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Abstract multi-vector infection [17, 15], self-destruction [21,]25

To detect and defend against Internet worms, re_and intelligent payloads such as self-organized attack

searches ave ong foped 0 nave a sa conveie e 19,2 Tase maing capanity [ 1 xer
environment to unleash and run real-world worms for y asp

close observation of their infection, damage, and propalprogmg’ explo::atlor;], prolpagatrl]on, (ejmtd rrr]1al|(:|0us ?ay- d
gation. However, major challenges exist in realizing such02¢s, researchers have long hoped to have a sale an

“worm playgrounds”, including the playgrounddelity, convenient environment to run and observe real-world

. " . . worms. Such a “worm playground” environment is
confinement, scalabilifas well aconveniencen worm useful not only in accessin pthizgim act of worm intrusion
experiments. In this paper, we presentidualization- Y 9 P

based platform to create virtual worm playgrounds, and propagation, but also in testing worm detection and

called vGrounds on top of a physical infrastructure. defense_ mgchanlsms [55, 57, 47, 51, 41 44]' ) ]
A vGround is an all-software virtual environment dy- Despite its usefulness, there are difficulties in realiz-
namically created for a worm attack. It has realistic'N9 @ Worm playground. Major challenges include the
end-hosts and network entities, all realized as virtuaP!@yground'sfidelity, confinement, scalability, resource
machines (VMs) and confined in a virtual network (VN). €fficiencyas well as theonvenience in worm experiment
The salient features of vGround include: (igh fidelity =~ Setup and control Currently, a common practice is
supporting real worm codes exploiting real vulnerable!® deploy & dedicated testbed with a large number of
services, (2)strict confinemeninaking the real Internet  Physical machines, and to use these machines as nodes
totally invisible and unreachable from inside a vGround,in the worm playground. However, this approach may
(3) high resource efficiencgchieving sufficiently large not effectwely address the above challenges, .for the
scale of worm experiments, and @xible and efficient  following reasons: (1) Due to the coarse granularity (one
worm experiment contranabling fast (tens of seconds) Physical host) of playground entities, the scale of aworm
and automatic generation, re-installation, and final tearP/@yground is constrained by the number of physical
down of vGrounds. Our experiments with real-world NOSts, affecting the full exhibition of worm propagation
worms (includingmulti-vector worms and polymorphic behavior. Meanwhlle, the granular!ty also limits the
wormg have successfully exhibited their probing and number of S|m_ultaneous worm experiments that can run
propagation patterns, exploitation steps, and maliciou&! the same time. (2) By nature, worm experiments

payloads, demonstrating the value of vGrounds for worn2'€ destructive - With physical hosts as playground
detection and defense research. nodes, it is a time-consuming and error-prone manual

task for worm researchers to re-install, re-configure, and
reboot worm-infected hosts between experiment runs.
(3) Using physical hosts for worm tests may lead to
security risk and impact leakage, because the hosts may
1 Introduction connect to machinesutsidethe playground. However, if

we make the testbed a physically-disconnected “island”,
In recent worm detection and defense research, wéhe testbed will no longer be share-able to remote re-
have witnessed increasingly novel features of emergingearchers.
worms [49] in their infection and propagation strategies. The contribution of our work is the design, implemen-
Examples are polymorphic appearance [40, 32, 50]tation, and evaluation of @irtualization-baseglatform
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to quickly create safe virtual worm playgrounds called
vGrounds on top of general-purpose infrastructures.
Our vGround platform can be readily used to analyze
Linux worms, which represent a non-negligible source of
insecurity especially with the rise of popularity of Linux
in servers’ market. Our design principles and concepts
can also be applied to build Windows-based vGrounds

The vGround platform can conveniently turn a phys-
ical infrastructure into a base to host vGrounds. An
infrastructure can be a single physical machine, a local
cluster, or a multi-domain overlay infrastructure such as
PlanetLab [8]. A vGround is an all-software virtual en-
vironment with realistic end-hosts and network entities,
all realized as virtual machines (VMs). Furthermore, a
virtual network (VN) connects these VMs ardnfines
worm traffic within the vGround. The salient features of
vGround include:

e High fidelity By running real-world OS, applica-
tion, and networking software, a vGround allows
real worm code to propagate as in the real Internet.
Our full-system virtualization approach achieves
the fidelity that leads to more opportunities to cap-
ture nuances, tricks, and variations of worms, com-
pared with simulation-based approaches [46]. For
example, one of our vGround-based experiments
identified a misstatement on the victim-targeting
behavior of a well-known worm in a worm bulletin

e Strict confinementUnder our VM and VN (virtual

multiple runs of a destructive experimenThese
operations can take hours or even days if the same
experiment is performed directly on physical hosts.
More importantly, the operations can be started by
the researchenwithout the administrator privilege

of the underlying infrastructure.

High resource efficiency Because of the scal-
ability of our virtualization techniques, the scale
of a vGround can be magnitudes larger than the
number of physical machines in the infrastructure.
In our current implementation, one physical host
can support severaundredvVMs. For example, we
have tested the propagation of Lion worms [16] in
a vGround with 2000 virtual end hosts, based on 10
physical nodes in a Linux cluster.

