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Abstract—An essential forensic capability is to infer the
sequence of actions performed by a suspect in the commission
of a crime. Unfortunately, for cyber investigations, user activity
timeline reconstruction remains an open research challenge,
currently requiring manual identification of datable artifacts/logs
and heuristic-based temporal inference. In this paper, we propose
a memory forensics capability to address this challenge. We
present Timeliner, a forensics technique capable of automatically
inferring the timeline of user actions on an Android device across
all apps, from a single memory image acquired from the device.
Timeliner is inspired by the observation that Android app Activity
launches leave behind key self-identifying data structures. More
importantly, this collection of data structures can be temporally
ordered, owing to the predictable manner in which they were
allocated and distributed in memory. Based on these observations,
Timeliner is designed to (1) identify and recover these residual
data structures, (2) infer the user-induced transitions between
their corresponding Activities, and (3) reconstruct the device-
wide, cross-app Activity timeline. Timeliner is designed to lever-
age the memory image of Android’s centralized ActivityManager
service. Hence, it is able to sequence Activity launches across all
apps — even those which have terminated. Our evaluation shows
that Timeliner can reveal substantial evidence (up to an hour)
across a variety of apps on different Android platforms.

I. INTRODUCTION

One of the critical steps in a forensic investigation is
deriving a timeline of a suspect’s activities. As described
in [33], this task “involves evaluating the context of a scene
and the physical evidence found there in an effort to identify
what occurred and in what order it occurred.” In the physical
world, this is often modeled as inferring causal and temporal
relations between events involving the suspect(s) and victim(s).

In cyber investigations inferring a suspect’s temporal se-
quence of activities on his/her mobile device remains a chal-

lenging problem. Currently, investigators must manually coa-
lesce datable (often modifiable) forms of application-specific
evidence: e.g., call/message databases [19], [20] or web brows-
ing logs [21] saved on a mobile device’s SD-card. Since no se-
mantic links readily exist between these evidence sources, the
activity timelines reconstructed in this way are often heuristic
and incomplete at best. Further, while Android captures coarse-
grained information about user actions, major Android phone
manufacturers routinely disable these features [6].

To illustrate this challenge, consider the variety of mobile
apps utilized in the commission of even a simple espionage
crime: Upon receiving a go-ahead call from a conspirator, the
criminal uses his smartphone camera to take photographs of
sensitive documents and forwards them via a secure messaging
app to the conspirator. Being wary of his safety, the crimi-
nal immediately deletes the photographs and terminates the
messaging app. Finally, the criminal opens his banking app
to verify the payment from his conspirator in his account.
Each of these actions alone does not suggest a pattern of
espionage, but the causal relationship between the various user
actions (derived from their temporal ordering) indicates the
commission of the crime. Unfortunately, in order to reconstruct
the temporal sequence of these actions, investigators currently
have to perform three manual steps: (1) recover application-
specific evidence from the confiscated device, (2) infer tempo-
ral ordering relations among the user actions, and (3) derive a
global timeline to reveal the causal relationships between user
actions.

In this paper, we will show how Android memory forensics
— performed on a single memory image without temporal
logs — can achieve high-accuracy user/app action sequencing.
Through an in-depth analysis of mobile app activity handling
within Android, we have identified a set of application-
independent in-memory artifacts which represent state and
display changes across all applications. These artifacts, aptly
named Activities, are generated and managed by the An-
droid subsystem (specifically the ActivityManagerService) —
putting them out of the reach of any app’s execution and
making their recovery and interpretation generic with regard
to the app/user actions they represent. Further, each Activity
launch that an app performs is unique and leaves behind a
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signature, namely a collection of residual data structures that
are indicative of a specific user action on the device.

Leveraging the power of app-generic Activities, we then
turn our attention to the automatic, device-wide temporal
sequencing of app Activities. Again, we glean clues from the
Android subsystem’s in-memory artifacts. By modeling the
operation of the Android memory allocator, we found that
these residual data structures are allocated memory locations
(called “slots”) in a sequentially increasing ordering. Put
simply: if it is possible to recover the spatial ordering of these
slots for a sequence of historic Activities, then we can perform
inference of the specific temporal ordering of those Activities.

Inspired by these findings, we develop Timeliner, a memory
forensics technique which automatically performs inference of
an Android device user’s past actions from Activities across
different apps (even those which have terminated) found in one
memory image. The development of Timeliner overcomes a
number of challenges during the identification and subsequent
temporal sequencing of Activities: (1) Frequent allocation and
garbage collection (GC) induces fragmentation in memory,
causing consecutive allocations to become non-contiguous,
making identification and segregation of allocations into Activ-
ity launches difficult. (2) In a fragmented memory, identifica-
tion of spatial ordering among the Activity-identifying residual
data structures is also challenging. (3) Android’s memory
allocator utilizes thread-local buffers for small allocations,
spreading some residual data structures across several memory
locations, making the spatial ordering potentially ambiguous.
(4) Long temporal gaps between Activity launches can lead to
spatial gaps between their residual data structures, requiring
Timeliner to join multiple separated spatial orderings.

To address these challenges, Timeliner works in three
stages. First, Timeliner identifies and recovers all residual
data structures (several hundred per Activity launch) from a
subject Android memory image (Section III-A). This step is
akin to an investigator first identifying as many crime-related
events as possible. Next, like an investigator finding causal
relationships between the crime-related events, Timeliner uses
spatial ordering of the recovered Activity launches to infer
transitions between pairs of Activities (Section III-B). Lastly,
similar to an investigator reconstructing the expected timeline,
Timeliner orders the pairwise transitions to derive the global
ordering of Activities (Section III-B). Note that Timeliner does
not compete with forensic tools that recover evidence based on
content [51], [52], [58], [60], but instead complements them
by providing contextual meaning to the evidence they recover
by establishing a device-wide, inter-app temporal sequence of
user actions.

We have evaluated Timeliner, using micro-benchmarks and
recreations of real criminal investigations, across multiple
commercially available Android phones and a wide range of
applications covering messaging, voice calls, banking, email,
file management, and video streaming. Our results show that
Timeliner is highly accurate (our case studies recover as many
as 18 prior device-wide Activities) and provides convincing
evidence to investigators through the reconstructed timelines
of user actions. We also show that the techniques behind
Timeliner are neither limited to the Android platform (by
applying Timeliner to the jemalloc allocator) nor to only user-
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Fig. 1. Spatial Layout of Allocations in RosAlloc.

actions (by applying Timeliner to inter-application interactions
called Broadcasts).

II. BACKGROUND

Activity is the fundamental abstraction for a user action
provided by the Android framework. In particular, an Activity
is described as a “single, focused thing that the user can do” in
the Android developer documentation [1]. To showcase how
each Activity within an app models such a “single, focused
thing,” Table I in Section IV lists a number of Activities we
encountered during our evaluation. As a user interacts with
their device (e.g., clicking a button on the UI or receiving
a call), the Activity corresponding to each action will be
“launched”.

Timeliner aims to reconstruct the temporal sequence of
recent Activity launches that occurred on a subject device.
To identify the launch of a specific Activity from an input
memory image, Timeliner locates and recovers the unique
data structures left behind from the execution of the Activity
launch’s logic. Then, to reconstruct the sequence of these
Activity launches, Timeliner infers their temporal ordering
from the data structures’ spatial ordering (their allocation
pattern in memory). We now discuss the enabling principles
for these techniques.

A. Memory Allocator Design

Android’s memory allocator is a “Run” of “Slots” allocator
(named RosAlloc), where slots are individual memory locations
for object allocations and a run is a list of slots of the
same size. Like other Run of Slots allocators (e.g. phkmalloc,
jemalloc), allocation is handled through a per-run bitmap. Each
thread in a process manages its own thread-local runs for
smaller slots, along with shared runs for larger slots. As an
example, Figure 1 shows a few sample thread-local and shared
runs of different sizes for two threads.

An allocation request is first assigned to the run whose slots
best fit the requested size. A slot is chosen from this run based
on a “first-available” algorithm which assigns it to the first
empty slot picked from the bitmap, and subsequently the object
is instantiated at this location. When the run is completely
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filled, a new run is used, with a similar “first-available”
algorithm choosing the run with the lowest address. These
algorithms are deliberately designed to reduce fragmentation,
preferring low addresses for allocations.

