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Abstract

Kernel rootkits, malicious software designed to compramis
a running operating system kernel, are difficult to analyze
and profile due to their elusive nature, the variety and com-
plexity of their behavior, and the privilege level at whitiey
run. However, a comprehensive kernel rootkit profile that r
veals key aspects of the rootkit’s behavior is helpful inraid
a detailed manual analysis by a human expert. In this paper
we present PoKeR, a kernel rootkit profiler capable of pro-
ducing multi-aspect rootkit profiles which include the reve
lation of rootkit hooking behavior, the exposure of targete . X _ i ‘
kernel objects (both static and dynamic), assessment of use de5|gn_ (_)f ef_'fect|ve solut|0n_s 1o ke_rnel rOOtk_'t detectlt_iﬂm-
level impacts, as well as the extraction of kernel rootkdteo ~ 29€ Mitigation, and kernel integrity protection. In thippa

The system is designed to be deployed in scenarios whichve define a kernel rootkit profile as be comprised of the fol-
lowing four aspects:

unauthorized accesses to occur — all hidden from the system
administrator and users. For example, kernel rootkits have
been used to hide bot programs or other backdoor software
with the intention of maximizing the life time of a botnet.
Despite recent research efforts in kernel rootkit detectio
e [Garfinkel 2003, Petroni 2004; 2006; 2007] and kernel root-
kit prevention [Seshadri 2007, Riley 2008], less attentias
been given tdernel rootkit profiling- the revelation of key
aspects of a kernel rootkit’s behavior. It is further desiea
that such profiles be generated on-the-fly in “live” systems
such as honeypots. Kernel rootkit profiles are valuableén th

can tolerate high overheads, such as honeypots. Our evalua

tion results with a number of real-world kernel rootkits who
that PoKeR is able to accurately profile a variety of rootkits
ranging from traditional ones with system call hooking to
more advanced ones with direct kernel object manipulation.
The obtained profiles lead to unique insights into the root-
kits’ characteristics and demonstrate PoKeR’s usefulagss
a tool for rootkit investigators.

Categoriesand Subject Descriptors  D.4.6 [Operating Sys-
temg: Security and Protection—Invasive software

General Terms  Security

Keywords Kernel Rootkit, Malware, Profiling

1. Introduction

Targeting operating system (OS) kernels, kernel rootkés a
considered one of the most stealthy types of computer mal-
ware and pose a significant threat to the integrity of compute
systems. They run at the highest level of privilege withia th
victim machine, hijack control of the OS kernel, and provide
“value-added” services to allow other malicious actiatg

(©ACM, 2009. This is the authors version of the work. It is pddtere by permission
of ACM for your personal use. Not for redistribution. The défve version was
published in Proceedings of the Fourth ACM European Confsreon Computer
Systems, http://doi.acm.org/10.1145/1519065.1519072

¢ Hooking behaviarthe way the kernel rootkit hijacks the
kernel's control flow, if any, during the rootkit's instal-
lation. Typically, such hijacking is done by modifying
hooks (e.g., function pointers) in the kernel. Note that it
is not uncommon for rootkits to install hooks within vari-
ous kernel objects, including kernel code or dynamically
allocated kernel objects [Hoglund 2006].

Targeted kernel objectshe kernel objects accessed by
the rootkit, such as those read or modified by the root-
kit. Similar to hooking behavior, a targeted kernel object
may be dynamic. A classic example is thi-task list,
maintained by the OS kernel for accounting purposes but
often manipulated by rootkits for hiding purposes.
User-level impactsthe affected user-level applications
whose execution may be directly affected by the execu-
tion of rootkit code. Note that we do not aim to derive a
complete list of affected applications. Instead, we focus
on a corpus of commonly-used system utilities (epg,,

1s, netstat, etc.) that retrieve important system infor-
mation and are therefore often targeted by kernel rootkits.
Injected codethe kernel rootkit code injected into the
kernel memory address space for execution. The injected
code should be accurately located at runtime and ex-
tracted for later forensic analysis.

A number of recent efforts have been reported towards
kernel rootkit profiling [Yin 2007; 2008, Wang 2008, Lanzi
2009]. Despite their usefulness, the current approaches le
more to be desired in their capabilities: (1) Some appraache
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Figure 1. VMM-based PoKeR architecture

require prior availability of the kernel rootkit code and tem performance between 3x and 6x during profiling, with
knowledge that the rootkit attack is going to occur. However the virtualization system itself adding an additional slow
such requirement makes it difficult to profile zero-day kérne down of 3.8x above and beyond that of the physical host.

rootkits live. (2) The current profiling techniques only fsc
on one aspect of rootkit behavior (e.g., hooking behavior)
or on one stage of a rootkit’s life cycle (e.g., installatimm

execution but not both). (3) The key techniques used in the

existing approaches such as system-wide tainting or glicin

have well-known limitations and challenges that are hard to

overcome. For example, taint-based information flow track-
ing can be circumvented by various control-flow evasion
schemes [Cavallaro 2008].

To overcome the above limitations we present PoKeR
(Profiler of Kernel Rootkits), a virtualization-based kernel
rootkit profiler that generates multi-aspect kernel raqiko-
files during rootkit execution. PoKeR is designed to be de-

The contributions of our work are as follows:

e We identify four key aspects of kernel rootkit behavior
and use them to characterize and profile existing kernel
rootkits.

¢ We define the concept of anstantaneous rootkit detec-
tion systemand discuss how an existing kernel rootkit
prevention system can be transformed into one so that a
detection pointan be generated to trigger rootkit profil-
ing.

¢ \We propose a technique calledmbat trackingo deter-
mine the identity and type information of rootkit-targeted
kernel objects, even if they are dynamically allocated
from the kernel heap.

ployed in a system that can tolerate high performance over- e We develop a PoKeR prototype and present the evalu-
head, such as a honeypot which is subject to rootkit attacks  ation results with 10 representative real-world rootkits.
in the wild. A PoKeR-enabled system executes normally un-  The obtained rootkit profiles provide useful insights into
til a kernel rootkit is installed and ready to execute malis rootkit behavior, some of which are difficult to obtain
code injected into the kernel. At that point, PoKeR switches  without PoKeR, despite in-depth analysis.

the system (a virtual machine or VM) to a rootkit profiling

mode and applies a strategy callezbtnbat tracking! to

automatically track and determine the kernel objects eeith 2~ Agsumptions

static or dynamic — that are being targeted by the kernel root
kit. In addition, when the targeted kernel objects are being
manipulated, PoKeR records the relevant system call con-

texts and infers potential effects on user-level applicati Kit. This al hat th kit d h ivite
We have developed a prototype of PoKeR and used it to '_t' IS also means that the rootkit does not ave priveege
higher than that of the OS, such as those of a virtual machine

profile 10 representative real-world kernel rootkits that e tor (VMM). Th Kitis f di K Lob
hibit a broad range of attack methodologies. This includes _monltor( )- The rootkitis free to modity any kernel ob-

basic system call table hooking, the more advanced tech-JeCtS’ whether static or dynamic. . . .
nigue of direct kernel object manipulation [Silberman 2)06 . _We also assume that t,he rpqtkn requires the execution of
manipulation of function pointers inside dynamic kernebda injected chat the ker.n(.el s privilege level. We do not, how-
objects [Hoglund 2006], and others. The profiles generatedever_’ require that the mpcted code be persistent thraugho
by PoKeR capture multiple aspects of the rootkit’s behavior the life cycle_z of the rootkit gttack_. We refer to a kernel root
and permit unique insights into each rootkit's characteris k't_that requires the execution ofinjected cod_e atthe Kame
tics. We have also measured the performance of our QEMU- privilege level as @ode injection kernel rootkifor ease of

based prototype and found that it degrades virtualizagien s presentation, throughout this paper we will use the term ker
nel rootkit to refer to a code injection kernel rootkit. This-

sumption is realistic. Petroni et al. [Petroni 2007] sueey
25 kernel rootkits and none of them violate our assumptions.
In particular, all 25 rootkits make use of injected code ia th