However, we would like to point out that although
such scalability is effective in exposing worm prop-
agation strategies based on our limited physical re-
sources (Section 4), it isotcomparable to the scale
achieved by worm simulations. Having different
focuses and experiment purposes, vGround is more
suitable for analyzing detailed worm actions and
damages, while the simulation-based approach is
better for modeling the speed of worm propagation
under Internet scale and topology. Also, lacking
realistic background computation and traffic load,
current vGrounds armot appropriate for accurate
guantitative modeling of worms

network) technologies, the real Internet is totally We are not aware of similar worm p|ayground p|at-
invisible (unaddressable) from inside a vGround,forms with all the above features that are widely deploy-
preventing the leakage of negative impact causedble on general-purpose infrastructures. We have suc-
by worm infection, propagation, and malicious pay- cessfully run real worms, including multi-vector worms
loads [16, 25] into the underlying infrastructure and and p0|ym0rphic worms, in vGrounds on desktops,
cascadingly, the rest of the Internet. Furthermoreocal clusters andPlanetLab Our experiments are able
the damages caused by a worm only affect thero fully exhibit the worms’ probing and propagation
virtual entities and components in one vGround andpatterns, exploitation attempts, and malicious payloads,
therefore danot affect other vGrounds running on  demonstrating the value of vGrounds in worm detection

the same infrastructure.

e Flexible and efficient worm experiment control

and defense research.
The rest of this paper is organized as follows: Section
2 provides an overview of the vGround approach. The

Pue tq the aII-s_oftWT}re. naturz ?f vIGrour:jds, th? detailed design is presented in Section 3. Section 4
Instantiation, re-installation, and final tear-down of 4o qnirates the effectiveness of vGround using our ex-

avGround are both fast and automatic, saving WorIT-E

researchers both time and labor. For example, i
our Lion worm experiment, it only takes 60, 90

eriments with several real-world worms. A discussion
n the “vGround vs. worm” arms race is presented in
' Section 5. Related works are discussed in Section 6.

and 10 seconds, respectively, to generate, bOOtFinaIIy, Section 7 concludes this paper.

strap, and tear-down the vGround with 2000 virtual
nodes. Such efficiency is essential when performing

1We are currently extending the vGround platform to support-Wi
dows worms by leveraging recent advances in Windows virtaiadia
(e.g., Bochs [1]).

2 The vGround Approach

In this section, we present an overview of the vGround

2The misstatement is now fi xed and the authors have agreed not @PProachVvirtualizationpermeates the design and imple-

disclose the details.

mentation of the vGround platform. More specifically,
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Figure 1: A PlanetLab-based vGround for worm experiment

vGrounds are enabled by both new and existing VM andservices (e.g., BIND, Sendmail, DNS). Therefore, the
VN technologies, which efficiently emulate vGround en- vulnerabilities provided by vGrounds should be the same
tities, including end hosts, firewalls, routers, and nekwor as those in real software systems. As such, vGround can
connections. A vGround can be created on a wide rangeot only be leveraged for experimenting worms propa-
of infrastructures. For example, Figure 1 shows a simplegating via known vulnerabilities, but also be useful for
vGround (the vGrounds in our worm experiments arediscovering worms exploitinginknown vulnerabilities
much larger in scale) we create based on three PlanetLatf which worm simulations areotcapable.
hosts A, B, and C. The vGround includes three virtual There exist various VM technologies that enable full-
enterprise networks connected by three virtual routerssystem virtualization. Examples include VMware [13],
One “seed” worm has initially infected a virtual end host Denali [59], Xen [28], and User-Mode Linux (UML)
(128.10.1.1) in network A (128.10.0.0/16). Note that the[33]. The differences in their implementations lead to
address space of the vGround is totally orthogonal to thaglifferent levels of cost, deployability and configurabil-
of the Internet and their IP numbers can safely overlap. ity: VMware requires several loadable kernel modules
Using a vGround specification language, a wormfor virtualizing underlying physical resources; Xen and
researcher will be able to specify the worm experimentDenali “paravirtualize” physical resources by running
setup in a vGround, including software systems andn place ofhost OS; and UML is mainly aiser-level
services, IP addresses, and routing information of virtuaimplementation through system call virtualization. We
nodes (i.e. virtual end hosts and routers). Given thechoose UML in the current vGround implementation
specification, the vGround platform will perforauto-  because of the least changes (or even no change) to the
matic vGround instantiation, bootstrapping, and clean-host OS and no root-privilege requirement. As such,
up. In a typical worm experiment, multiple runs are often vGrounds can be widely deployed in most Linux-based
needed, in order to to collect a sufficiently large set ofsystems (including PlanetLabVe have developed new
infection traces (for data mining or signature extractjon) extensions to UMLas described next.
or to revise, refine, and re-try the worm signature(s).New network virtualization techniques are developed
However, because of the worm’s destructive behaviorio achieve vGrounctonfinement Simply running a
the vGround will be completely unusable after each runworm experiment in a number of VMaill not confine
and need to be re-installedThe vGround platform is  the worm traffic and prevent potential worm “leakage”.
especially efficient in supporting such an iterative worm Although UML has some support for virtual networking,
experiment workflow it is not capable of forming aisolatedvirtual topology
across amulti-domainshared infrastructure. As our
. solution, we have developed new network virtualization
2.1 Key vGround Techniques techniques to create a VN for VMs in a vGround. The

Fu'.I_SyStem virtualization IS. adopted to _aChIeve hlgh SCertain patching to the host OS is strongly suggested foembett
delity of vGrounds. Worms infect machines by remotely scajaiiity and confinement. Such patches are installedesuit in

exploiting certain vulnerabilities in OS or application many Linux systems.