The implication of these “first-available” algorithms is as
follows: If an allocation a (immediately) temporally precedes
an allocation b of the same size, then a will be assigned a
slot preceding b. Put simply, allocations that have a temporal
ordering will be assigned memory locations that have a corre-
sponding spatial ordering. This property is key to Timeliner,
which attempts to solve the reverse problem: Identify the
original temporal ordering of the allocations from their spatial
ordering in a memory image.

B. Identifying an Activity Launch from Allocations

As an Activity is launched, the transition from the previous
Activity to the newly launched Activity is centrally handled
by the ActivityManagerService. As such, the ActivityMan-
agerService receives several RPCs (Remote Procedure Calls)
when an Activity launch takes place. While executing the
RPCs, the ActivityManagerService will allocate several key
data structure “clusters” (i.e., a network of interconnected
data structures), hereinafter referred to as the residual data
structures of an Activity. An example of this can be seen in
Figure 2, where a specific Activity’s Intent object is allocated
as an RPC argument which links to other objects that are
allocated through routine execution.

An important property of these residual data structures is
that they are highly inter-connected. As the objects in residual
data structures are allocated during the same Activity launch,
they share a number of field values and are interconnected
via pointers. This is highlighted in Figure 2, where the Activi-
tyRecord, Intent, and ResolveInfo objects are required to share
references (both directly and through their fields). There is
another required value equivalence between the PackageName
fields of ActivityRecord and ResolveInfo objects.

Another key property of these residual data structures is
that they are organized as trees rooted at application-generic
objects. This is noticeable in Figure 2, where the Activi-
tyRecord, Intent, and ResolveInfo (application-generic) objects
can be utilized to identify (and traverse) the entirety of the
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Fig. 3. Sample Size Distribution for Residual Data Structures.

residual data structures. We call these top-most, application-
generic data structures root data structures, and Timeliner
utilizes 14 different root data structures to identify the residual
data structures that are leftover from each Activity launch.

As shown in the sample size distribution in Figure 3,
residual data structures are mostly composed of a large number
of small allocations in thread-local runs, and a small number
of large allocations in shared runs. Both types of allocations
provide the spatial information utilized by Timeliner. While
being limited to thread-local runs, the large number of al-
locations ensures that these allocations are spread out over
several runs across various threads. Similarly, while fewer in
number, the allocations in shared runs provide more robust
spatial ordering. In this way, while RosAlloc’s implementation
includes both thread-local and shared runs, Timeliner’s design
is not dependent on it. We demonstrate this by extending
Timeliner to another memory allocator (jemalloc) during our
evaluation — which utilizes only thread-local runs.

Lastly, note that the lifespan of residual data structures is
dependent on the Activity they represent. Further, the Activ-
ities belonging to the current Activity stack survive garbage
collection. However, even those that survive get diminished
in number. This is because many objects in the residual data
structures are utilized only temporarily during Activity launch
execution, making them candidates for garbage collection.
Despite their reduced numbers, these diminished residual data
structures are still recoverable and identifiable (i.e., they reveal
the original Activity’s name). This allows Timeliner to identify
Activities that occurred before the last garbage collection,
which we call garbage collected Activities.

C. Inferring Temporal Ordering from Spatial Ordering

As described above, each Activity launch generates residual
data structures, produced through the execution of the launch
logic. Figure 1 provides an example of the allocations from
four Activity launches, where all slots of the same color
represent the residual data structures of a single Activity
launch. The most important property to note from the layout of
the residual data structures is that they are of varying allocation
sizes and therefore occupy slots in multiple runs, both thread-
local and shared.
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In Section II-A we described how within a single run the
temporal ordering of allocations results in a corresponding
spatial ordering. This is the first step to inferring the temporal
ordering of the residual data structures from two Activity
launches — enabling Timeliner to solve for the above prin-
ciple (temporal ordering leads to spatial ordering) in reverse.
Timeliner applies the above principle across multiple runs
and recovers the temporal ordering for a pair of Activity
launches, which we refer to as the transition between two
Activities. Timeliner models the transitions as a directed edge
starting from a node for the former Activity and directed
towards a node for the latter. The nodes and edges for all
Activities recovered from a memory image are organized into
a transition graph. Figure 1 includes an illustration of the
transitions between various pairs of Activities.

A timeline of Activities that satisfies the transition graph
should satisfy each edge individually, i.e. for every transition
u → v, from Activity u to Activity v, u should occur before
v in the timeline. This ordering, known as the topological
ordering of a graph, allows Timeliner to solve for the timeline
by topologically sorting the transition graph.

Unfortunately, within individual runs, fragmentation of
memory (i.e., a new allocation fills a slot before an existing
allocation) can mislead Timeliner’s reconstruction. This will
result in an erroneous edge originating from one Activity and
pointing to another. Handling these misleading (i.e., incorrect)
transitions will require Timeliner to prune such edges from
the transition graph. Figure 4 describes two examples of such
pruning.

Notice also that Timeliner’s transition graph can entirely
miss edges which should exist. This can happen in two ways:
(1) If the current set of runs becomes filled, then the spatial or-
dering information inferred from those runs (i.e., one transition
between two Activities) is lost. As a result, the transition graph
is partitioned into several connected components, the temporal
orderings of which are termed local orderings. Luckily, as
the runs are chosen just like slots, i.e. with a “first-available”
algorithm, the different local orderings can be joined later
based on the spatial ordering of their runs into a single
global ordering. (2) If two successive Activities do not share
a common run, then there is no evidence of the transition
between them. In this case, an ambiguity exists in their spatial
ordering, and hence temporal ordering, leading to multiple
possible timelines for those Activities. Hence, Timeliner needs
to find all the topological orderings for the given transition
graph. An example is shown in Figure 1, where there are two
possible timelines.

III. TIMELINER DESIGN

Timeliner operates on only a single memory image from an
Android device. From this memory image, Timeliner isolates
and inspects the ActivityManagerService process’s dynamic
memory allocation space. Note that because Timeliner only
relies on generic framework defined objects like Activities,
Timeliner has no application-specific requirements in its design
or implementation. Further, Timeliner’s operation is entirely
automated with no supervision required from an investigator
— allowing it to be immediately deployable in practical
investigations. In the remainder of this section, we will present
the three phases of Timeliner’s design.

Algorithm 1 Segregating Residual Data Structures.
Input: Object List O, RootClass List Roots
Output: ResidueObjectSet List Residues

. Identify and Add the Root Data Structures
Object List rootObjs← ∅
for Object o ∈ O do

if o.class ∈ Roots then
rootObjs← rootObj ∪ o

. Segregate into different partial ResidueSets
ResidueObjectSet List PartialResidues← ∅
for Object rootObj ∈ rootObjs do

ResidueObjectSet newResSet← rootObj
. Match each root to identified partial ResidueSets

for ResidueObjectSet resSet ∈ PartialResidues do
for Object singleRes ∈ resSet do

if MATCH(rootObj, singleRes) then
. Merge partial residueSets for the same Activity

newResSet← newResSet ∪ resSet
PartialResidues← PartialResidues− resSet
break

. Add the new partial residueSet back to PartialResidues
PartialResidues← PartialResidues ∪ newResSet

. Recurse to get ResidueSets
ResidueObjectSet List Residues← ∅
for ResidueObjectSet resSet ∈ PartialResidues do

ResideObjectSet fullResSet← RECURSE(resSet)
Residues← Residues ∪ fullResSet

A. Identifying Residual Data Structures

As Section II-B introduced, highly-interconnected sets of
objects called residual data structures are left over from the
execution of past Activity launches. Therefore, Timeliner must
first recover objects and segregate them into residual data
structures. This procedure is shown in Algorithm 1. As a
running example, we shall recall the structures shown in
Figure 2 throughout this section.

Timeliner first scans the input memory image to identify all
objects previously allocated by the ActivityManagerService,
whether still active or deallocated but waiting for garbage
collection (“dead objects”). This step is accomplished with
the help of the runtime type information included in the
managed runtime of Android (ART), which includes type
information for objects and their fields. These are included
in every process’s memory space, so Timeliner can recover
them directly. Note that Timeliner also recovers dead objects
since Android’s memory management is automatic and slots
remain allocated until a garbage collection event. This list of
recovered objects is given as the input to Algorithm 1.

