walters, T. Fraser, and W. A. Arbaugh.

Fatkit: A framework for the extraction and analysis of

digital forensic data from volatile system memory. Digital

Investigation, 3(4):197 – 210, 2006.

[35] G. Ramalingam, J. Field, and F. Tip. Aggregate structure

identification and its application to program analysis. In

Proceedings of the 26th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages (POPL’99), pages

119–132, San Antonio, Texas, 1999. ACM.

[36] T. W. Reps and G. Balakrishnan. Improved memory-access

analysis for x86 executables. In Proceedings of International

Conference on Compiler Construction (CC’08), pages 16–

35, 2008.

[37] A. Schuster. Searching for processes and threads in mi-

crosoft windows memory dumps. Digital Investigation,

3(Supplement-1):10–16, 2006.

[38] T. Wang, T. Wei, Z. Lin, and W. Zou. Intscope: Au-

tomatically detecting integer overflow vulnerability in x86

binary using symbolic execution. In Proceedings of the 16th

Annual Network and Distributed System Security Symposium

(NDSS’09), San Diego, CA, February 2009.

[39] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace. Refor-

mat: Automatic reverse engineering of encrypted messages.

In Proceedings of 14th European Symposium on Research

in Computer Security (ESORICS’09), Saint Malo, France,

September 2009. LNCS.

[40] G. Wondracek, P. Milani, C. Kruegel, and E. Kirda. Auto-

matic network protocol analysis. In Proceedings of the 15th

Annual Network and Distributed System Security Symposium

(NDSS’08), San Diego, CA, February 2008.

[41] Y. Xie, A. Chou, and D. Engler. Archer: using sym-

bolic, path-sensitive analysis to detect memory access errors.

In Proceedings of the 9th European software engineering

conference held jointly with 10th ACM SIGSOFT interna-

tional symposium on Foundations of software engineering

(ESEC/FSE-10), pages 327–336, Helsinki, Finland, 2003.