In this work we assume that a kernel rootkit has the same
memory access privileges as the OS kernel itself. If the OS
can read from or write to a memory location, so can the root-

1Combat tracking, in war, is the art of hunting the enemy biofaing the
signs he leaves behind as he moves. In PoKeR, we intend oavfidle trail
the rootkit leaves behind.



kernel space, and 24 of them require injected code to be per-ing work in the area of rootkit prevention, such as Livewire
sistent throughout their lifetime. [Garfinkel 2003], SecVisor [Seshadri 2007], and our prior
With regards to PoKeR itself, we assume that it has accesswork — NICKLE [Riley 2008], can be used as instanta-
to the OS kernel source code for static analysis, or to debug-neous rootkit detection systems. These systems are devel-
ging symbols and type information for an already compiled oped based on various virtualization techniques. For ex-
kernel binary. We also assume that the system PoKeR is run-ample, SecVisor makes use of hardware virtualization sup-
ning on can tolerate high performance overhead during pro- port to prevent malicious kernel code from executing while

filing. Livewire and NICKLE leverage software virtualization to
_ ensure only legitimate kernel code will be running in the ker
3. Design nel space. The design of PoKeR will allow it to make use of
Figure 1 shows the overall architecture of PoKeR. As high- @ny of these systems to generate rootkit detection points.
lighted in the figure, PoKeR has two main components: 3.1.1 NICKLE as Instantaneous Detection System
e The Logging and Context Trackingnodule resides in-  In this work, we leverage NICKLE to serve as the instanta-

side the VMM and, once activated, collects runtime ex- neous detection system that generates kernel rootkit-detec
ecution traces of malicious rootkit code. The execution tion points for PoKeR. In the following, we will give a brief
trace is saved outside the target VM and contains infor- overview of NICKLE. Interested readers are referred to our
mation such as rootkit instructions executed, correspond-previous paper [Riley 2008] for more details.

ing memory reads and writes, and associated execution In short, NICKLE operates inside a VMM and protects
context. The logging of execution context will be help- commodity guest OSes. NICKLE maintains two separate
ful later in assessing the user-level impacts of the rootkit memory spaces for a running VM. One, the standard mem-
attack. Note that the activation of this module requires ory, functions just like the normal memory space: It stores
a detection point and we will discuss it shortly in Sec- code and data for both kernel and user levels. The other, the
tion 3.1. shadow memory, stores only kernel code that has been au-

The Kernel Object Interpretatioomodule processes the thennctitetd by Nler‘]E' Tr;'sk's done V"Z ?(n on-lthe-(;‘ly ]Eech-
collected execution trace and resolves read and write tar-''dU€ that USes Nashes of known good kernel code for au-

get addresses into the kernel objects read or manipulateothent'cat'on and copies only authenticated kernel coda fro

by a rootkit. The dynamic nature of certain kernel objects tt:lekstan(?grdtmetmor); tto r’zhe ;hadc:jm; men;r(])ry. At rtuggme,
significantly complicates the interpretation procedure. all kernel Instruction fetches 1ssued irom the gues are

transparently routed to the shadow memory while all other

There are three key challenges and techniques associatechemory accesses are routed to the standard memory. As a re-
with the design of PoKeR. They will be presented in the sult, a kernel rootkit that is attempting to execute itscigel,
following three subsections. unauthorized code in the kernel space would be unable to do

o N so. Failing to go through NICKLE's kernel code authentica-
3.1 Switching to Profiling Mode tion, the injected code will remain in the standard memory
As mentioned in Section 1, PoKeR is primarily designed to and cannot be fetched from the shadow memory. This is all
be used in environments which can tolerate high overhead.done in a manner that is transparent to the guest OS, which
A PoKeR-enabled system has two modes of operation. Thedoes not need to be modified.
first mode,detection modgs its initial state. While in this Turning the original NICKLE into an instantaneous root-
mode, an instantaneous rootkit detection system (defined be kit detection system for PoKeR is a natural next step. Imstea
low) watches for kernel rootkit execution. Most of PoKeR’s  of simply blocking rootkit code execution, the system will
rootkit profiling features are disabled during detectiordeo  allow the code to be executed unhindered from the standard
The other modeprofiling mode starts right at theletection memory. During a guest kernel instruction fetch the corstent
point, when the instantaneous rootkit detection system re- of the standard and shadow memory are compared to deter-
ports that a kernel rootkit attack is about to occur. In profil mine if the same instruction exists in both. If a kernel in-
ing mode, PoKeR enables its profiling features and logs the struction that is about to be fetched exists in the standard
rootkit's actions at a fine granularity, such as instructan memory but not the shadow memory (or if the contents sim-
ecution, system calls, and memory reads and writes. PoKeRply differ) then unauthorized code is about to be executed at
will then generate the rootkit's profile according to therfou the kernel level. This serves as PoKeR'’s detection poit, an
aspects defined in Section 1. the system can be switched to profiling mode.

To ensure that all of a rootkit’s actions are profiled prop- Given that we know an instruction is malicious prior to
erly, the detection point must be generated before the veryexecuting it, we have the unique opportunity to identify and
first rootkit instruction is about to execute in the kernee W  extract the malicious rootkit code. It can then be analyzed
refer to a detection system capable of meeting this strict further later on, such as by static analysis. To aid in this,
time constraint as amstantaneous detection systeBxist- we also record the order in which the instructions were exe-



cuted. In addition, the malicious code identification capab  Algorithm 1 Combat Tracking Algorithm

ity may allow profiling mode to turn on and off during profil-
ing — on when rootkit instructions are executed and off when
authenticated kernel instructions are executed. The dimam
toggling between detection mode (faster) and profiling mode
(slower) may result in better rootkit profiling efficiency.