Next, Timeliner parses this list of objects and identifies
the root data structures. Defined in Section II-B, these data
structures are crucial for the identification of residual data
structures (the “fingerprints” left by Activity launches). In
Figure 2, we can see that the Intent, ActivityRecord, and
ResolveInfo objects are three instances of such root data
structures. An important point to note is that these root data
structures are highly inter-connected, and as such, they can be
used to segregate the recovered objects into distinct residual
data structures.

This is exactly the approach used in Timeliner, as explained
in Algorithm 1, the list of root data structures is segregated into
distinct partial residual data structures. Note that these resultant
residual data structures (named ResidueSets in Algorithm 1)
are called partial, as they do not (yet) include the various
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non-root residual data structures reachable from the recovered
instances of root data structures.

This segregation is affected by the “MATCH” function,
which contains predefined application-generic relationships
between the root data structures. In Figure 2, Intent and Ac-
tivityRecord are matched by their predefined ComponentName
field values, and also a direct pointer from ActivityRecord
to Intent. Further, ResolveInfo is linked to Intent via their
predefined PackageName and ComponentName field values.
Timeliner also leverages value equivalence in the Package-
Name fields of the ResolveInfo and ActivityRecord objects.

With these segregated partial residual data structures,
Timeliner then recursively adds fields of the root objects
that link non-root residual data structures from each Activity
launch. This is represented in Algorithm 1 as the “RECURSE”
function. When applied to the case presented in Figure 2,
this would add any additional data structures reachable from
the Intent, ActivityRecord, and ResolveInfo objects, leading
to a full set of residual data structures (which represent an
individual Activity launch).

After this step, Timeliner has obtained a list of Activities
(whose launches create distinct residual data structures) and
now needs to establish their temporal ordering. In the next
section, Timeliner shall build a transition graph for these
Activities.

B. Building the Transition Graph

As discussed in Section II-C, two Activities are said to
have a transition if they have a corresponding temporal order-
ing. Simply put, an Activity e has a transition to an Activity
f if e is launched before f .

As noted in Section II-A, the residual data structures are
assigned slots spread across several runs. Further, recall from
Section II-C, that a single run can give misleading information
due to fragmentation, and thus Timeliner utilizes multiple runs
to infer transitions between two Activities, say Activity e and
Activity f .

We define an Activity e as a set of pairs, where each pair
consists of a run and a list of corresponding slots occupied
by residual data structures of the Activity e. This can be
represented as:

e = {(r, s) | r ∈ Runs ∧
s = {i | r[i] ∈ Residue(e)}} (1)

where r is a Run and s is the list of indices of occupied slots
for Activity e. The “Residue” function represents the residual
data structures allocated during the launch of Activity e, which
were identified in the previous section.

Identifying Transitions. An Activity e will have a transition
to an Activity f if (1) they share runs where all allocations of
e precede all allocations of f and (2) they do not share a run
where the opposite ordering occurs, that is, any allocation of e
succeeds any allocation of f . With these properties in mind, we
define the following two functions, allPrecede and anySucceed,
counting the common runs that have all allocations of e
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preceding allocations of f and those with any allocation of
e succeeding allocations of f , respectively.

allPrecede(e, f) = |{r | (r,m) ∈ e ∧ (r, n) ∈ f ∧
max (m) < min (n)}|

anySucceed(e, f) = |{r | (r,m) ∈ e ∧ (r, n) ∈ f ∧
max (m) > min (n)}|

(2)

where e and f are Activities, r is a common run, and m
and n are lists of slots in the common run r. There exists
a transition between e and f if allPrecede(e,f ) is positive and
anySucceed(e,f ) is equal to zero. Timeliner organizes these
Activities as nodes and transitions as edges in a graph, called
the transition graph.

Assigning Weights to Transitions. The higher the number
of shared runs between two Activities (while maintaining the
correct ordering), the higher the confidence in the transition,
as the odds of coincidentally sharing runs decreases exponen-
tially with the number of shared runs. Hence, if a transition
exists, we assign the transition from Activity e to Activity
f a weight equal to the number of shared runs between
the two Activities. Note that the number of common runs
is equal to allPrecede(e,f ) + anySucceed(e,f ), however as
anySucceed(e,f ) is equal to zero for a transition, the weight a
transition is assigned is equal to allPrecede(e,f ).

Pruning the Transition Graph. As noted in Section II-C,
due to fragmentation, it is possible for a new allocation to fill
up a slot before a pre-existing allocation. This means that an
erroneous spatial ordering exists from the new allocation to
the pre-existing one, and this implies a transition edge from a
new Activity to a much older one. Clearly, this erroneous edge
in our transition graph can lead to a wrong temporal ordering
and must be pruned.

To handle such erroneous transitions, we use the observa-
tion that while it is possible for a new Activity to reuse a run
and share it with an older Activity, it is improbable for them to
share two runs, and unlikely to share three. Hence, we assume
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a maximum weight of two for such edges. Further, such an
erroneous edge can be classified as one of the following two
cases:

1) Transition between two connected components:
The edge connects two connected components, which
contain legitimate transitions and are highly inter-
connected. In other words, such an edge serves as the
minimum cut in the graph, and as discussed above,
is limited to a maximum weight of two. An example
can be seen in the top half of Figure 4, where there
is an erroneous edge pointing from node H to node
C, serving as the minimum cut between the two sub-
graphs. Pruning the graph in the example leads to two
connected components, one with nodes {A,B,C,D}
and the other with nodes {H, I}.
To implement this, Timeliner utilizes a min-cut algo-
rithm (Stoer-Wagner [57]) on the corresponding undi-
rected version of the transition graph, running the al-
gorithm for each connected component, as explained
in Algorithm 2. Assuming that there are n Activities
and hence O(n2) edges, the time complexity of the
algorithm is O(n3).

2) Transition in the same connected component: The
edge connects two nodes in the same connected
component, creating a cycle. Note that this can only
happen if a garbage collection event happens between
the Activities covered in the transition subgraph,
allowing a new Activity to re-use a run used by an
older Activity.
Timeliner utilizes this property to remove the erro-
neous edge, pointing from an Activity launched after
the garbage collection event, to an Activity launched
before. As noted in Section II-B, the Activities that
occurred before the last garbage collection event,
called garbage collected Activities, can be identified
by their diminished residual data structures. An ex-
ample can be seen in Figure 4, with the erroneous
edge pointing from node E to node A removed from
the transition graph. The complexity of this algorithm
is linear with respect to the number of edges.

In the next section, Timeliner utilizes this pruned transition
graph and reconstructs the device-wide sequence of Activities,
which we call the timeline.

C. Reconstructing the Global Ordering for Activities

Before we describe the procedure of finding the temporal
ordering, it is important to prove the existence of one. As
discussed in Section II-C, Timeliner solves for the topological
ordering for a given transition graph. It is a known property of
directed graphs that a topological ordering exists if and only if
it is acyclic. While it is obvious that a graph with a cycle cannot
be topologically ordered, it can also be proven that a depth first
search in an acyclic graph (where a node is processed after its
children are processed) leads to a reverse topological ordering.
Hence, proving the existence of a topological ordering is
equivalent to proving that the directed graph is acyclic. In
Timeliner’s transition graph, because of the “first-available”
memory allocator algorithm, cycles can only be erroneous.
Therefore, the acyclic property of the transition graph is
guaranteed by the pruning described in Section III-B.
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Algorithm 2 Reconstruct the Global Ordering.
Input: Graph Transitions
Output: Graph T imeline

. Remove Erroneous Edges - O(n3)
GraphList Components← Transitionscomponents

for Graph g ∈ Components do
(cutSize, cutEdges)←min-cut(undirected(g))
if cutSize < 3 then

Transitions← Transitions− cutEdges

if HasCycle(g) then
for Transition (e→ f) ∈ g do

if not IsGarbageCollected(Residue(e)) then
if IsGarbageCollected(Residue(f)) then

g ← g − (e→ f)

. Topologically Sort into Local Orderings - O(numTimelines*n2)
GraphList LocalOrderings← ∅
GraphList Components← Transitionscomponents

for Graph g ∈ Components do
LocalOrderings← LocalOrderings ∪ topological-sort(g)

. Identify Joinable Local Orderings - O(n)
GraphList JoinableOrderings← ∅
for Graph g ∈ LocalOrderings do

Activity a← g.lastActivity()
if not IsGarbageCollected(Residue(a)) then

JoinableOrderings← JoinableOrderings ∪ g

. Join Local Orderings into Global Ordering - O(n)
Graph T imeline← ∅
JoinableOrderings.lastActivity().sort()
for Graph g ∈ JoinableOrderings do

T imeline.append(g)

Local Orderings. Given a list of Activities recovered in
Section III-A, Timeliner topologically orders the transition
graph from Section III-B to establish various local orderings of
Activity launches. However, as discussed in Section II-C, there
are possible ambiguities in the temporal orderings of Activities,
causing multiple possible timelines. An example can be seen in
Figure 5, with the local ordering of nodes {A,B,C,D} having
two possible solutions. To effectively compute all the solutions,
Timeliner performs a depth-first search with backtracking.
The complexity of this algorithm is O(numTimelines*n2),
assuming n Activities and numTimelines solutions of temporal
orderings.