project Planetlab—Worm

template slapper {
image slapper.ext2
cow enabled
startup {
letc/rc.dfinit.d/httpd start
}

template router {
image router.ext2
routing ospf
startup {
letc/rc.d/init.d/ospfd start
}
}
router R1 {
superclass router
network eth0 {
switch AS1_lanl
address 128.10.1.250/24

switch AS1_lan1 {
unix_sock sock/as1_lanl

host planetlab6.millennium.berkeley.edu

switch AS1_AS2 {
udp_sock 1500

host planetlab6.millennium.berkeley.edu

}
node AS1_H1({
superclass slapper
network ethO {
switch AS1_lanl
address 128.10.1.1/24
gateway 128.10.1.250
}

node AS1_H2{
superclass slapper
network ethO {
switch AS1_lanl

switch AS2_lan1 {
unix_sock sock/as2_lanl
host planetlabl.cs.purdue.edu

}

switch AS2_AS3 {
udp_sock 1500
host planetlabl.cs.purdue.edu

}
node AS2_H1{
superclass slapper
network ethO {
switch AS2_lanl
address 128.11.1.3/24
gateway 128.11.1.250

node AS2_H2{
superclass slapper
network ethO {
switch AS2_lanl
address 128.11.1.4/24

switch AS3_lan1 {
unix_sock sock/as3_lanl
host planetlab8.Ics.mit.edu

router R2 {
superclass router

network ethO {
switch AS2_lanl
address 128.11.1.250/24
}
network ethl {
switch AS1_AS2
address 128.8.1.2/24
}
network eth2 {
switch AS2_AS3
address 128.9.1.2/24
}
}

node AS3_H1{
superclass slapper
network ethO {
switch AS3_lanl
address 128.12.1.5/2
gateway 128.12.1.25
}
}
node AS3_H2{
superclass slapper
network eth0 {
switch AS3_lanl
address 128.12.1.6/2
gateway 128.12.1.25|

}
router R3 {
superclass router
network eth0 {
switch AS3_lan1
address 128.12.1.250/24

} address 128.10.1.2/24
network eth1 { gateway 128.10.1.250 gateway 128.11.1.250 Y network etha {
switch AS1_AS2 } switch AS2_AS3
address 128.8.1.1/24 } } address 128.9.1.1/24
} }
} }

Figure 2: A sample vGround specification

VN constrains both the topology and volume of traffic addresses. In addition, the virtual nodes are properly
generated by the VMs. Such a VN essentially appeargsonnected using proper routing mechanisms. Currently,
as a “virtual Internet” (though with a smaller scale) with the vGround platform supports RIP, OSPF, and BGP
its own IP address space and router infrastructure. Mor@rotocols.

importantly, the VN and the real Internet are, by nature | order to conveniently specify and efficiently gen-
of our VN implementationmutually un-addressable erate various system images, the language defines the
New optimization techniquesare developed to improve following notions: (1) Asystem templateontains the
vGroundscalability, efficiency, and flexibility To in-  basic VM system image which ommonamong mul-
crease the number of VMs that can be supported intiple virtual nodes. If a virtual node is derived from a
one physical host, the resource consumption of eackystem template, the node will inherit all the capabilities
individual VM needs to be conserved. For example, aspecified in the system template. The definition of
full-system image of Red-H&L0/7.2 requires approx- system template is motivated by the observation that
imately 1G//700M disk space. For a vGround a0  most end-hosts to be victimized by a certain worm look
VMs, a naive approach would require at IeB#1GG/70G quite similar from the worm’s perspective. (2)duster

disk space. Our optimization techniques exploit the faciof nodes is the group of nodes located in the same subnet.
that a large portion of the VM images is teemeand can  The user may specify that they inherit from the same

be shared among the VMs. Furthermore, some servicesystem template, with their IP addresses sharing the same
libraries, and software packages in the VM imagereie  subnet prefix.

relevant to the worm being tested, and could therefore be 5g an example, Figure 2 shows the specification

safely removed. We also develomew methodo safely ¢4, the vGround in Figure 1. The keyworgmplate

and efficiently generate VM images in each physical hos{ngicates the system template used to generate other
(Section 3.4). Finally, anew technique is developed jnaqes files. For example, the imagpper.ext2is

to enable worm-driven vGround growthnew virtual 54 to generate the images of the following end-hosts:
nodes/subnets can be added to the vGround at runtime o1 171 AS1_H2, AS2_H1, AS2_H2. AS3_H1, and

in reaction to a worm's infection intent. AS3_H2; while the imageouter.extas used to generate
the images of router®1, R2, and R3. The keyword
switch indicates the creation of aetwork connecting
various virtual nodes. The internal keyworasix _sock

The vGround platform provides a vGround specification@nd udp_sock indicate different network virtualization
language to worm researchers. There are two major typei§chniques based on UNIX and INET-4 sockets, respec-
of entities -networkand virtual node in the vGround tively. Note that the keywordlusteris not used in this
specification language. Aetworkis the medium of example. However, for a large-scale vGround, it is more
communication amongirtual nodes A virtual node can ~ convenient to uselusterto specify a large number of
be an end-host, a router, or a firewall and it has one opubnets, each with end-hosts of similar configuration.
more network interface cards (NICs) - each with an IP  After a vGround is created, the vGround platform also

2.2 vGround User Configurability
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Figure 3: lllustration of network virtualization in vGround

provides a collection of toolkits to unleash the worm, 3.2 Network Virtualization

collect worm infection traces, monitor worm propagation

status, and re-install or tear-down the vGround. More

details will be described in Sections 3 and 4. The network virtualization methods in a vGround is
illustrated in Figure 3: UNIX socket daemon-based
transport and our newDP tunneling-based transport
The latter method enables communications among VMs