3.2 Tracking Targeted Kernel Objects

Once kernel rootkit execution is detected and the profil-
ing mode of PoKeR is switched on, it is necessary to keep
track of all kernel objects manipulated by the kernel raotki
The rootkit may, for example, traverse the entire process li
looking for an entry with a specific PID to remove. Or, it
may change key values in a TCP data structure within the
kernel to mask the sending of data to a remote location. It is
important that PoKeR be able to determine, upon the execu-
tion of a rootkit instruction, which kernel object is beiregad

Requires: addr: Address of read.

val: Value read.

if addr in static maphen
/I Query the static data for type information of the address
type « staticobjectséddr)
else
if addr in dynamic maghen
/I Query the dynamic map instead
type < querydynamicmap@ddr)
else
/I No type information known
return
end if
end if
if type is a pointerthen
[/l 1f we have a pointeryal is the address of a kernel object
d_type < dereference(ype)

adddynamicmapral, d_type)
end if

or modified. This is challenging because PoKeR operates at
the VMM level, which does not directly provide a semantic
view of the guest kernel objects. Unfortunately, current vi
tual machine introspection techniques [Garfinkel 2003\glia
2007, Payne 2007] do not support such a “reverse lookup” To support the address-to-dynamic object mapping in a
(namely, given a memory address, identify the correspond-more efficient way, we propose a technique called “combat
ing kernel object). tracking.” The key observation in our combat tracking tech-
A list of the rootkit's reads and writes is simple to ob- nique is that in order for a kernel rootkit to find the address
tain using PoKeR'’s logging and context tracking module, as of a dynamically allocated kernel object, it will first trage
it simply logs all reads and writes performed by the rootkit to it from a statically allocated one. The rootkit, much like
code. However, determining which kernel objects arooskiti PoKeR, is naturally ignorant of the layout of dynamic ker-
modifying is complicated by the fact that a large number of nel objects, and therefore will do a series of reads of kernel
kernel objects are dynamically allocated. For example, we memory in order to reach the objects. By tracking a root-
may know that a rootkit is modifying memory at address kit through its series of reads, we can dynamically build up
0xc6600856, but if that address is located within the ker- an address-to-dynamic object map for PoKeR to look up a
nel's heap there is no simple way to determine what object corresponding dynamic kernel object when given a memory
it is. (This is one reason that a simple symbolic debugger address.
cannot be used to track kernel objects.) This is in conteast t Algorithm 1 shows the combat tracking algorithm exe-
statically allocated kernel objects, whose addresses ean b cuted by PoKeR'’s kernel object interpretation module. The
easily determined at compile time. In order to handle dynam- algorithm assumes the availability of an initial map ofistat
ically allocated kernel objects, we need to creatadaress- objects and uses that, combined with the rootkit's reads, to
to-dynamic object maghat can be used to translate memory build the map of dynamic objects on the fly. (In our proto-
addresses into the kernel objects they are a part of. type, the static kernel object map as well as the object type
One key observation that helps in creating this address-to-definitions come from a copy of the kernel compiled with de-
dynamic object map is that all dynamically allocated kernel bug symbols.) The first step in the algorithm is to determine
objects must be accessible in some way from global vari- what type of data the address being read is. We first query the
ables or CPU registers. If one imagines kernel objects as astatic object map to see if the object is a global object and
graph where the edges are pointers, then all objects will beif that fails then we check our dynamic object map to see if
transitively reachable from at least one global variakiie. | we have previously added this address to the map. Once we
an object is not reachable in this way, then the kernel itself find the type of the object being read, we determine if it is a
will not be able to access it and the object cannot be used.pointer. We care about pointers because if a read occurs on a
A similar observation has also been made in previous work pointer object, then the value of the read corresponds to the
on both garbage collection [Boehm 1988] and state-basedaddress of a kernel object. This may be a kernel object we
control-flow integrity [Petroni 2007]. A brute force appoba haven't seen before, and it can be used to further build the
for mapping an address to a dynamic object would be to dynamic map. Given this, in the event the rootkit did read a
search the entire memory graph. This would be extremely pointer, we determine the value read by the rootkit (the ad-
inefficient and thus undesirable. dress of the new object) as well as the de-referenced type




of the pointer (the type of the new object) and we add this
information to the dynamic map. In this way we progres-

3.3 Discovering Rootkit Hooking and User-Level
Impacts

sively build up the address-to-dynamic object map based Ongqr many kernel rootkits, one key reason for manipulating a

the rootkit's reads.

To illustrate combat tracking, let us consider an exam-
ple. Figure 2 is a simplified representation of the process
list maintained in the Linux kernel. There is one global
data structure at addressc0300000, init_task, which
forms the head of a linked list of dynamically allocated
struct task_struct structures. If a rootkit were to try
and find thetask_struct for pid 3, it would do the fol-
lowing. First, it would read addressc0300004 in order
to find thenext_task pointer in the globatask struct.

It would receive backxc11a0000, the address of the next
structure. Next, it would read the pid of that next structure
at addres®xc11a0000, and when it found that it was not 3,

it would read0xc11a0004 to find the nextask_struct to
search on. It would repeat this procedure until it found pid 3
in thetask_struct at addres®xc11c0000. From there it

specific subset of kernel objects is to eventually hijack the
kernel's control flow so that the rootkit can somehow af-
fect the execution state of the running kernel. The hijagkin
behavior is typically accomplished by modifying function
pointers, many of which may be stored in dynamically allo-
cated objects within the kernel's heap. To reveal a roatkit’
hooking behavior, it is vital that we be able to find these
hooks as they are being installed. It is also possible for the
rootkit to directly modify legitimate code to force a call to
the rootkit code. Fortunately, both types of changes can be
thought of as a subset of the kernel object tracking prob-
lem (Section 3.2). Tracking modifications to existing cagle i
similar to tracking modifications to static objects; wherea
tracking function pointer modifications is simply a part of
tracking object modifications using combat tracking — the
main reason being that the modified function pointers be-

may modify a variable in that data structure (say at address|ong to certain kernel objects.

0xc11c0008) in order to perform some sort of kernel object
manipulation.

Without combat tracking, we would only know that the
rootkit did a write at addres8xc11c0008 and we would
have no way of knowing what kind of data was at the ad-
dress. With combat tracking, given the entire chain of reads
the dynamic map would be built: When the rootkit first reads
thenext_task element ofinit_task, a query of the initial
static map tells us that the read corresponds to an object o
typestruct task_struct *. Given this knowledge, com-
bined with the fact that the rootkit readgc11a0000 from
that location, we know that addreegc11a0000 contains
a struct task_struct and add it to our dynamic map.
When the rootkit later reads thesxt_task pointer from
that dynamic data structure, we know (thanks to what we

learned from the previous read) that the read is for another

pointer of typestruct task_struct * and can add that
element of the linked list to our dynamic map as well. We
continue on in this fashion until we have a map of all the
data structures the rootkit has read. Later, when the vwite t
addres®xc11c0008 occurs, we can check the dynamic map
to know that the address is part of ask_struct and deter-
mine which element of the data structure is being modified.
We do not keep track of a kernel object’s lifetime and
remove its entry from the dynamic map right after its de-
allocation. The entry will still exist in the map despite the
being no object at that location. Such a “stale entry” does

f

As an example, consider a Linux kernel module (LKM)
based rootk#t with the goal of ensuring that files that end
in the extension ‘hacker” are never visible to a user. The
attacker installs this malicious rootkit as a kernel modigle
ing theinsmod command. The system copies the malicious
module into memory and then runs the modulisit ()
function. Before the first instruction fronmit () is exe-
cuted, the instantaneous rootkit detection system gesserat
a detection point which turns on PoKeR’s profiling mode.
Next, the rootkit’s initialization function modifies thestgm
call table so that the system call originally used to retriav
directory listing is changed to point to a malicious funotio
that ensures files ending irhacker do not appear in the
listing. The write to the system call table is logged andrinte
preted. Thus the code’s hooking point is discovered and the
control flow modification made by the rootkit is profiled.