Joinable Local Orderings. As described in Section II-A,
Timeliner uses the property that runs are allocated via a “first-
available” algorithm. This implies that, just like allocation
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TABLE I. LIST OF SOME APPLICATIONS AND A FEW EXAMPLE ACTIVITIES.

Application Activities

WhatsApp HomeActivity Conversation VoipActivity RecordAudio
CameraActivity MediaGallery ProfileActivity VoiceMessaging

WeChat LauncherUI ChattingUI AlbumPreviewUI VideoActivity
SelectContactUI ContactInfoUI GroupCardSelectUI NearbyFriendsIntroUI

Signal ConversationListActivity ConversationActivity RedPhone NewConversationActivity
GroupCreateActivity ContactSelectionActivity ShareActivity SmsSendToActivity

Skype HubActivity PreCallActivity ContactDirectorySearch ContactProfileActivity
ContactEditActivity ContactDetail ContactAddNumber AddParticipantsActivity

Messaging ConversationListActivity ConversationActivity WidgetReplyActivity PeopleAndOptionsActivity
ApplicationSettingsActivity ShareIntentActivity WidgetPickConversation VideoShareActivity

Dialer InCallActivity CallLogActivity CallDetailActivity PeopleActivity
QuickContactActivity BlockedNumbersActivity ImportVCard CallSubjectDialog

Chase AccountsActivity BillPayAddStartActivity BillPayAddVerifyActivity BillPayHistoryActivity
QuickPayChooseRecipient TransferActivity QuickDepositStartActivity FindBranchActivity

Gmail ConversationListActivity ComposeActivityGmail AccountSetupFinalActivity GmailPreferenceActivity
Facebook SplashScreenActivity PickerLauncherActivity ComposerActivity FbMainTabActivity
File Browser FileBrowserActivity TaskProgressActivity FileConverterActivity HttpServerActivity
Netflix HomeActivity SearchActivity ShowDetailsActivity PlayerActivity

slots, the runs for different local orderings are spatially or-
dered. However, this spatially-increasing ordering does not
always hold true, because of garbage collection events. A
garbage collection event frees up low memory runs that are
used by future Activities, causing a backward jump in the spa-
tial ordering. Hence, Timeliner only joins those local orderings
whose last Activities occur after the last garbage collection
event. Such joinable local orderings can be distinguished
by identifying garbage collected Activities as discussed in
Section II-B. An example can be seen in Figure 5, where the
two local orderings with nodes {A,B,C,D} and {E,F,G}
are joinable, even though node A is a garbage collected
Activity. Note that while garbage collection makes it difficult to
order garbage collected Activities, it does not entirely prohibit
it. For example, a local ordering that includes Activities that
span a garbage collection event, from both before and after the
event, is a joinable local ordering.

Global Ordering. To join multiple joinable local orderings
into a single global ordering, Timeliner first identifies the
Activities that were launched after the last garbage collection,
as explained in Section II-B. Then Timeliner joins the local
orderings which end with these Activities, following the spatial
ordering of the runs that hold their allocations, yielding the
global ordering. For example, in Figure 5, we see that the
local orderings with nodes {A,B,C,D} and {E,F,G} are
joined into a global ordering. The joining of local orderings
into a global ordering has a complexity linear with respect to
the number of Activities.

The resultant global ordering is returned by Timeliner to
the investigators as the device-wide sequence of user actions.

IV. TIMELINER EVALUATION

Timeliner is implemented as a plugin for the AOSP (An-
droid Open Source Project) and executes within an Android
emulator, utilizing ART’s runtime environment to identify
crucial data structures for the memory allocator. Timeliner
also reuses ART’s various libraries to automatically parse and
process the definitions of the residual data structures stored in
the input memory image.

Setup. Timeliner is evaluated across 3 commercially available
smartphones (Samsung Galaxy S4, LG G3 and Motorola Moto
G3) using a variety of different applications. These include
messaging apps such as WhatsApp, WeChat, Signal (widely
renowned for security), each vendor’s Messaging app, voice
and video telephony apps like the vendors’ Dialer apps and
Skype. We also include email applications such as Gmail, the
Chase Banking personal banking app, a video streaming app
(Netflix), a social network app (Facebook), and various utility
apps such as File Browser, Downloads, PDFReader, Camera,
and Google Maps.

Table I lists a small subset of the Activities that are
present in some different apps that we used in our evaluation.
As Table I shows, the names of these Activities are very
descriptive of the user actions they represent. For example,
even within sophisticated apps like Signal, we can see Activi-
ties such as ConversationListActivity and ConversationActivity
which describe viewing a list of past conversations versus
clicking into a single conversation. Representing the action
of making a voice/video call, we see the VoipActivity in
WhatsApp, VideoActivity in WeChat, RedPhone (making a
secure phone call) in Signal, PreCallActivity in Skype, and
InCallActivity in Dialer. Even fine-grained app-specific actions
can be captured, such as ComposeActivityGmail for composing
an email, BillPayAddStartActivity for initiating a bill payment,
and QuickDepositStartActivity for starting a check deposit.
These vivid descriptions are due to the fact that Activities serve
as intuitive abstractions for user actions.

However, the most important information for a criminal
investigator is not just isolated user actions but the complex
sequencing of Activities. For example, a FileBrowserActivity
followed by a TaskProgressActivity(delete) showcases that the
user deleted a file. This interplay of activities can be used
to develop the timeline of a crime: For example, a user first
takes a photograph with the CameraLauncher Activity in the
camera app, followed by sharing the photo via WhatsApp’s
ChooserActivity(share) and ImagePreview activities. Finally,
the user opens the photo via the FileBrowserActivity and
deletes it with the TaskProgressActivity(delete) Activity. This
semantically-meaningful series of user actions can be essential
for quickly focusing a developing criminal investigation.
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Fig. 6. Duration Between Garbage Collection Events Across Three Devices
During Active and Idle Usage.

A. Garbage Collection

Garbage collection events can clear the allocations of
Activities that are not alive (on the Activity stack) and hence do
not have a reference towards them, causing limited evidence re-
covery. Further, garbage collection can also break the spatially-
increasing ordering (due to the “first-available” algorithms) by
causing a jump from high to low memory addresses as those
runs become available. Hence, garbage collection events lead
to (1) loss of evidence and (2) partial loss of spatial ordering
for the remaining evidence in memory. However, note that
while garbage collection makes it difficult to order garbage
collected Activities, they can still be ordered if they are a part
of some joinable local ordering.

To understand the limitations on Timeliner due to garbage
collection, we begin the evaluation of Timeliner by evaluating
(1) the frequency of garbage collection and (2) Timeliner’s
recovery after garbage collection events.

We first evaluate garbage collection frequency across dif-
ferent devices and under different usage conditions, while
aiming to measure the time duration between different garbage
collection events. To do so, we instrumented and measured the
frequency of garbage collection on the ActivityManagerService
process (the subject of Timeliner’s reconstruction). Note that
this is a service provided by the Android framework, which is
largely unaffected by the processing done in any application.
Hence, while certain applications are quite memory intensive
(causing heavy workload of allocations), the frequent garbage
collections are limited to their own processes.