3 Design Details in physical hosts located idifferent domains More
specifically,virtual switchesare created to perform UDP
3.1 Full-System Virtualization tunneling, which serves as the link-layer “carrier” of

vGround traffic. Since a virtual switch rurt®elowthe

The vGround platform leverages UML, an open-sourceVirtual NIC, from the perspective of VMs, the UDP
VM implementation where the guest OS runs direcﬂytunnels are the “cables” (hardwarg) connecting the VMs
in the unmodifieclser spaceof the host OS. Processes and they are untamperable from inside a Vihis new
within a UML-based VM are executed in the VM in ex- design differentiates our technique from other virtual
actly the same way as they are executed in a native LinuR€tworking technique[$4, 52] and is critical to the strict
machine. Leveraging the capability pfrace a special .conﬁnement. feature of vGrounds.. AIsp, t.beer—level
process is created to intercept the system calls made HfPlementation of our network virtualization methods
any process in the UML VM, and redirect them to the brings significant deployability and topology flexibility
guest OS kernel. Through system call interception, UMLO vGrounds.

is able to virtualize various resources such as memory, .
networks, and other “physical” peripheral devices. An. In order to demonstrate the effect of network virtual-

in-depth analysis of UML is beyond the scope of this ::Ziztliﬁg’ 1weTa;]geairr;:jte ct??uzlriggt;?:roejtir?r?Iteh(seh\(;vl\jln in

paper and mterestgd read§r§ a}re refer.red o [33]. . AS1_H1 tofind the route tod.S3_H2 is shown in Figure
For worm experiments, it is interesting to note thatin 4 - The route is totally orthogonal to the real Internet.

earlier implementation of UML under the “tt mode”, the \1ore details can be found in 137].

UML kernel occupies the lagi.5G of ptraced process

address space andugitable by default. Such place-

mentpreventgertain worms from exploiting stack-based

overflows and therefore limits applicability of vGrounds. [700t @SIHL /root]#traceroute -n AS3 H2

traceroute to AS3_H2 (128.12.1.6), 30 hops max, 40 byte packets

In addition, the “write” permission incurs security risk. 1 128.10.1.250 2.342 ns 3.694 ms 2. 054 s
2 128.8.1.2 69.29 ns 68.943 ns 68.57 ns

The recent version of UML implements the “skas mode” 3 128.9.1.1 104.556 ms 107.078 ns  109. 224 nw
. . 4 128.12.1.6 116.237 ns 172.488 nms 108.982 ns
[33], by which the tracing process acts as a kernel-level oot @s1 . /oot ] #
thread, and does not impose such restriction or risk. In
fact, this explains why certain worms likgon cannot Figure 4: Runnindracerouteinside a vGround
successfully propagate in vGrounds on top of PlanetLab,
as the OS kernels of PlanetLab hosts do not usually

support the “skas” mode.



3.3 Virtual Node Optimization and Cus-  umountusually requires theoot privilege of the under-
tomization lying physical host. To efficiently generate image files
withoutthe root privilege, an interestirfy M generating
A virtual node in vGround can be one of the following: vMs” approach is developed: the vGround platform
(1) an end-host exposing certain software vulnerabilitiesirst boots aspecially craftedUML-based VM in each
that can be exploited by worms; (2) a router forwardingphysical host, which takes less than 10 seconds. With the
packets according to routing and topology specification;support ofhostfs[33], this special VM is able to access
(3) a firewall monitoring and filtering packets based files in the physical host's file system with regular user
on firewall rules; or (4) a network/host-based intrusionprivilege. Inside the special VM, image generation will
detection system (IDS) sniffing and analyzing networkthen be performedsing the VM’s own root privilegdt
traffic. We have applied and developed techniques tamnly takes tens of seconds for the special VM to generate
customize VMs into different types of virtual nodes and hundreds of system images. We note that the special VM
to optimize VM space requirement for better scalability. will notbe part of the vGround being created. Therefore,
The system template is a useful facility to share thethere is no possibility of worm accessing files in the
common part of virtual node images. As shown in physical host.
Section 2.1, the images of the same type of virtual nodes

have a lot in common though they might have different G d bootst . d tear-d The vG d
network configuration. Every image file in vGround is vioround boatstrapping and tear-down The visroun
latform also creates scripts for automatic boot-up and

composed of two parts: one is a shared system templat{% d f virtual nodes. to be tri d telv b
and the other part is node-specific. In the exampletﬁar' own ot vir uah no E';S’ 0 t'e rllggetrhe remotely yf
in Figure 2, the Apache service started by the script 1€ worm researcher. in particular, the sequence o

Jetc/rc.dfinit.d/httpd starts common among all end-host virtual node boot-up/tear-down is carefully arranged. For