In addition to determining which function pointers get hi-
jacked by a kernel rootkit, it is also desirable to determine
how the modified kernel control flow will impact system
calls made by user-level programs. This may help ascertain-
ing which user-level programs are being targeted by a spe-
cific rootkit as well as giving us a general understanding of
what the rootkit is trying to hide. For kernel rootkits that
modify the system call table, such impact is fairly obvious:
explicitly modified table entries will result in hijacked o
trol flow when the corresponding system calls are made. For
rootkits that do not directly modify system call table eegri

not matter, however, because the rootkit should not access,,ever, determining which system calls will be affected is

a deallocated kernel object. (If it does, it is most likely a
programming error.) If a new object is ever allocated at a

less obvious.
To determine which system calls get their control flow

previously used address, then the chain of rootkit reads tohijacked at runtime. we need to be able to correlate the

the new object will result in the stale entry being replaced
by a new entry that corresponds to the new object.

execution of malicious rootkit code with the execution of

2An LKM based rootkit is a kernel module that implements rdtotiknc-
tionality. It can be loaded into the kernel like a normal driv
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! init_task . struct task_struct  struct task_struct struct task_struct  struct task_struct ;
! 0xc0300000 | 0xc11a0000 0xc11b0000 0xc11c0000 0xc11d0000 !

3 pid = 0 pid = 1 pid = 2 pid = 3 pid = 4 i
! next_task next_task next_task next_task next_task
0xc11a0000 | ; 0xc11b0000 0xc11c0000 0xc11d0000 0xc0300000

Figure 2. A simplified example of a Linux process list

the system call that led to it. To accomplish this, PoKeR 1M - 0xc883d000

will track the execution of system calls and apply a virtual %% — 0xc1548054 - 0xc154a000
machine introspection technique [Jiang 2007] to determine * C - 0xc6706000

the current process context, namely which process is making:f zC__Ozign_ﬂfiiim;do}_mffiizte
the system call. Note that by logging the starting point when G;E = 0xc883ea28 - 619 V-

a system call is made and the ending point when the system,.cr _ 619 - insmod

call returns, PoKeR can effectively keep track of the lifedi

of the system call. If malicious code execution is detected,

PoKeR will infer the current process context of the malisiou

code execution and determine if any ongoing system call (jine 6) signifies the execution of rootkit code and is gener-
has the same process context. If so, the control flow of that ;. by PoKeR while a malicious instruction is being trans-

system call is hijacked. lated for execution. The arguments are the address of the
. malicious instruction and the pid of the process contex it i
4. Implementation running in, respectively. Th# log line (line 1) is emitted
To validate our design, we have developed a prototype of whenever a kernel module is loaded — as seen by virtual ma-
PoKeR. In this section we will describe its implementation. chine introspection that is a part of NICKLE — and signifies
the base address of that module’s kernel data structure. (Th
M log line is the one item logged before a detection point
As mentioned in Section 3.1.1, NICKLE is our instantaneous is raised.) Thet log line (line 3) is used to signify the ad-
rootkit detection system. NICKLE has been implemented dress of the task structure of the currently running process
and tested in multiple VMM platforms such as QEMU [Bel- (current in Linux) and is output preceding a read or write
lard 2005], VirtualBox [Innotek], and VMware Workstation from that task structur&.The SC and SR log lines (lines 5
[VMware]. In this work, we have chosen the QEMU port of and 7) signify the start and end, respectively, of a system
NICKLE for implementation convenience. call. Thesc log line includes information about the pid,
program name, and system call made and is generated by
extending the specific binary translation of the system call
Once NICKLE signals the detection of malicious kernel interrupt Gnt 0x80 andsysenter). TheSR log line only
rootkit code, PoKeR enters profiling mode. In profilingmode conveys the pid and program name, and is generated during
all kernel instructions are interpreted using the builtir the kernel-to-user mode switch.
namic re-compiler (a virtualization technique based on effi The SC, SR, andE log entries allow us to determine
cient, dynamic translation of guest code into host code) in which system calls have their control flow hijacked by a
QEMU so that the rootkit's actions can be logged at a fine kernel rootkit. This is done by correlating the system aal |
granularity. entries with the rootkit code execution entries via the pssc

A sample of the log is shown in Figure 3. It shows the context information. We parse through the log file and track
seven different types of log entries. TReandW log lines  currently running system calls (they begin with & and
(lines 2 and 4) signify that the malicious rootkit code is now end with anSR) for running processes. In the eventglog
reading or writing. The reads and writes are caught by ex-
tending the QEMU-translated VM memory access instruc- 3we would like to point out thaturrent in Linux is not an actual variable,
tion to include a check on whether the instruction issuing it is instead a macro that derives the address‘of the tasktsteu for
the access is malicious. The first argument on the line is the " currently running process based on the runtime staok.atidress of

. . current cannot be determined by static analysis and this hint iseted

memory address being read or written and the second arguyy the object tracker later on. We outpattrrent during rootkit reads and
ment is the corresponding memory content. Enleg line writes that involve the task structure for the currentlyning process.

Figure 3. Sample log entries generated by PoKeR

4.1 Instantaneous Rootkit Detection

4.2 Logging and Context Tracking




line for a given process occurs while there is an open systemHat 8.%° running a recompiled version of its stock kernel,
call in that process, we know that the system call’'s control Linux 2.4.18-14. The recompilation is needed to produce a
flow has been hijacked. version with debug symbols (Section 4.3.)

As mentioned earlier, the malicious rootkit instructions Table 1 shows an abbreviated summary of the profiling
executed are logged along with the order in which they results. For each kernel rootkit, its profile consists offthe
are executed. Later, a customized disassembler [libdisasm aspects described in Section 1. The first aspect, hooking be-
is used to combine these two pieces of information and havior, is revealed by the modified function pointers in cer-
produce a copy of the rootkit’s executed code annotated with tain kernel objects shown in Table 1. The second aspect of

its order of execution. the profile, targeted kernel objects, indicates which dbjec
_ _ are of interest to a rootkit. Kernel objects read but not modi
4.3 Kernel Object Interpretation fied are part of this aspect of the profile, but are not shown in