This garbage collection profiling was carried out under two
different conditions: (1) the phone was left idle and (2) the
phone underwent constant user activity. For this purpose, we
first installed all the applications listed in Table I on the three
devices. For the idle case, we turned the device’s screen off
and left the phone idle. However, due to the presence of events
raised by various background services (e.g., the AlarmManager
service) the memory usage of the ActivityManager process
slowly increases with time. For the active usage case, we
repeatedly followed the sequence of Activities shown in Set A
listed in Table III, raising a new Activity every two to three
minutes.

TABLE II. RECOVERY BY TIMELINER UNDER GARBAGE COLLECTION.

Time
(minutes)

Total
Activities

Activities
Since GC

Activities
Recovered

Activities
Ordered

0 1 0 1 0
10 8 7 8 7
20 11 10 11 10
30 15 14 15 14
40 17 16 17 16

GC FOR ALLOC at t = 44 minutes
50 23 6 8 7
60 28 11 13 12
70 31 14 16 15
80 34 17 19 18

GC FOR ALLOC at t = 82 minutes
90 41 7 10 8
100 46 12 15 13
110 50 16 19 17

Figure 6 presents our profiling results across the three
devices under each usage condition, with Activities raised
since last garbage collection event shown for each device. In
the active usage case, garbage collection events were triggered
periodically after 41-50 minutes (that followed raising 14 to
18 Activities). Interestingly, even after repeated triggering of
the garbage collection events, this period remained roughly
the same. This suggests a stable heap size and memory
usage pattern. In the idle case, garbage collection events were
triggered after 98 to 113 minutes, again due to the slower
increase in memory usage within the ActivityManagerService
process when the device is idle.

To further confirm Timeliner’s recovery under garbage
collection, we profiled garbage collection events and Activity
launches on the Motorola device. During this time, we captured
memory snapshots every 10 minutes (as any one of those could
be the one taken when investigators confiscate the device) and
use Timeliner to recover the Activities in the memory image.
The results are detailed in Table II.

As expected, we can see that the Activities recovered by
Timeliner include the set of Activities launched since the last
garbage collection event. Timeliner also recovered Activities
that survived garbage collection. Out of these Activities that
survived the garbage collection event, a few of them also get
ordered as they were part of a joinable local ordering. Note
that there are two garbage collection events because of memory
allocation requests (GC FOR ALLOC) at 44 and 82 minutes,
respectively.

In a criminal investigation, a device’s past usage will blend
both idle and active periods, but in either case this is an ample
time window to capture the details of a crime carried out on
a smartphone.

B. Micro-Benchmarks

To evaluate Timeliner’s reconstruction capability, this sec-
tion presents micro-benchmark results measured during Time-
liner’s recovery across a variety of memory images. For this
recovery, the authors interacted with the sets of Activities
described in Table I. The activities in the applications were
launched following one of ten random sequences, the exact
sequences of launches are detailed in Sets A through J in
Table III. We performed six experiments on each of the three
devices, each experiment using a different activity sequence
taken from the defined ten random sequences. Each Activity
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TABLE III. TIMELINE RECONSTRUCTION FOR MICRO-BENCHMARK EXPERIMENTS ACROSS DIFFERENT DEVICES.

Device Experiment
Set

Activity
Count

Duration
(Minutes)

Activities
Recovered

Activities
Ordered

Root
Structures

Residual
Structures

Local
Orderings

Number of
Timelines

Kendall-Tau
Distance

Samsung S4

Set A 15 39 17 16 91 6526 4 1 0
Set B 13 37 14 14 77 5584 2 1 0
Set C 16 51 18 16 95 6218 5 1 0
Set D 12 22 13 12 65 4881 4 1 0
Set E 13 34 15 14 81 5079 3 1 0
Set F 15 45 16 15 86 6049 5 1 0

LG G3

Set G 14 38 16 15 85 5427 5 1 0
Set H 16 42 18 16 94 6395 4 1 0
Set A 15 33 17 16 92 6241 4 1 0
Set I 14 28 16 14 83 5280 5 1 0
Set J 15 37 16 16 97 6429 3 1 0
Set B 13 28 15 14 78 5227 3 1 0

Moto G3

Set G 14 35 15 14 83 5016 4 1 0
Set D 12 28 15 13 70 4589 3 1 0
Set C 15 57 16 15 88 5782 5 1 0
Set I 14 39 16 14 87 5296 4 1 0
Set A 15 41 17 16 85 5721 5 1 0
Set H 14 48 15 14 83 5192 3 1 0

Experiment Set Sequence of Activities (Randomly Chosen for Micro-Benchmarks)
Set A Launcher → WhatsApp{ Conversation → HomeActivity → Conversation → VoipActivity → Conversation → CameraActivity → Conversation } → Launcher →

Gmail{ ConverastionListActivity → ComposeActivityGmail } → Launcher → Downloads{ FilesActivity → ShareActivity } → Launcher

Set B Launcher → Skype{ HubActivity → ContactDirectorySearch → ContactProfileActivity → ContactEditActivity } → Launcher → Dialer{ CallLogActivity → CallDetailActivity →
PeopleActivity → InCallActivity } → Launcher → Netflix{ HomeActivity → PlayerActivity }

Set C Launcher → WeChat{ LauncherUI → ChattingUI → VideoActivity → SelectContactUI → SingleChatInfoUI → ContactInfoUI } → Launcher → Signal{ ConversationList →
Conversation → GroupCreate } → Launcher → Signal{ GroupCreate → ContactSelection } → Launcher → Gmail{ ConversationList → GmailPreference } → Launcher

Set D Launcher → Messaging{ ConversationList → Conversation } → Launcher → Messaging{ Conversation → PeopleAndOptions } → Dialer{ InCallActivity } → Launcher →
Chase{ AccountsActivity → BillPayAddStartActivity → BillPayAddVerifyActivity } → Launcher

Set E Launcher → Netflix{ HomeActivity → SearchActivity → ShowDetailsActivity → PlayerActivity } → Launcher → WhatsApp{ HomeActivity → GroupMemberSelector →
NewGroup → Conversation } → Launcher → Downloads{ FilesActivity } → Launcher

Set F Launcher → Signal{ ConversationListActivity → ConversationActivity → DocumentsActivity → RedPhone } → Launcher → Skype{ HubActivity → PreCallActivity →
HubActivity → ContactProfileActivity } → Launcher → Chase{ AccountsActivity → BillPayHistoryActivity → QuickPayTodoListActivity } → Launcher

Set G Launcher → Gmail{ ConverastionListActivity → ComposeActivityGmail } → Launcher → Dialer{ CallLogActivity → PeopleActivity } → Launcher →
Dialer{ PeopleActivity → BlockedNumbersActivity → InCallActivity } → Launcher → Downloads{ FilesActivity → UploadActivity } → Launcher

Set H Launcher → Chase{ HomeActivity → AccountsActivity → AlertsHistoryActivity → FindBranchActivity → LocationInfoActivity → AccountsActivity } → Launcher →
Dialer{ CallLogActivity → CallDetailActivity → PeopleActivity } → Launcher → WhatsApp{ HomeActivity → Conversation → VoipActivity → CameraActivity }

Set I Launcher → Skype{ HubActivity → PreCallActivity → ContactProfileActivity } → Launcher → Signal{ ConversationListActivity → ConversationActivity → RedPhone →
NewConversationActivity → ConversationActivity → DocumentsActivity } → Launcher → Gmail{ ConversationListActivity → GmailPreferenceActivity }

Set J Launcher → WhatsApp { HomeActivity → GroupMemberSelector → NewGroup → Conversation } → Launcher → Skype{ HubActivity → ContactDirectorySearch →
ContactProfile → ContactEdit } → Launcher → Netflix{ HomeActivity → SearchActivity } → Launcher → Netflix{ SearchActivity → ShowDetailsActivity → PlayerActivity }

in a sequence is started and left on the screen for a varying
amount of time, around two to three minutes. To mitigate the
effect of garbage collection on these micro-benchmarks, we
initiated a garbage collection before starting each experiment.
Memory images were captured by a custom handler invoked
at the next garbage collection event, implemented by instru-
menting the internal garbage collection event handler.

To verify the accuracy of Timeliner’s recovery, we com-
pared the reconstructed timeline with the original list of Activ-
ities. The ground truth about Activity launches was captured
by profiling the ActivityManagerService process. We stored
the addresses of the allocated Activity-launch related data
structures along with the original timeline of the activities.
The allocated data structures were stored to correctly iden-
tify recovered activities from the original sequence and this
timeline was used to verify Timeliner. Note that Timeliner did
not need nor have access to this ground truth information and
reconstructed Activity timelines completely oblivious to our
external measurement.