images, while the OSPF service started by the scrip?.xample’ a \/_lrtual switch should be r?ady before _the
/etc/rc.d/init.d/ospfd starts common among all router virtual r_10des It con_nects. In_ the C“Tre”t implementation,
images. On the other hand, every virtual node has itSeach virtual node is associated withbaot-order/tear-
unique networking configuration (e.g., IP address anaordernumber to reflect such a sequence.
routing table). which is specified in the node-specific
portion. To execute such specification, we apply theGeneration and collection of worm tracesEach virtual
Copy-On-Write (COW) support in UML in the vGround node in vGround has an embedded logging module
platform, achieving significant savings in disk space.(included in its VM image). The logger generates worm
The COW support also helps to achieve high imagetraces, which will be collected for analyzing different
generation efficiency. aspects of worms. The vGround platform supports
Another optimization is to strip down system tem- different types of logging modules. In fact, a Linux-
plates. When a vGround contains hundreds or thousandsased monitoring or intrusion detection system, such as
of virtual nodes, the templates need to tailored to removécpdump[10], snort [9], and bro [2], can be readily
unneeded services. In worm experiments, this seempackaged into vGround. In addition, we have designed
feasible because most worms infect and spread via onand implemented &ernelizedversion of snort called
or only a few vulnerabilities. For example, for the kernort [39] that operates in the guest OS kernel of
lion worm experiment, a tailored system image of only virtual nodes. Kernort generates logs and pushes them
7M B (with BIND-8.2.1 service) can be built. Since the down from the VM domain to the physical host domain
system templates are just regudaat2/ext3file systems, at runtime.
it is possible to build customized system templates from
scratch. However, available packaging tools suctpas

Lo . To collect traces generated by the hundreds and thou-
greatly simplify this process.

sands of virtual nodes, manual operation is certainly im-
practical, especially when the traces need to be collected
3.4 Worm Experiment Services “live” at runtime. vGround automates the collection

process via a toolkit that collects traces generated by
To provide users with worm experiment convenience, thedifferent loggers (e.gicpdump, kernojt Furthermore,
vGround platform provides a number of efficient worm after an experiment, the worm’s “crime scene” in the
experiment services. vGround can also be inspected and “evidence” be col-
VM image generation (by VM) Every virtual node is lected, in a way similar to VM image generation: a
created from its corresponding image file containing aspecial VMis quickly instantiated to mount the image
regular file system. However, image generation usindile to be inspected (aext2/ext3file), and “evidence”
direct file manipulation operations such a®untand  collection will be performed via the special VM.
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4 Worm Experiments in vGrounds author’s knowledge about unallocated Internet address

blocks [3], but also reveals the address blocks that have
To demonstrate the capability of vGrounds, we presenbeen “black-listed” by the black-hat community (for ex-
in this section a number of worm experiments we haveample, the address blocks used for sinkhole networking
conducted in vGround using the following real-world [61]).

worms: the Lion worm [16], Slapper worm [19], and . . u .
Ramen worm [4]. The experiments span from individual Lion worm The Lion worm “spreads by scanning ran-
’ dom class B IP networks for hosts that are vulnerable

stageg for worm infections (e.g.f target nework SPaCq, 2 remote exploit in the BIND name service daemon.
selection (Section 4.1), propagation pattern and strateg nce it has found a candidate for infection, it attacks

(_Sectlon 4.2), epr0|t§1t|on steps (Section 4.3), and mall_the remote machine and, if successful, downloads and
cious payloads (Section 4.4)) to more advanced schemes

4 . . ; installs a package...” [5]. To create a vGround for the
such as intelligent payloads (Section 4.4), multi-vector, . . . . ;
. . . ; Lion worm, a system templat®n.ext2is built, contain-
infections (Section 4.5), and polymorphic appearances . .
. . . S ing the vulnerable version of BIND service. Thanks to
(Section 4.5). Throughout this section, we will highlight s L . .
the new benefits vGrounds bring to a worm researcher a\éGround s virtual node optimization techniques, the size
9 ' “of the image is onlyrM. A vGround with more than

well as mt_eres'ung worm analysis results_obta_uned durlng1500 virtual nodes (1500 virtual end-hosts in ten subnets
our experiments. In fact, the worm bulletin misstatement

mentioned in Section 1 was identified during these ex_connected by OSPF routers) is deployed on ten physical

. hosts each supporting about 150 virtual nodes. The
periments.

The infrastructure in our experiments is a Linux image files are efficiently generated within 60 seconds

cluster. The cluster belongs to the Computing Centerand the vGround is boot-up in less than 90 seconds.

of Purdue University (ITaP) fosscientific computing In th'.s experiment, we deploy "seed" Lion worms in
. L ten virtual end-hosts. Over a one-week period, the
purpose. Neither do we have root privilege nor do we

obtain special assistance from the cluster administrator. Ground automatically collects the traces generated by

o . . . thekernortlogging module embedded in the 10 infected
indicating vGround’s good deployability. Each physical
node in the cluster has two AMD Athlon processorsend hosts. We then extract and aggregate the IP addresses

(each with 64K L1 I-cache, 64K D-cache, and 256KB \?Jo?;:evrir;ﬂtrig targets to show the distribution of Lion
L2 cache), 1GB memory, and 10GB disk space. '
Figure 5(a) shows the network distribution of targets

probed by the Lion worm, based on the first octet of their
4.1 Target Network Space IP addresses. The probes are evenly distributed over the
Using vGrounds, we first examine the target networkrange of]13, 243]. It seems that the Lion worm does not
space of Lion worms and Slapper worms. We are espeskip private or reserved address blocks [3]. To verify
cially interested in the address blocks that a waries  this observation, we also perform reverse engineering
to avoid This information not only exposes the worm using objdump[7] on the Lion worm binary. The
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Figure 6: Propagation of Slapper worm address-sweepingotal: 1000 hosts)

result is illustrated by the functionally-similar C code then, the address blocks of 082/8 - 088/8 are reserved
segment shown in Figure 7, confirming our observationby IANA (Internet Assigned Numbers Authority) and

in vGround. therefore skipped by the Slapper worm, as shown in
Figure 5(b). As of today, however, these address blocks
are no longer reserved by IANA [3].