Once the log file of memory accesses is available, it is the table due to the sheer quantity of them and lack of space.
important to translate these accesses into names and types The third aspect of the profile is the potential impact on
of the corresponding kernel objects. To track both statit an User-level programs. Given that most rootkits have a pymar
dynamic kernel objects as described in Section 3.2, static90al of altering a system administrator’s view of the OS, we
analysis must be performed on the kernel itself. PoKeR canfan a corpus of 10 system utility programs that retrieve sys-
then use this information in conjunction with the rootkits tem information that kernel rootkits tend to hide. Four of
memory reads to instantiate our combat tracking technique. them, w, who, uptime, andfinger are capable of show-
The Linux kernel is a large, complicated code base that ing information related to currently logged-in users. Two,
makes traditional static analysis difficult. However, byreo ~ netstat andifconfig, reveal information about network
piling a copy of the kernel with debug symbols (theflag to usage. Another pai,s andbash, can reveal the existence
gcc) the GNU debuggergdb) [Free Software Foundation] of files. Information about running processes can be obdaine
can be used to extract the types, names, and locations of alPY ps. Finally, 1smod shows the list of installed kernel mod-
static kernel objects. We modifiedb to facilitate easier ac- ules.
cess to this information and query for static kernel object ~ These 10 programs were run and tested to see how many

information. of the system calls they made resulted in the execution of
PoKeR'’s kernel object interpretation module is written rOtkit code. They do not, however, represent the execution
in Python and implements combat tracking. It ugas for ~ Of all possible system calls. While a program could be writ-

static type information and progressively builds its own in ten to exercise all system calls, the enormous variety of ar-
ternal map of dynamic kernel objects by processing rootkit guments and the control paths that those arguments could
reads using the algorithm in Section 3.2. The rootkit's kérn ~ trigger would make it infeasible to ensure that the program
object manipulation profile can then be produced by query- Would follow all hooked rootkit code paths. By using pro-
ing the static and dynamic kernel object maps in interpgetin  9rams that a rootkit tends to hide information from, we ex-
the rootkit's memory writes. Our implementation also facil Pect that at least a portion of the malicious rootkit code
itates manual type annotation to accommodatien types. will be triggered. During the execution of those 10 utility
For the current prototypaniors are handled by having a Programs, 39 different system calls got executed and those
human user decide before hand which type should be usedhat led to rootkit code execution are shown in Table 1. The
when that specific union is encountered. Another possibilit 1ast aspect of the profile is the extracted kernel rootkitecod
would be to bifurcate union decisions by inserting all pessi Shown in Table 1 only by the number of rootkit instructions
bilities into the dynamic map. This could, however, resulti ~€Xtracted. This is useful for determining the approximate
an explosion of search space in the map. We look to emerg-Size of a kernel rootkit, and the code is made available by
ing work in the area of automatic type determination [Cozzie POKeR for further analysis, as shown in Section 5.2.2.
2008] to eventually automate the handling of unions. N ) )
5.1 Profiling-based Study of Rootkit Behavior

5. Evaluation As a kernel rootkit investigation tool, PoKeR allows a human

) ) ) expert to quickly ascertain and classify a rootkit's attack
In this section we present the results of using PoKeR 10 methodology without solely relying on manual analysis of
profile 10 real-world kernel rootkits and give a brief eval- ihe rootkit's binary, source code, or the compromised OS.

uation of PoKeR's performance. In our experiments, the | the following, we summarize the findings that generalize
host machine is an Intel Core 2 - 2.4GHz desktop running gcross the rootkits we have profiled using PoKeR.

Ubuntu 8.10. The VMM is a modified version of QEMU
0.9.0 running with KQEMU enablédOur guest OS is Red-

the SucKIT experiments because it interferes with an inito related to
the interrupt descriptor table.

4KQEMU is a host kernel module to enhance QEMU’s performange b 5We choose this version of Linux because it allows all the kit®twe
running some guest code natively on the host processorsltigabled for experimented with to work properly.




Kernel Objects Modified User-Level
Name Code Kernel Object Note Impacts Attack Type
SucKIT | 1687 instr || sys_call_table[59] Function Pointer || 2 - fork code change,
1.3b system_call at offset 47 Code 3-read syscall hook
tracesys at offset 27 Code 4 - write
current->addr_limit Data Object 5 - open
current->flags Data Object 6 - close
11 - execve
85 - readlink
195 - stat64
196 - Istat64
220 - getdents64
rial 475 instr sys_call_table[3,5,6,141,167] Function Pointers|| 3 -read syscall hook
5 - open
6 - close
167 - querymod
rkit 1.01 | 12 instr sys_call_table[23] Function Pointer syscall hook
knark 490 instr sys_call_table[2,3,11,37,54] Function Pointers|| 2 - fork syscall hook
0.59 sys_call_table[79,120,141,220] Function Pointers|| 3 -read
current->flags Data Object 11 - execve
54 - ioctl
220 - getdents64
kbdv3 30 instr sys_call_table[30,199] Function Pointers|| 199 - getuid32 syscall hook,
current->uid Data Object DKOM
current->euid Data Object
current->gid Data Object
current->egid Data Object
adore 770 instr sys_call_table[2,4,5,6,18,37,39,84,106] Function Pointers|| 2 - fork syscall hook
0.42 sys_call_table[107,120,141,195,196,220] Function Pointers|| 4 - write
5-open
6 - close
195 - stat64
196 - Istat64
220 - getdents64
adore 733 instr sys_call_table[1,2,6,26,37,39,120,141,220] Function Pointers|| 1 - exit syscall hook,
0.53 proc_net->subdir->next->(...)->next->get_info Function Pointer || 2 - fork data hook
proc_root_inode_operations->lookup Function Pointer || 3 -read
5-open
6 - close
85 - readlink
195 - stat64
220 - getdents64
adore- 785 instr proc_net->subdir->next->(...)->next->get_info Function Pointer || 3 -read data hook
ng proc_root_inode_operations->lookup Function Pointer || 5 - open
0.56 proc_root_operations->readdir Function Pointer || 85 - readlink
ext3_dir_operations->readdir Function Pointer || 195 - stat64
ext3_file_operations->write Function Pointer || 220 - getdents64
unix_dgram_ops->recvmsg Function Pointer
linuxfu 117 instr init_task->next_task->(...)->prev_task->next_task | Data Object DKOM
init_task->next_task->(...)->next_task->prev_task | Data Object
hp 1.0.0 | 100 instr pidhash[600] Data Object DKOM
pidhash[600]->pid Data Object
pidhash[600]->prev_task->next_task Data Object
pidhash[600] ->next_task->prev_task Data Object
pidhash[600]->p_osptr->p_ysptr Data Object
pidhash[600]->p_ysptr->p_osptr Data Object

Table 1. Summary of kernel rootkit profiling results using PoKeR




From the “hooking behavior” aspect, we can generalize closely the results from analysis (1) and (2) match and in
the rootkits’ profiles to three hooking strategies: modityi particular, what PoKeR is as notable to capture.
existing kernel code, hooking system call entries, and hook
ing function pointers in data structures. For example, one 5.2.1 adore-ng 0.56
rootkit that we profiled, SucKIT, modifies existing kernel
code. Five rootkits (rial, rkit, knark, kbdv3, and adore2).4
use syscall hooking as their primary attack vector, with two
others (SucKIT and adore 0.53) employing it in addition to
other attack techniques. Two rootkits (adore 0.53 and adore
ng 0.56) hook function pointers in both static and dynamic
kernel objects.