Table III provides a summary of the micro-benchmark
results from these experiments. The first column shows the
device the experiment was run upon and the experiment set
used, followed by Activity Count and Duration of the ground
truth timeline. The fourth and fifth columns list the number
of Activities recovered and the number of Activities ordered
by Timeliner. Next two columns present recovery metrics: the
total number of roots and residual data structures recovered.

The eighth and the ninth columns show the number of local
orderings recovered and the number of possible timelines in
the global ordering and the last column compares the original
ground truth to the recovered timeline (minus Activities not
in the ground truth) via Kendall-Tau distance [10]. Kendall-
Tau distance compares two ordered lists and calculates the
number of pairwise disagreements between them. This is a
good measure for a timeline as the more displaced an activity
is from its correct position, the higher the Kendall-Tau distance
(therefore a minimal distance value is best). Finally, the exact
sequence of Activities in the 10 experiment sets is presented
at the bottom of Table III.

First, from Table III, observe that for some cases like Set
C in Samsung, Set J in LG, and Set C and Set H in Motorola,
the Activity count in the experiment is less than the number
of Activities in the experiment set. This is because in these
cases, a garbage collection event was triggered before the
sequence of Activities was finished. Hence, a smaller set of
Activities is taken from the experiment set. For other cases, if
the sequence was finished without a garbage collection event,
one was triggered manually.

Even though garbage collection is triggered manually in
some cases, the workload in Table III is quite similar to the
one in Section IV-A. For example, the number of Activities in
the original timeline varies from 12 to 16 with an average of
14.16 Activities per experiment, similar to what was observed
in Section IV-A. Similarly, the time duration varies from 22
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to 57 minutes with an average of 37.88 minutes, again similar
to the observed results in Section IV-A.

The results of the micro-benchmarks are also quite similar
to the results from Section IV-A. For example, just like in
Table II, Timeliner recovers more Activities than the ones that
were raised after the last garbage collection event because
some Activities will survive garbage collection. While not all
Activities can be ordered because of loss of spatial and tempo-
ral information, some local orderings are joinable. This allows
Timeliner to order more Activities than were in the experiment
set. For the micro-benchmarks, Timeliner recovers 13 to 18
Activities with an average of 15.83 Activities per experiment.
The global orderings generated by Timeliner contain 12 to 16
Activities with an average of 14.67 Activities per experiment.

Looking at the data structure metrics, we see that Time-
liner recovers an average of 84.44 root data structures per
experiment, which equals 5.33 roots per recovered Activity.
Similarly, Timeliner recovers an average of 5607.33 residual
data structures per experiment, which leads to 354.15 residual
data structures per recovered Activity. These averages are
roughly constant across the various experiments, implying that
the residual data structures are (roughly) application-generic.

We also compare the metrics across the three devices. On
average, the Samsung device yields 14.33 Activities over 38
minutes, while LG has 14.83 Activities over 34.33 minutes,
and Motorola has 14.83 Activities over 41.33 minutes. We
also observe that (per-Activity) the Samsung device yields an
average of 369.21 residual data structures, LG has an average
of 357.13 residual data structures, and Motorola an average
of 336.12 residual data structures, which follow the earlier
observations that there are roughly similar number of residual
data structures per activity even across devices. The similarity
of these results gives us confidence that vendor-customizations
rarely affect both low-level primitives of memory allocation
and application-generic residual data structures.

Finally, we compare the metrics that pertain to ordering,
namely local orderings, number of possible timelines in the
global ordering and the Kendall-Tau distance. As we can see,
we get a few local orderings, varying from 2 to 5 for different
experiments. From the other two metrics, it is visible that
Timeliner is highly successful in ordering the Activities. Not
only is Timeliner highly precise, with 1 unique timeline in the
global ordering of every experiment, it is also highly accurate
with the Kendall-Tau distance for all the experiments being
equal to zero. In other words, Timeliner is able to perform
perfect recovery of the Activity timeline.

The accuracy of Timeliner, while surprising, is intuitive as
there are no spatial (and hence temporal) ambiguities because
of the following two properties: (1) application-generic resid-
ual data structures contain a large number of objects spread
across shared and thread-local runs, ensuring unambiguous
spatial ordering, and (2) a complete global ordering of the
Activities after the last garbage collection event is ensured
by their local orderings being joinable (because of the “first-
available” algorithms).

Next, we show that Timeliner’s design is generic and
applicable across various Android versions and even other
memory allocators.

bins runs
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Fig. 7. mozjemalloc Design and Simulated Results.

C. Design Generality

While Timeliner is implemented within a specific Android
platform, Timeliner’s design and operation is generic, and
Timeliner is immediately applicable across the newest and
most widely used Android versions. The devices in this
evaluation all use different Android platforms: the Samsung
running Android 5.0, LG running Android 5.1, and Android
6.0 running on the Motorola. These versions comprise 61.5%
of the current Android devices and represent a wide variety of
available Android smartphones [2].

Timeliner’s generic design is due to a robust set of root
data structures used to identify the residual data structures.
The same set of root data structures is highly efficient because
the Activity launch logic is similar across various Android
versions. Further, Timeliner can also be applied to memory al-
locators other than RosAlloc, as many other memory allocators
also perform “first-available” allocations.

Extension to jemalloc. jemalloc is a memory allocator
widely used across products such as Firefox, Cassandra, Re-
dis, among many others [9]. Our investigation reveals that
jemalloc (without thread caching) also utilizes a similar design
to RosAlloc, with a “first-available” algorithm for memory
allocation. In particular, we discuss the design and extension of
Timeliner to mozjemalloc [14], a modified implementation of
jemalloc used across various Mozilla products such as Firefox
and Thunderbird. The following discussion is based on the
mozjemalloc version bundled as the default memory allocator
in Firefox 55.0.

The design of mozjemalloc is shown in Figure 7, with
allocations stored in Regions (slots in RosAlloc) and regions
of same size organized in Runs. Runs with allocations of the
same size are placed in bins, and bins are placed in a (thread-
local) Arena. Each bin has a current run to allocate from, with
the rest of the runs (that have free Regions) organized in a red-
black tree. The algorithms utilize a bitmap for “first-available”
Region allocation. New runs are also allocated in accordance
to a “first-available” algorithm, utilizing a red-black tree.

To evaluate Timeliner’s recovery on mozjemalloc, we
simulate Activity launches by following the allocation size
distribution from Figure 3, spread out evenly across two
threads in mozjemalloc. We simulated five Activity launches
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on mozjemalloc, which was initialized with five threads, and
inferred their transitions with Timeliner— applying the same
spatial-temporal principle from before. Timeliner constructed
and topologically sorted a transition graph for the Activities
in order to reconstruct the global ordering shown in Figure 7.
As the figure illustrates, there was an ambiguity in the order
of Activities, with the two possible timelines shown.

While Timeliner is designed to recover user actions (Ac-
tivities), it is not limited to them. We extended Timeliner to
recover and order app actions (BroadcastReceiver callbacks
on system events) carried out through Intents and Broadcas-
tRecord objects. These interactions are lightweight and do not
produce the plethora of data structures created by Activities. As
such, we end up with a small number of residual data structures
which are also limited to allocations in the smaller-sized
thread-local runs. This implies that for two Broadcasts, there
can be a spatial ambiguity similar to what was observed in
mozjemalloc. Note that as an Activity generates residual data
structures spread across various threads, making it very likely
that an Activity and a Broadcast share several thread-local
runs, it enables Timeliner to infer spatial ordering between
an Activity and a Broadcast. The next section demonstrates
this in our case study of a spyware attack investigation.

D. Case Study: Spyware Attack Investigation

Being the most widely used smartphone platform, Android
has increasingly been targeted by various sophisticated spy-
ware attacks [4], [11]. Spyware has recently been employed by
nation states targeting journalists and activists [13] and even by
abusive spouses to monitor their families [7]. Modern spyware
are extremely stealthy and sometimes do not even require
physical access for installation, relying on drive-by downloads
and vulnerabilities. These spyware track the victim’s calls,
texts, app usage, and smartphone features such as keyboard
inputs, location, microphone, and camera. In this case study,
we examine the capability of Timeliner to recover the actions
of TheOneSpy [18], a commercially available spyware appli-
cation.