int nyrand() /* Random generation of the first octet */
int i;
i =13+(int) (230.0*rand()/(RAND_MAX+1.0));
return(i);

}
i(nt nmyrand2() /* Random generation of the second octet */ 42 Propagatlon Pattern

t“(‘g (258 0trand()/ (RAND_MAX+1.0)) Understanding a worm'’s propagation pattern is important
’ to the design of worm containment mechanisms. In
"m0 this experiment, we demonstrate that vGrounds achieve
srand((ti me(NULL)*rand())): sufficiently large scale to observe a worm’s propagation
rprelt:t;("i/:H:;::Td()i;ndz())» pattern.
} ’ " ' We create a vGround with 1000 vulnerable end-
hosts running inl0 networks each with 100 end hosts
(192.168.x.y,z = 1---10, y = 1---100). At the
Figure 7: Reverse-engineered code snippet of Lion wornbeginning, there isneSlapper-infected “seeding” node
generating random targets (192.168.3.11) in the vGround. We allow the Slapper
worm to propagate in the vGround and the propagation
Slapper worm The Slapper worm exploits a buffer over- progress is recorded. Based on the vGround traces, the
flow vulnerability in the OpenSSL component of SSL- propagation pattern of Slapper worm can be visualized
enabled Apache web servers. If successful, the worm caim Figure 6. The three sub-figures show the status of the
be used as a back-door to start up a range of Denial-ofvGround at three different time instances: whét, 3%,
Service attacks [6]. The Slapper worm was captured anénd 10% of the end-hosts in the vGround are infected,
thoroughly analyzed by researchers at Symantec [45]. respectively. The x-axis is the third octet of an end-host’s
A system templatslapper.extZontains the vulnera- [P, while the y-axis is the fourth octet. An “X” indicates
ble version ofApacheserver. The size of the image is that the corresponding end-host is infected. The figure
approximately32M. A vGround of about 1500 virtual shows the progress and victim distribution of Slapper
nodes is deployed on 20 physical hosts of the Linuxworm propagation.
cluster, with each hosting about 75 virtual nodes. Similar From Figure 6, it can be conjectured that the Slapper
to the Lion worm experiment, we extract the probing worm is using theaddress-sweepingtrategy when se-
traffic from the Slapper-infected nodes and then plot thdecting victims: The seed worm first randomly selects the
target address distribution in Figure 5(b). 192.168.0.0/16 address range. Within this range, hosts
Unlike the Lion worm which ignores the reserved will then besequentially scannedFigure 6 shows that
IP address ranges, the Slapper worm deliberately skipall the infected nodes are so far in the same subnet. A
certain reserved IP address ranges. The address blocklser look at the detailed vGround traces reveals the
skipped reflect the global address assignnagtite time  reason: it takes some time for the seed worm to “hit”
when the Slapper worm was releas€dr example, back the 192.168.0.0/16 range and start infecting the hosts.
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Figure 8: Propagation of Slapper worm variantisidnd-hoppingTotal: 1000 hosts)

The newly spawned worms will do the same as the seed.3 Detailed Exploitation Steps
worm. If one of them hits the same range, it will “sweep”
the IP addresses agaimthe same sequendee. from  In this experiment, we demonstrate the fidelity of
192.168.0.1 to 192.168.254.254). An analysis of thevGround in capturing the detailed exploitation steps at
Slapper worm source code confirms our conjecture.  the byte level.
Lion worm Figure 9(a) shows &pdumprace generated
in the vGround for the Lion worm experiment in Section
4.1. The trace shows a complete infection process
with network-level details. The initial TCP connection

We note that the scale of the above vGround ma)}wandshake is omitted from the figure. The trace shows
not be large enough to observe other propagation patghat the vulnerability in the BIND service [14] is suc-
terns. For example, we synthesizeStapper worm cessfully exploited and a remote shell is creatfthe
variant using theisland-hoppingstrategy [43]. Under byte sequence in re_d color (in lines _2, 3and4)is exgctly
this strategy, the seed worm targets the hoststsn the signature used in snort [9] for Lion worm (_JletectJon
own /16 range with high probability0(75), and hosts The trace also shows the sequence of specially-crafted
outside the range with low probability.05). The same commands then executed, which result in the transfer and
vGround for the original Slapper is used to run the activation of aworm copy. S
Slapper variant. The propagation pattern is visualized inSlapper worm The Slapper worm is unique in its heap-
Figure 8. It is clear that the hosts in the worm’s local based exploitation [53]. vGround successfully repro-
range (192.168.0.0/16) are infecteandomly instead ~duces the detailed exploits: Initially, a TCP connection
of Sequentia"yas in address sweeping_ Our vGround is initiated to verify the reachability ofa ViCtim, which is
traces also indicate that the seed worm as well as théollowed, if reachable, by an invalid HTTP GET request
newly spawned worms willmmediatelystart to infect  to acquire the version of vulnerable Apache server. Once
local hosts, without the delay (caused by random rangéhe versi(_)n is obtai_ned, a succession of 20 connections
selection) observed in address sweeping. Unfortunately@t 100 millisecond intervals exhausts Apache’s pool of
the “hopping away” behavior (i.e. worms infecting serverand thus forces the creation of two fresh processes
hosts outside the local range) cannot be observed iwhen serving the next two SSL connections. The
the vGround, due to the limited address space of théurpose of “forking” two fresh processes is to have the
vGround. As our solution, we develop a new techniquesame heap structures within them and thus prepare for
called worm-driven vGround growthwhen a worm’s the final two SSL handshake exploitations. The first SSL
probing target is generated and the target is not in th@onnection exploits the vulnerability to obtain the exact
vGround, a new subnet with at least the '[arget host Wi|||ocati0n of affected heap aIIocation, and it is used in the
be dynamically generated and added to the vGroungecond SSL connection tq correct_ly patch attack buffer.
within seconds Other techniques such as NAT/reverse- The second SSL connection re-triggers the heap-based
NAT, VM freezing/resuming, and transparent proxying buffer overflow which transfers to the control of the just-
are also applicable solutions. These techniques help tBatched attack buffer.
increase the probability of hitting a target victim and thus  Due to space constraint, we do not show the full
better exposing a worm’s propagation strategy. vGround traces during the above exploitation process.
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(a) Exploitation details of Lion worm
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(b) Exploitation details of Slapper worm