From the “targeted kernel objects” aspect, we can iden-
tify those kernel objects that are more likely to be manip-
ulated by rootkits that manipulate kernel data structures d
rectly. (This is also known as direct kernel object manipu-
lation or DKOM). For example, some critical fields in the
process control block (e.g1id, euid) can be targeted (e.qg.,
by the kbdv3 rootkit) for escalating the privilege of the pro
cess under which the rootkit code runs. The task list is often . : .
manipulated (e.g., by the linuxfu and hp rootkits) for pro- the process list andetstat gets information about open

L ) ._._network connections. The hiding of processes and network
cess hiding purposes. Moreover, the semantics assoc'ate%onnections is the most likely reason for hookingc
with the function pointers hijacked by kernel rootkits also MANUAL INSPECTIONRESULTS A quick search (')f the
reveal the rootkits’ intentions. For e_z_xample, functionrgei adore-ng source code confirms that fhec_net hook
ersget_info and Lookup can be h”%Cked. (eg by ado.re is there to hide the existence of network connections
0.53 and adore-ng 0.56) to filter out “sensitive” informatio on certain ports and theeaddir hook is used to hide
so that a rootkit can remain invisible in the compromised running processes. Theokup hook, however, is used to
system. : ; o o '

Another interesting benefit of PoKeR'’s rootkit profiles is er?gla!silgfgl;?\/aetlgir;tr?o?((j:gzglnt%iss kernel component. The
that they reveal the changes made between various Versmni\dore-zg also impacts the ma&xtslfile system. The first
of the same rootkit. Consider the three different adore-root of these functionsext3_dir operations—>rea;ddir, is
kits n Table 1. Version 0'4.2 relies solely on a syst_em call used to generate directory listings. The second function,
hooking attack. A later version, 0.53, lessens its reliance ext3 file operations—>write. is used to write to files
system call hooking and hooks t\.NO kernel obje(_:ts instegd. The r?mst o-bvfi)ous reason to honi(addir on the main file.
Once ado_re becomes_ adore-ng, it moves t_o entirely re,lymgsystem would be to hide the existence of certain files. The
on hooks in kernel objects. Such an evolution of adore’s at-

S . ) . write operation instead is to perform one layer of filtering
tack behavior is clearly illustrated by PoKeR's profiles. so that rootkit-related information will not be visible.

MANUAL INSPECTIONRESULTS The source code review

5.2 Detailed Results for Three Representative Rootkits confirms thatreaddir is used to hide fileswrite is

hijacked to ensure that hidden processes do not write to

any of the system wide log files ifwar.
Lastly, adore-ng hijacks thenix_dgram_ops->recvmsg
function pointer, which would allow it to intercept UNIX
domain socket messages, a type of inter-process communi-
cation. This one is quite puzzling. Inter-process commamic
tion seems like a very strange thing to intercept and poten-
tially stop.

MANUAL INSPECTIONRESULTS. The source code analysis

reveals that it is used to intercept and delete messages to

the system logging daemon.

Hooking Behavior The hooking profile for adore-ng is
quite interesting because it does not hook any system calls.
In addition, one of its hooks requires combat tracking (Sec-
tion 3.2) to reveal. The rootkit modifies six function poirgte

in various kernel objects. It is particularly interestedlie
proc file system, modifying three function pointers there.
One of those pointergroc_net->(...)->get_info, iS
located in an object that was dynamically allocated on the
kernel's heap (and was found by combat tracking.) The
other two,proc_root_inode_operations->lookup and
proc_root_operations->readdir are related to file op-
erations orproc. Theproc file system exports information
from kernel-space to user-space and is used by applications
that retrieve system informatiops, for example, retrieves

When conducting in-depth analysis of kernel rootkits, PRKe
is especially helpful in providing a human expert with irfor
mation related tavhata kernel rootkit did so that the expert
can more quickly ascertaimhythe rootkit did it. In this sec-
tion, we describe detailed profiling results for three kérne
rootkits which each display different attack methodolsgie
In the following descriptions, we will present (1) an anadys

of each rootkit based only on general knowledge of Linux
and PoKeR’s multi-aspect profile and (2) a manual analysis
based on the rootkit's source code (which we have for the ex-
periments.) Observations and explanations from analgis (
are presented in normal text; while interpretations based o Targeted Kernel Objects Based on PoKeR profiling results,
analysis (2) are indented and precededvbywuAL INSPEG it seems that adore-ng does not modify any kernel objects
TION REsuLTs. Our intention is to show how a human expert outside of function pointers and instead does its work by
can use PoKeR to quickly understand a rootkit's behavior hijacking the control flow. In this respect the rootkit is not
without its source code. The descriptions also highlightho any more advanced than many system call hooking rootkits.



Address Order | Instruction

C72EC40B | 22 lcall 0x00000414
C72EC410 | DATA

C72EC414 | 23 pop Yeax

C72EC415 | 24 ret

C72EEOCB | 1 push Yebp

C72EEOCC| 2 mov %esp, hebp
C72EEOCE | 3 sub $0x0C, %esp
C72EEOD1 | 4 mov $0x00001000, Y%ecx
C72EEOQOD6 | 5 push %hedi

C72EEOD7 | 6 push fhesi

C72EEOD8 | 7 push %hebx

C72EEOD9 | 8 movl 0x14 (%ebp) , %eax
C72EEODC| 9 mov $0x0804EF39, Y%ebx
C72EEOE1 | 10 sub $0x0804D040, Y%ebx
C72EEOE7 | 11 movl 0xC(%ebp) , %edx
C72EEOQOEA | 12 movl %eax, OxEC(%edx)
C72EEOFO | 13 movl 0x8(%ebp) , %esi
C72EEOF3 | 14 leal 0x400 (%esi,%ebx), %esi
C72EEOFA | 15 movl %hesi, -0x4(%ebp)
C72EEOFD | 16 mov $0x00, %dl
C72EEOFF | 17 mov Yhesi, hedi
C72EE101 | 18 mov %dl, %al
C72EE103 | 19 repz stosb %al, Y%es:(%edi)
C72EE105 | 21 lcall 0xFFFFE40B

Table 2. Excerpt of SucKIT code extracted by PoKeR

However, it is important to note that while it does not mod-
ify any other kernel objects, its malicious code may still be
modifying the system call results returned to user-level pr
grams.
MANUAL INSPECTIONRESULTS The source code review
confirms these results.

User-Level Process Effects Without modifying any system
call table entries directly, adore-ng still manages to atec
its malicious payload during system calls. This is logical,
considering that the function pointers it modified would be
called during various system calls. Our results show that fiv
system calls from our corpus executed adore-ng code.

Extracted Code Adore-ng results in 785 instructions ex-
tracted.

5.2.2 SucKIT 1.3b

Hooking Behavior SucKIT is another interesting rootkit

Targeted Kernel Objects The targeted kernel objects are
very interesting, leading to a few important observations.
First, PoKeR’s memory read log indicates that SucKIT reads
in the entire system call table. Second, it modifies the céde o
two kernel functionssystem_call andtracesys. These
two functions can be used to dispatch system calls. For
example, when a software interrupt80 is received, the
system_call function directs the system call to the proper
kernel handler by reading the function pointer from the sys-
tem call table. These two observations lead us to hypothesiz
that SucKIT makes a copy of the system call table and mod-
ifies the dispatcher functions to use the new table instead of
the old one.

MANUAL INSPECTIONRESULTS The source code review

confirms that the above hypothesis is correct.

User-Level Process Effects In SucKIT'’s profile, we ob-
served no modifications to relevant function pointers other
than the one to the strange system call. However, since
SucKIT directly overwrites kernel code in the Linux system
call dispatcher, it still hijacks the control flow of key sgst
calls using its alternate table. In our test suite, we find tha
SucKIT manages to hijack 10 of the 39 system calls.