Unknown to the victim (“John”), his smartphone has been
infected with TheOneSpy. While on his way to a confidential
meeting, John receives a text reminder for the meeting and an
incoming call for the meeting location. During the meeting,

John receives an email for which he initiates a response.
However, he notices that the keyboard has been changed from
the default (Android Keyboard) to a custom one, which is vi-
sually differentiable. A quick investigation in the smartphone’s
settings reveals that the custom keyboard is the spyware’s
keylogger, and the spyware has access permissions for the
microphone and camera. To confirm the spyware’s activity,
a memory image is taken and analyzed with Timeliner.

For this case study, we consider only those Activities
and Broadcasts that are relevant to the spyware application.
Timeliner recovers 9 Activities/Broadcasts with 26 roots and
1638 residual data structures, with one occurring before the
last garbage collection. Two local orderings are combined to
form a single global ordering, with two possible timelines.
Note that the Kendall-Tau distance of the two timelines are 0
and 1 — as the ground truth is one of the possible timelines.

The deduced transition graph is shown in Figure 8. The
two possible timelines are shown in Table IV starting with
a Broadcast receiver CommunicationReceiver on the spyware
and the user opening a text with ConversationActivity. Follow-
ing these is another Broadcast receiver CallRecorderReceiver
and the user answering the call with InCallActivity. Next, there
are a few spyware Activities/Broadcasts: FrontCameraActiv-
ity, VideoTimeReceiver, and StopRecordingReceiver. Finally,
there is a ComposeActivityGmail Activity as the user replies
to the email. While the names are quite verbose, a quick
look at the spyware bytecode confirms that Communication-
Receiver and CallRecorderReceiver are used for spying on
incoming texts and calls, respectively. FrontCameraActivity,
VideoTimeReceiver, and StopRecordingReceiver are used for
remotely recording pictures, videos, and audio, respectively.
The confirmation of the spying activity makes it highly likely
that the secrecy of the meeting had been compromised.

Finally, note that while there is a spatial and hence a
temporal ambiguity between the two Broadcasts, Timeliner
still establishes a sufficient evidence of the meeting being
compromised — as the remote video recording and audio
recording is contained between the phone call and the received
email. Both timelines are shown in Table IV.

Next, we show the application of Timeliner in a few crime
scenarios where the culprit is a human (instead of spyware).

E. Case Study: Military Espionage

Timeliner is particularly useful in investigating misuse of
mobile devices in secured environments such as a Sensitive
Compartmented Information Facility (SCIF) where personal
mobile devices are not allowed and commonly, a locker
is provided outside the SCIF where mobile phones can be
secured, or they are left in the employee’s car. Our case study
is motivated by real espionage cases, such as the prosecution
of Air Force Intelligence Officer Brian Regan [32] or that of
Gillette employee Steven Davis [8] who were prosecuted for
stealing classified national documents and corporate secrets
respectively.

Our perpetrator Skip was hired as a defense contractor,
working on a classified project for a federal agency, with rou-
tine access to sensitive documents. One day, after attempting to
access classified information unrelated to his job, he checked
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TABLE IV. RESULTS FOR CASE STUDIES ON MOTOROLA G3.

Case Study Activity Count Duration
(Minutes)

Activities
Recovered

Activities
Ordered

Root
Structures

Residual
Structures

Local
Orderings

Number of
Timelines

Kendall-Tau
Distance

Spyware Attack 8 27 9 8 26 1638 3 2 {0,1}
Military Espionage 18 36 19 18 112 7151 5 1 0
Distracted Driving 17 16 18 17 92 6259 3 1 0
Kidnapping Investigation 18 41 19 18 101 6879 5 1 0

Case Study Recovered Timelines

Spyware Attack

Spyware{ CommunicationReceiver } → Messaging{ Conversation } → Spyware{ CallRecorderReceiver }
→ Dialer{ InCallActivity } → Spyware{ FrontCameraActivity → VideoTimeReceiver →
StopRecordingReceiver } → Gmail{ ComposeActivityGmail }
Spyware{ CommunicationReceiver } → Messaging{ Conversation } → Spyware{ CallRecorderReceiver }
→ Dialer{ InCallActivity } → Spyware{ FrontCameraActivity → StopRecordingReceiver →
VideoTimeReceiver } → Gmail{ ComposeActivityGmail }

Military Espionage

Signal{ RedPhone → ConversationActivity } → Launcher → CameraActivity → ChooserActivity(share)
→ WhatsApp{ ContactPicker → Conversation → ImagePreview → Conversation } → Launcher →
FileBrowser{ FileBrowserActivity → TaskProgressActivity(delete) → FileBrowserActivity } →
Launcher → Messaging{ Conversation } → Launcher → Chase{ HomeActivity → AccountsActivity }

Distracted Driving

Maps{ MapsActivity } → RecentsActivity → Netflix{ HomeActivity → SearchActivity →
MovieDetailsActivity → PlayerActivity } → Launcher → Dialer{ DialContactsActivity → InCallActivity
→ DialContactsActivity } → Launcher → Netflix{ PlayerActivity → MovieDetailsActivity
→ SearchActivity → HomeActivity } → Launcher → RecentsActivity

Kidnapping Investigation

CameraActivity → Launcher → Skype{ HubActivity → PreCallActivity → HubActivity } → Launcher
→ Messaging{ ConversationListActivity → ConversationActivity } → Launcher → Skype{ HubActivity
→ PreCallActivity → HubActivity } → Launcher → Maps{ MapsActivity } → Launcher →
Facebook{ PickerLauncherActivity → ComposerActivity → FbMainTabActivity }

out of the SCIF and walked around the parking lot of the
facility. Alerted to the recent unauthorized attempts to access
classified information, security personnel followed Skip into
the parking lot, where they determined that he was carrying a
mobile phone.

The security personnel use Timeliner to determine the
timeline of Skip’s recent actions. As it turns out, Skip received
a secure call (RedPhone) just before he checked into the
SCIF. After entering the SCIF, he used the Camera app
(CameraLauncher) in his phone to take some photographs.
These photographs were then sent over WhatsApp (Chooser-
Activity(share)) after he exited the SCIF and then summarily
deleted (TaskProgressActivity(delete)). For selling the classi-
fied information, he received a deposit in his bank account,
resulting in a text message (ConversationActivity), which he
verified by opening the Chase Banking app (AccountsActivity).
This timeline was deemed incriminating and Skip was then
arrested and charged. As Table IV shows, Timeliner recovers
19 Activities, 112 roots, and 7151 residual data structures for
this timeline.

This case study demonstrates how important a timeline
of user-actions is to an investigation. A traditional content
recovery alone would be extremely limited as the photographs
of the classified documents were deleted by Skip, severely
limiting an investigation relying on content. Timeliner, on the
other hand, provides conclusive proof of photographs being
taken, shared, and then deleted.

We acknowledge that federal authorities are currently more
likely to have the expertise and resources to react quickly
enough to use Timeliner to retrieve actionable evidence before
the detrimental effects of garbage collection occur, as in Skip’s
case above. However, with proper resources and training,
Timeliner is also usable in a variety of scenarios by local and

state authorities. The next case studies explore two such very
important potential uses.

F. Case Study: Distracted Driving

In this case study we consider the problem of distracted
driving. Specifically, using a smartphone while driving, which
accounts for roughly 18% [5] of all injury-inducing automotive
crashes. This situation is becoming so severe, that akin to
a breathalyzer test, the state of New York is considering a
Textalyzer law [17]. This law shall allow a police officer
to conduct on-the-spot forensic analysis of a smartphone to
determine if a driver was distracted while driving. Traditional
techniques focus only on app-specific events, limited mostly
to text/call/email/browsing logs [12]. On the other hand,
Timeliner’s app-agnostic capabilities work without temporal
logs and provide much stronger proof of a driver’s suspected
distraction while driving.

We base this case on an accident involving a Tesla vehi-
cle [16] where the driver was determined to be watching a
movie after putting the car into the AutoPilot mode, which
would clearly be classified as distracted driving. In our case
study, the driver called roadside assistance after an accident.
The police arrive a few minutes later and notice the “recent
apps” screen on the driver’s smartphone. Suspecting termina-
tion of an application they image the smartphone memory.