Figure 9: Exploitation details of Lion worm and Slapper worm
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Instead, the trace in the final stage of the attack is showable to observe the operations of this P2P network. More
in Figure 9(b). From the decoded area of Figure 9(b), itspecifically, we deploy a special client [20] in one of the
is interesting to see that the worm source is transferred iend hosts. The special client will issue commands (listed
theuuencodetiformat. in Figure 10) to the infected hosts. Meanwhile, each
Slapper worm carries a DDoS payload component [20].
In the vGround, we are able to issue commands such as
list, udpflood andtcpfloodvia the special client. The
A worm’s payload reveals the intention of the worm au- vGround traces indicate that a command is propagated
thor and often leads to destructive impact. The vGroundamong the infected hosts in a P2P fashion, rather than
is an ideal venue to invoke the malicious payload, be-being sent directly from the special client. The vGround
cause the consequent damage will be confined within th@rovides a convenient environment to further investigate
vGround. Moreover, the vGround will be easily recover- such advanced attack strategy.
able due to the all-software user-level implementation.
The following string is found in the Lion worm trace in
Figure 9(a):find / -name “index.html” -exec /bin/cp in-
dex.html{} \;. The Lion worm recursively searches for |n this section, we present a number of more advanced
allindex.htmfiles starting from the “/” root directory and  experiments where vGrounds demonstrate unique advan-
replaces them with a built-in web page. This malicioustages over other worm experiment environments.
payload is confirmed by our forensic analysis enabledvylti-vector worms Multi-vector worms are able to
by the vGround post-infection trace collection serviceinfect viamultiple infection vectors (IVs)n this exper-
(Section 3.4). We also run @arlier versionof the Lion  jment, we run the Ramen worm [4, 18], which carries
worm in a separate vGround. We observe that the Lionhree different IVs in three different services, including
worm carries and installs an infamous rootki®rn [30], LPRng (CVE-2000-0917), wu-ftpd (CVE-2000-0573),
which will destroy the infected host. Without full-system and rpc.statd (CVE-2000-0666). A vGround with 1000
virtualization, suctkernel-level damageannot be easily  virtual nodes running these services is created and only
reproduced. Furthermore, the vGround contains theyne seed Ramen worm is planted. Over the time,
damage and makes the system re-installation fast anfowever, we noticeifferent infection attempts based on

4.4 Malicious Payload

4.5 Advanced Worm Experiments

easy. all three IVs
Interestingly, our vGround experiments reveal that
[root@1_2 /root]#pudclient 127.0.0.1 H H R
PUD Ol ent version 11002002Ready. type in the the Ramen exploitation code for the_ vulnerable wu-ftpd
cormands as follows, or type help for a list: server is flawed a resultnot mentionedn popular
hel p bulletins [4] and [18]. To confirm, we also use the
The EF’””H”"S are: same exploitation code against a real machine running
ill kills the daenon
| | . a vulnerable FTP server (wu-ftpd-2.6.0-3). The result
* tput t .
o 00 outpul to fite agrees with the vGround result.
* b dd b H H 0
« olose ol oses a bounce Stealthy/polymorphic worms Using various polymor-
. - phic engines [40, 50, 32], worms can become extremely
* info requests info . . .
* list lists the current servers stealthy. The modeling and detection of stealthy behavior
" sh execs a commnd or polymorphic appearances require much longer time
; udpflood send a udp food and larger playground scale. Furthermore, it is hard, if
* tc 00 send a tc 00 . . . .
+ dnstlood send a dne flood not impossible, for worm simulators [46] to experiment
* escan scans hard drive for emils polymorphlc worms.

We have synthesized a polymorphic worm based on
the original Slapper worm. We use it to evaluate the ef-
Figure 10: Payloads of the Slapper worm fectiveness of signature-based worm detection schemes.
As shown in Section 4.3, the Slapper worm will transfer
an uuencodedversion of the worm source code after
The Slapper worm does not destroy local disk contenty successful exploitation. Our polymorphic Slapper
like the Lion worm. It is moreadvancedin self- first attempts to encrypt the source using mpenSSL
organizing worm-infected hosts intoR2P attack net-  tool before transmission. The encryption password is
work. In the vGround for the Slapper worm, we are randomly generatednd is then XOR’ed with a shared
4Uuencode, or the full nam&hix to Unix Encoding represents a key. Finally, the result_ant value is pre_pended to the en-
method or tool for converting fi les from binary to ASCl(testp that ~ CryPted worm source file for transmission. Our vGround
they can be sent across the Internet via email. experiments show that snort [9] is no longer able to detect
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the worn?. The same worm could also be used to test6 Related Work
the signatures generated by various signature extraction
algorithms [51, 41, 42, 44]. Testbeds for destructive experimentsThe DETER