Extracted Code One tidbit from the extracted code was
interesting enough to warrant inclusion here. Table 2 shows
the first few dozen instructions executed by the SucKIT root-
kit. The table shows the virtual address where the code was
located, the order in which the instructions were executed,
and the extracted instructions themselves — all provided by
PoKeR.

One unique property of SucKIT that can be seen from
these instructions is that it has a tricky way of creating a
global variable. SucKIT installs itself into the kernel byitw
ing its malicious kernel payload directory into a piece of
memory speciallkmalloc’d and then executingit. The spe-
cific address of kernel memory where SucKIT will reside is
not known at compile time. Global variables (the addresses
of which must be known at compile time) are not available to
the rootkit author. Rootkits that install as kernel modules
not have this problem as the kernel will dynamically relecat
their code and data prior to execution. Given that SucKIT
does not have the benefit of dynamic relocation, a trick is
used to permit the use of global variables when their ad-

mainly because it only modifies one entry in the system call dresses cannot be known a priori. Instruction 21 in the table

table, 59. This isn’t even an interesting entry; it corrastm

(1call OxFFFFE40B) makes a function call to an offset of

to oldolduname. (Which, as one can imagine, is deprecated the current page, in this case a negative number. This call
and not frequently used.) We hypothesize that this systemcauses instruction 22 (near the top of the table) to execute.

call is used by a user-space control program to invoke certai
kernel-level functions.
MANUAL INSPECTION REsuULTS: The source code re-

The memory layout starting at instruction 22 is quite inter-
esting. One can see the layout is: instruction 22 followed by
4 bytes of data followed by instructions 23 and 24. When in-

view reveals that the above hypothesis is mostly correct. struction 22 executes (another local call) the addresseof th
SucKIT makes use of that system call entry to make the memory immediately following thé@call is pushed onto

kernel functionkmalloc callable from user-space. This
allows it to allocate a place for its kernel component from
user-space and then install it videv/kmem.

the stack. This is the return address, but here it corregpond
to the address of the 4 bytes of data. Phe instruction that
runs next moves that address into registex and then is-



sues aret that returns control flow back to the main code. 6

At this point registeeax contains the address of the 4 bytes PoKeR not p%;m]g %
of data. This mechanism allows the attacker to achieve the 5| PoKeR while profiling 1 |
functionality of global variables without having to worry <
about dynamic relocation. =
MANUAL INSPECTIONRESULTS. The source code review g
confirms the above analysis. Z 3l
2
5.2.3 hide pid (hp) 1.0.0 g il
(]
Hooking Behavior The hp rootkit modifies no function <
pointers and, in fact, does not hijack control flow at all. 1y
It also does not install persistent code. This is drasticall

different from the previous two rootkits.
MANUAL INSPECTIONRESULTS: The source code review Overall Compilation
confirms these statements.

Figure 4. PoKeR performance results
Targeted Kernel Objects The kernel object accessed by

hp is the pid hash tablep{dhash is basically a table of
task structures hashed by pid. It allows kernel functions to
search for a process by pid without needing to traverse theFor the three kernel rootkits analyzed above, the PoKeR-
entire process list. Entries in the hash table are still pirt  based analysis leads to 13 statements about the rootkits’ be
the process list, however.) It is possible to see the rdstkit havior and 12 of them are confirmed by the analysis based
intentions using the following excerpt from its object agge 0N rootkit source code. (With 1 being mostly correct.) We

5.2.4 Summary

log: highlight that the high accuracy of PoKeR is achieved based
solely on one execution session and neither the source code

R - 0xc03a61a0 (0xc677c000): pidhash[600] .. . .

R - 0xc677c078 (0x0000025a): pidhash[600]->pid nor the original binary of the rootkit was manually con-

E o OrcaTron0 (ome 000 s B oo  brev-task sulted. Our comparison also indicates that even when the

R - 0xc677c050 (0xc76d8000): pidhash[600]->next_task i i i i i

E e (ortoa00): Eidhach ta00] omeri-task root.klt source code is avallaple, it would be_technlcalmco

W - 0xc76d8054 (0xc6780000): pidhash[600]->next_task->prev_task venientto first use PoKeR — instead of starting right from the

R - 0xc677c054 (0xc6780000): pidhash[600]->prev_task . . .

W - 0xc6780050 (0xc76d8000): pidhash[600]->prev_task->next_task source code — to achieve faster revelation and understndin

As can be seen from the log, the rootkit readi@hash [600] of the rootkit's behavior.

in the table, verifies it is the correct entry by checking the 53 performance
pid, and then proceeds to remove that entry from the pro-
cess list by modifying the previous and next pointers of its

neighbors. We point out that these task structures are dynam
ically allocated, yet our combat tracking technique is able

While performance is not always a significant concern for a
honeypot system, we feel it necessary to give a general idea
of the speed at which the various components of PoKeR run.

identify them accurately. Runtime PoKeR Module We ran two basic tests to de-
MANUAL INSPECTIONRESULTS The source code review termine the performance of PoKeR’s runtime component
confirms that the above analysis is correct. that generates the log entries. All tests were run under the

) system as described at the beginning of Section 5. We ran
User-Level Process Effects As mentioned above, the hp  ynixbench 4.1.0 as well as a test timing kernel compilation
rootkit did not execute any malicious code during the execu- ypder standard QEMU, QEMU + PoKeR without a root-
tion of our corpus. As a result, we can infer that it does not it peing profiled, and QEMU + PoKeR while profiling the
install persistent code into the kernel and thus has no impac 4ore-ng rootkit. The results, normalized to the speed of

on the system calls. _ standard QEMU, are shown in Figure 4. (Lower is better.)
MANUAL INSPECTIONRESULTS: The source code review  \whjle in the profiling mode, PoKeR is 2.96x slower than
confirms that the above analysis is correct. standard QEMU for the kernel compilation test and about

Extracted Code The extracted code of hp is extremely small 5-88x slower under the Unixbench test. While not profil-

— only 100 instructions. This makes sense considering thatind (but simply waiting to detect an attack), the slowdown

all it seems to do is remove an item from the process list, iS significantly less, 1.17x for the kernel compilation case

and lends evidence to the idea that it may not do anything @nd 1.28x for the Unixbench case.

else. QEMU QEMU itself contributes a noticeable amount of
MANUAL INSPECTIONRESULTS The source code review overhead to our PoKeR prototype. Thoroughly benchmark-
confirms that the above analysis is correct. ing QEMU is outside the scope of this work, however a ba-



sic benchmark is helpful for understanding PoKeR’s overall ~ Another situation is one where a rootkit installs a code
performance. To test the overhead of QEMU we took ver- hook and uses it to walk the stack and find kernel object
sion 0.9.1 (the latest release) and compared the perfoenancaddresses on it. (If the rootkit author knows what functions
of a native install of Ubuntu 8.10 to a QEMU+KQEMU vir-  have already been called prior to his hook, he can easily
tualized copy. Both had access to the same amount of mem-derive the type information for function arguments on the
ory (512MB) and one processor core. A kernel compilation stack.) In this case, combat tracking would not be able to
benchmark revealed an overhead of 3.8x. Given the portabil-properly identify the types of data being read. PoKeR could
ity of NICKLE to other dynamic translation-based VMMs be extended to monitor type information for items on the
such as VMware [Riley 2008], we believe that this portion stack, similar to the wagdb does.
of overhead could be reduced by making use of a more effi-  Finally, a rootkit may be able to scan kernel memory and
cient VMM platform. guess at the identity of kernel objects, and do so with a high
Log Processing To demonstrate the efficiency of log pro- prpbability of success. On_e p_ossible z_;\pproach to combating
. . . _this attack would be to periodically build a complete map of
cessing, the amount of time taken to process the log entnesk | obiects (similar to SBCEI [Petroni 20071). A .
for each of the 10 rootkits in Table 1 was measured. The o o' ODIECLS (_S|m|ar 0 S [Petroni D- ssuming
that this periodic map building occurred at regular intésya

longest processing time was for rial: 3 minutes and 36 sec- ) i i :
onds. The shortest time was for rkit: 0.7 second. The averagePOKeR would be able to identify any dynamic kernel object

time across all 10 rootkits was 37 seconds. with high probability, even without a chain of reads.