Table IV shows that Timeliner recovered all 17 Activities
that the driver used during the course of this case study via
recovering three local orderings with 92 root and 6259 residual
data structures. In the reconstructed timeline, investigators can
see that the driver was first running the MapsActivity in Google
Maps. At some point, the driver started Netflix with Home-
Activity, followed by SearchActivity and MovieDetailsActivity,
and finally playing a video with the PlayerActivity. Then the
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driver goes to the Dialer app and places a phone call, which
was identified as the call to roadside assistance using call logs.
After the call, the driver restarts the Netflix app, but backs
out of all activities and finally terminates the app from the
RecentsActivity.

The timeline confirms that the Netflix video was playing
before the call to roadside assistance (and hence before the
accident) was placed, but was terminated afterwards to hide the
incriminating actions. Timeliner’s ability to generate a timeline
to precisely capture user actions across several applications —
even in the face of deliberate app termination to hide evidence
— is essential in this case. Timeliner is able to reconstruct
the evidence solely from the phone’s memory and termination
of applications by the user does not hinder the recovery of
actionable evidence.

G. Case Study: Kidnapping Investigation

Mobile phone investigations have aided in the apprehension
of numerous criminals, and being a memory forensics tech-
nique, Timeliner can be used to quickly focus an investigation.
We base this case study loosely on the real kidnapping/murder
investigation detailed in [37]. Described as a “kidnapping gone
wrong”, the victim was bound using duct tape, and unfortu-
nately she died from asphyxiation before a fake “rescue” the
kidnapper had planned could take place.

In our case study, the kidnapper (“Kyle”) and an accom-
plice (“Fred”) force the victim (“Sally”) into a pickup truck.
A passerby (who identified Sally) quickly informs the police
and the police identify Kyle as matching the description of the
kidnapper. Kyle, located by the police at his residence, claimed
he did not leave his house and showed his recent social media
uploads (a photo at home) as proof.

A field-investigation of his phone, with the aid of Time-
liner, reveals his actions in the recent past (shown in Table IV).
Timeliner recovers 19 Activities with 101 roots and 6879
residual data structures. Joining three of the local orderings,
Timeliner is able to precisely and accurately recover the
timeline. The timeline shows that Kyle took the “alibi” photo
with CameraLauncher, but did not post it immediately. Instead,
he used the Skype app to call a person (PreCallActivity), then
message Sally over text (ConversationListActivity and Conver-
sationActivity), followed by another call via Skype. Then he
used Google Maps (MapsActivity) to navigate and then finally
posts the “alibi” photo to Facebook (PickerLauncherActivity
and ComposerActivity). The police identify the Skype call
recipient as Fred via Skype logs and obtain clearance to deploy
Stingrays (“IMSI catcher” devices) against Fred’s number. This
allows them to rapidly find both Sally and Fred in a nearby
wooded area.

This case study demonstrates how Timeliner complements
the traditional content recovery forensics. While the accom-
plice is identified by Skype logs on the smartphone, and the
message recipient is identified as Sally with messaging logs,
Timeliner provides the incriminating evidence of fake “alibi”
photograph being taken before the Skype calls, which raises
suspicion and provides enough proof to deploy Stingrays.

V. DISCUSSION

As Timeliner relies on the observation that a temporal
ordering in allocations produces a spatial ordering, any attempt
by a device owner or an app to hide their actions must attack
either the recovery of residual data structures or change the
allocator’s deterministic behavior.

However, as Timeliner focuses on only the ActivityMan-
agerService process, separate from the apps, erasing evidence
by modifying records or running garbage collection is not
possible for even the most technically advanced criminals or
privacy sensitive app developers. The only way a device owner
may affect the ActivityManagerService is to flash a custom
“Timeliner-aware” Android runtime system onto their device
— which is both technically difficult (modifying Androids
internals) and risky (may “brick” the device).

One way an app developer can avoid Timeliner’s recovery
is by not utilizing Activities, and building their own function-
ality to emulate Android’s Activity stack (e.g., by intercepting
back keypresses). However, this is a prohibitively cumbersome
process for most app developers and has only been imple-
mented in a few apps including certain web browsers and
gaming apps due to strict performance requirements. Further,
this also prevents an apps’ interaction with other apps, for
example – File Browser can directly share a file with the Gmail
app (using an Intent for the ComposeActivity) but not with the
gmail website opened on the Chrome browser app.

VI. RELATED WORK

Timeline reconstruction is of interest to both cyber and
traditional crime investigations. This interest is reflected in
the wide variety of work done for creating timelines [28],
[35], [36], [41], making better tools for editing and visual-
ization [24], [47], and correlating sources together to infer
semantics in a timeline [29], [39], [54]. However, all these
methods are dependent on various logs and database files
that are formatted independently by applications making their
timeline recovery highly application-specific. Further, these
logs and database files are limited to a small set of events that
are logged. Even widely used commercial tools Oxygen [15]
and Cellebrite [3] are application-specific and are limited
to these small sets of events. Further, reliance on system
level logging is untrustworthy as major phone manufacturers
turn off Android features that reveal forensic information [6].
Timeliner, on the other hand, is application-generic and can
reliably reconstruct a wider variety of actions into the timeline
from only a single image of volatile memory.

Timeliner is more related to RetroScope [52], a memory
forensics technique capable of reconstructing historical and
temporally ordered GUI screens. However, Timeliner differs
from RetroScope in two aspects. First, while RetroScope is
limited to reconstruction for a single running (at the time of
memory snapshot) app, Timeliner works across all apps and
can construct a device-wide timeline of app activities (includ-
ing terminated apps). Second, RetroScope reconstructs screens,
which are renderings of GUI content, while Timeliner recon-
structs Activities, which are abstractions of user actions/events.
As such Timeliner and RetroScope perfectly complement each
other, with Timeliner reconstructing the skeleton of a crime
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story involving multiple apps and RetroScope re-rendering the
activity details within each app.

Memory forensics has been applied extensively to the
Android platform. Mostly these applications have focused on
recovering raw data structures: app-specific login credentials,
JVM control structures, raw Java objects, text messages,
buffered media content, and a variety of application-specific
data [22], [23], [38], [45], [51], [59]. Recovery of the raw data
structures is performed via value-based [25], [31], [49], [55],
[58] (relying on constants and expected values) or structure-
based [26], [27], [46], [61] (relying on pointer constraints)
scanning. In particular, SigGraph [43] recovers data structure
instances using probabilistic analysis on the whole memory
image. On the other hand, data structure recovery is only the
first, preparatory step in Timeliner’s timeline recovery.

Various memory introspection and memory analysis tech-
niques have been used to determine malware and virus activity
by observing kernel data structures [34], [48] or by identifying
data structure signatures for polymorphic viruses [30]. How-
ever, while these techniques either rely on active introspection
or recover only live kernel and virus data structures, Timeliner
recovers and orders past app activities, including activities with
no references from live data structures, using only a single
memory image.

A number of recent works have gone beyond merely recov-
ering raw data structures towards full-utilization of their con-
tent. DSCRETE [53] recovers a single data structure instance
and utilizes binary analysis and code reuse to transform it into
a human-understandable form. DEC0DE [60] also operates on
a single data structure at a time, recovering call log entries
using a finite state machine. Tools such as HOWARD [56],
REWARDS [44], and TIE [40], infer data structure defini-
tions in binary programs. DIMSUM [42] utilizes probabilistic
inference to identify data structures without page mapping
information. VCR [51] recovers media content using vendor
generic signatures, and GUITAR [50] pieces back together
various data structures to retrieve an application’s GUI. As a
new, complementary addition to the above tool set, Timeliner
leverages spatial memory layout information to infer temporal
ordering of user Activities.

VII. CONCLUSION

Targeting the problem of re-sequencing an Android device
user’s past actions, we present Timeliner, a memory forensics
technique that reconstructs a timeline of Activities across all
apps (including those which have terminated) that were per-
formed on the device. Starting from the set of data structures
left in a memory image by past Activity launches, Timeliner
infers Activity transitions based on the relative memory layout
of those data structures. Our results show that Timeliner is
highly accurate in reconstructing past activities of a user. More-
over, we show through a suite of case studies that Timeliner
is applicable to a variety of crime investigation scenarios.
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