Routing worms The vGround can also be used to study Project [11] provides a shared testbed to researchers to
the relation between worm propagations and the underlyconduct a wide variety of security experiments. With
ing routing infrastructure. We have recently synthesizec® Pool of physical machines in a number of sites, the
the routing worm introduced in [62] The routing worm DETER testbed is able to pI‘OVide each researcher with
takes advantage of the information in BGP routing ta-2 Virtually dedicated experiment environment in an ef-
bles to reduce its Scanning space, without missing anﬁcient on-demand fashion. In the current pl’actice, the
potential target. With its network virtualization and real granularity of resource allocation is often one physical
world routing protocol support, the vGround provides Node. The vGround software platform can be deployed
a new venue to study (at least qualitatively) such arinthe DETER testbed asialue-added worm experiment
infrastructure-aware worm and the Corresponding deserVice As a result, worm researchers will benefit not
fense mechanisms. only from the testbed’s general services (e.g., topology
generation, result visualization), but also from the new
features brought by vGround (i.e. easy recovery, larger
scale, and confinement).
5 Discussion on the Arms Race Netbed [60], Modelnet [56], and PlanetLab [8] are
highly valuable and accessible testbeds/environments for

It has been noted [12] that a UML-based VM exposesgeneral networking and distributed system experiments.

. . . n the other hand, the vGround platform is an enabling
certain system-wide footprints. For example, the conten . N i
. ) software system that can potentially (“already” in the
in /proc/cmdline can reveal the command parameters

when a UML VM is started and the command parametersCase of PlanetLab) be deployed in these testbeds to

contain some UML-specific information (e.g., the special z)r(\h:rrirc;eentgelr E(L)jrppeigrr:OITsStlrf’LigiiZ?L_gEegrt%dﬂli/%r;eIne ¢
root deviceubd0). Such deficiency may undesirably dis- P ' P,

. currently do not support worm experiments, especiall
close the existence of vGround. As a counter-measure Y PP P P y

methods have been proposed [29] to minimize such VM-ﬁZtearI]Iali%r:)ezla-rl:\{ﬁlc: dr?g:jages (e.g., kernel-level rootkit
specific footprints. However, this is not the end of the' : incu ’

problem. Instead, it may lead to another round of “arms ' N€ anti-virus industry has long been building worm
race” testbeds (including virtualization-based testbeds) for

, i ) , , timely capture and analysis of worms. Such testbeds are
An interesting trend is that VMs, including UML

. i i mainly forin-houseexclusive use by highly skillful and
VMs, are increasingly used faeneral computing pur-

specially trained experts. As a resulide deployability,

posessuch as web hosting, education, and Grid COMPUL;fasircture sharinganduser conveniencarenottheir
ing [33, 36, 35]. If such trend prevails, the arms race

! . ) primary design concerns. One of the pioneering indus-
tension may benitigatedbecause a worm might as well

. : . N try testbeds is Internet-inna-Box [58] originally built at
infecta VM in such a “mixed-reality” cyberspace. IBM. It involves virtual machines and virtual networks,

In addition, the confined nature of vGround may turn both enabled by an “emulation package” that supports
out disablingsome worm experiments where the worm virtual Win9x environments. The testbed is based on
has to communicate with hosts outside the vGround tmne or more physical machines, each witlo physical
“succeed”. For example, the Santy worm [24] relies network connections - one dedicated to traffic between
on the Google search engine to locate targets for in- the VMs. While sharing the same principle of system
fection and it can be effectively mitigated by filtering and network virtualization, vGround® notrequire ded-
the worm-related queries [22]. However, the vGroundicated network connections and administrator privileges.
cannot be readily used to safely observe the dynamicg\lso, the vGround platform imposes lower requirement
of such worm8. Although the vGround platform does of user skills by performing automatic vGround genera-
have the capability to intercept an external connectiortion and deployment. Further, vGrounds support virtual
attempt and forge a corresponding response, it remainguters and user-specified network topology. However,
an open question whether such technique can survive thgGround currently does not support Windows worms.
subsequent counter-measures taken by the worms.  vM-based worm investigation Virtual machines pro-

vide an isolated virtualization layer for running and
5The Slapper signature used in snort is the string “TERM=mter Observmg untrusted servic_es and applications. Among
61n fact, due to the strict confi nement requirement, even ettt t€ Notable VM technologies are VMware [13], User-
worm testbed imot able to support such study. Mode Linux (UML) [33], Denali[59], and Xen[28].
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VM technologies have been heavily leveraged to studyworms, we have demonstrated that vGrounds are high-
worms. In current practice, various VM technologies fidelity confined playgrounds to run worms and observe
including VMware [13] and User-Mode Linux (UML) key aspects of their behavior, including network space
[33] have been actively deployed as honeypotssjgture  targeting, propagation pattern, exploitation steps, and
worms especially during the early stage of their propa-malicious payload. These results are critical to the
gation. Toanalyze a wormVM-based technologies have development of worm detection and defense mecha-
also be developed. One advanced VM-based forensinisms, which can also be tested in vGrounds. For worm
platform is ReVirt[34]. ReVirt enhances individual researchers, the vGround platform accommodates their
VMs with efficient logging and replay capabilities for iterativeexperiment workflows with great efficiency and
intrusion analysis purpose, making it possible for a wormconvenience. The vGround platform makes a timely
researcher to replay the worm exploitation process in arrontribution to worm detection and defense research.
instruction-by-instruction fashion. Finally, to stutipw
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