6.2 Limitations

6. Discussion There are some limitations to our current PoKeR proto-

In this section we will discuss potential attacks against type. First, our current profiling results are not complete
PoKeR as well some of its limitations and future improve- for fully and provably determining all aspects of a given

ments. rootkit. Instead, we are only focusing on four specific as-
pects of the rootkit’s behavior. Our lack of completeness is
6.1 Attacks trait shared by other dynamic analysis based systems [Moser

. . _ 2007, Lanzi 2009].
There exist a number of potential attacks that a rootkit may Second, the current prototype is still limited in revealing

employ to evade PoKeR. ) ) the context in which the rootkit-manipulated kernel obgect
Our current prototype relies on NICKLE to signal the ex- .« ised. For example, in thdore-ng experiment we no-

ecuti_o_n of kernel rootk_it code. However, if a kerljel rootkit ticed that the IPC datagram receive function was hijacked.
modifies kernel_data directly from user-space using a mem- ever the derived profile could not tell us why. Manu-
ory access device such dev/kmem, POKeR will notbe 5 inghecting thewdore-ng source code indicated that this
able to profile it. We have synthesized such a rootkit, al- , 2« \sed to filter messages being sentytslogd. Thus, it

though it has limited functionality as it cannot execute its ) /14 pe a huge advantage if PoKeR could be improved to
own kernel code. A related attack is one that uses only automatically reveal that. In the meantime, we also recog-

existing kernel code as in an advanced type of return-10- i, that pokeR's user-level impact metric is still simptis
libc attack [Shacham 2007, Buchanan 2008] for the ker- 5 \we plan to extend it to determine the complete set of
nel. NICKLE would fail to generate the needed detection oo calls that may get hijacked at runtime. Correlating
point for PoKeR. Existing approaches such as control-flow g iieq kernel objects with a static analysis of the kemel’

integrity [Abadi 2005] are able _to detect these types of at- call graph as well as multiple path exploration [Moser 2007]
tacks and PoKeR could be engineered to use them to generg o potential avenues of research in this area.

ate detection points. Finally, a rootkit may be able to detect virtualization or

Comba_ttracking_implicitly rel_ies on the fact thataroot_kit PoKeR's profiling mode and alter its actions accordingly.
must obtain dynamic kernel objects’ addresses by starting aygte that as virtual machines become more prevalent, they

chain Of, reads at a static data object. A rootkit may not need are quickly becoming valid targets for attacks and rootkit a
to do this, h_owever. It may, for example, call existing kérne thors are losing their incentive to avoid them. While effort
code to retrieve the address of a data structure. In this case.q 14 be made to mask the presence of virtualization from

the chain of reads would occur from legitimate kernel code o atacker, it is considered an unsolvable problem in the
and hence would not be logged. PoKeR can handle this situa-

! _ X ) ) _ general sense [Garfinkel 2007].
tion by simply tracking all kernel reads instead of just kbt

reads, but at an increased performance penalty. Another po-
tential approach would be to have PoKeR monitor all kernel 7. Related Work

reads as long as there is a pointer to malicious code on theAnalyzing Kernel-level Malware The first area of related
current kernel stack. This pointer is likely areturn addites ~ work includes recent efforts in investigating and underdta
the rootkit code, which has called the valid kernel code. ing kernel malware behavior. For example, based on taint



analysis, Panorama [Yin 2007] performs system-wide in- SecVisor [Seshadri 2007] enforces kernel code integrity by
formation flow tracking to understand how sensitive data leveraging hardware virtualization support. NICKLE [Rile
(e.g., user keystrokes) are stolen or manipulated by mal-2008] proposes a memory-shadowing scheme that ensures
ware. Unfortunately, the underlying taint-based inforiorat only authenticated kernel code be fetched and executed in
flow techniques fundamentally suffer from control-flow eva- the kernel space. Other approaches such as driver signing
sion attacks [Cavallaro 2008] that directly break taintggro  [Microsoft] and various forms of driver verification [Kruep
agation. From another perspective, K-Tracer [Lanzi 2009] 2004, Wilhelm 2007] have also been proposed to protect
combines backward and forward slicing techniques to un- kernel integrity. Interestingly, though these systemspaire
derstand kernel rootkit behavior. However, the slicing op- marily developed to enforce kernel integrity, they might be
eration requires prior determination of the sensitive dgta  adapted to serve as instantaneous rootkit detection system
which to perform the slicing analysis. As aresult, althoitlgh  The concept of on-the-fly emulation of malicious code has
is capable of dealing with regular kernel rootkits that tija  been studied at the user-level [Portokalidis 2008]; in this
system call table entries, it becomes less efficient to andl work we apply the concept to kernel-level rootkit profiling.
advanced ones such as DKOM-capable rootkits. In compar-

ison, with the capability of tracking both static and dynami 8. Conclusion

kernel objects, PoKeR does not rely on such prior knowl- We present the design, implementation, and evaluation of

edge and can work with DKOM-capable rootkits (e.g., the PoKeR, a kernel rootkit profiler that produces multi-aspect

hp rootkitin Section 5.2.3) as well, rootkit profiles which include hooking behavior, targeted

Several other approach_es have repently begn prOpqse%ernelobjects, user-levelimpacts, and executed roakiec
to understand rootkit hooking behavior. HookFinder [Yin In particular, via the combat tracking technique, PoKeR

2008] analyzes a given r_ootk|t sample and rep_orts a list of maintains a map of dynamic kernel objects, which allows
kernel hooks f[hat are pelng used by th_e rootkit. HookMap it to accurately determine which kernel objects are modified
[Wang 2008] instead aims to syst__ematlcally enumergtg all by a rootkit. PoOKeR is also able to extract the executed root-
of the kernel hooks that can be h”aCked for rootkit-hiding it code and infer the potential impact the rootkit might&av
PUrposes. Th.ese.approaches malnly fogus on one aspect Ogn user-level programs. PoKeR is evaluated using 10 real-
rO.Otk't behavior, i.e., the hookmg behavior. Howgvgr,ythe world kernel rootkits, the profiles of which reveal a variety
miss other aspects that are also important for rootkit pgfi of attack methodologies and demonstrate PoKeR’s effective
puUrposes. ness as a rootkit analysis aid.
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