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Abstract—From manufacturing plants to power grids, indus-
trial control systems are increasingly controlled and networked
digitally. While networking these systems together improves their
efficiency and convenience to control, it also opens them up to
attacks by malicious actors. When these attacks occur, forensic
investigators should be able to determine what was compromised
and which corrective actions need to be taken.

In this paper, we propose a method to investigate attacks on
industrial control systems by simulating the logged inputs of the
system over time using a model constructed from the control
programs. We detect any attacks that will lead to perturbations
of the normal operation of the system by comparing the simulated
output to the actual output. We also perform dependency tracing
between the inputs and outputs of the system, so that attacks can
be traced from the anomaly to their sources and vice-versa. Our
method can greatly aid investigators in recovering the complete
attack graph used by the attacker using only the input and output
logs from an industrial control system. To evaluate our method,
we constructed a hybrid testbed with a simulated version of
the Simplified Tennessee Eastman process, using a hardware-in-
the-loop Allen-Bradley Micrologix 1100 PLC. We were able to
accurately detect all attack anomalies with a false positive rate
of 0.3% or less.

Index Terms—Industrial Control Systems, PLC

I. INTRODUCTION

Attacks such as Stuxnet [1] and Crashoverride [2] show that
attackers are actively targeting industrial control systems. It is
therefore important that the entities which use such systems are
able to detect and investigate these attacks. However, due to
the wide variety of equipment and configurations in industrial
control systems, it is difficult for forensic experts to gather
enough domain specific knowledge to quickly and accurately
investigate a particular attack [3]. Furthermore, shutting down
a control system while an incident is being investigated may
be impossible or cost large amounts of money in lost revenue
[4].

In order to successfully investigate an attack on a control
system, investigators must determine which part of the system
failed (if any), and must be able to discover the reason for
that part’s failure. In some cases, it may not be clear that
an attack has occurred, or what its effects were [5]. If it is
determined that an attack did occur, investigators need to find
the root cause of the failure and trace it back to a physical
input or a traditional IT system to continue the investigation
through more traditional methods. If investigators can detect
an attacker’s changes to the normal operation of the system, it
is far easier for investigators to trace the history of the attack

and find the cause of the failure. To do this, the investigators
first need to establish what the baseline behavior of the system
is in order to see what the attacker has changed.

In this work, we propose a new method of investigating
attacks on industrial control systems by simulating the system
on its actual historical inputs. If all legitimate inputs to the
system are logged and we can obtain a behavior model of
the automated components of the system, then simulating that
model over the historical inputs gives a baseline for what
“should have happened” in the system at that time. From
that baseline, we can extract the expected system outputs at
each point in time and compare them to the actual output
of the system at that time using the logged data. This aids
investigators by allowing them to see if any outputs of the
system were unexpected, given the system’s inputs. From
there, they can examine the production of those outputs more
closely in order to determine if malicious activity occurred.
For example, if a controller suddenly starts producing output
that is out of line with the input it receives, that is an indication
that it may have been compromised by a malicious adversary.

However, sometimes this solution is not sufficient. An
attacker can disguise their actions as legitimate input and allow
them to be logged and fed into the simulation. This means
that the simulation would include the attacker’s changes and
not differ from the historical execution of the system. Since
the simulator cannot a priori distinguish illegitimate input to
the system, we instead provide investigators with the ability to
trace data as it moves through the system. By connecting each
input with its dependent outputs (and vice-versa), investigators
are able to trace an undesirable outcome to all inputs which
affected it or an undesirable input to all outputs it affects. This
helps investigators narrow the focus of their search and reach
a conclusion more efficiently. This provides information on
why something happened even if the system did not behave
anomalously.

This investigation framework can thus provide investigators
with knowledge of i) what happened in the system, ii) what
should have happened in the system, and iii) why something
happened in the system. Significantly, the framework also aims
to do this while requiring no invasive modifications to the
system’s components and minimizing the amount of data that
needs to be logged.



II. BACKGROUND AND OVERVIEW

In this section, we will provide background required for
our paper on industrial control systems, describe the attacker
model, the overview of our solution, and our system abstrac-
tion.

A. Industrial Control Systems
At a low level, industrial control systems are usually com-

posed of actuators and sensors which are connected to one or
more remote terminal units (RTUs) and/or programmable logic
controllers (PLCs). Typically, RTUs have no logic of their
own and merely collect data from sensors and forward user
commands to actuators, whereas a PLC is capable of making
its own decisions based on sensor data. Human-machine
interfaces (HMIs) allow an operator to monitor parts of the
system and issue commands as necessary. Many industrial
control systems have components which reside on traditional
IT systems for command, control, and logging (such as a data
historian or a web server), but these high-level devices are not
essential and will not be explicitly modeled in this work.

B. Attacker Model
We model an attacker that seeks to influence the high-level

execution of the process in some way. We assume that an
attacker may compromise the execution logic of one or more
controllers and may also be able to manipulate data as it
flows through the system. While an attacker may be able to
avoid having their actions directly logged (e.g. by launching
an attack from inside a trusted perimeter), we assume that an
attacker does not have access to the defense solution system
and is not able to arbitrarily manipulate or delete log entries
which reside on this system. We assume that our defense
solution system is trusted and is isolated from the control
system network. We also assume that all actions performed by
a controller (though not necessarily all actions on a controller)
are correctly logged, so that each controller’s real behavior
is reflected in the collected logs. Finally, we assume that
an attacker’s influence on the system starts after the start of
logging, and thus that their actions or the secondary effects of
their actions are logged.

The other major assumption that we make is that investi-
gators are able to procure a “clean” copy of the controller
program source code, or otherwise acquire a model input that
accurately reflects the “correct” behavior of the system. Since
the reference controller code is used to efficiently construct
a model of normal system behavior, this model will be
incorrect if an attacker has managed to significantly corrupt the
reference code to redefine the system’s behavior. We believe
that this is a reasonable assumption, given that a model for
the system behavior must originally come from somewhere.

C. Overview
When an industrial control system does not behave cor-

rectly, forensic investigators are often tasked with discovering
why something went wrong. However, industrial control sys-
tems may produce huge amounts of log data, and even if it can
be effectively visualized, it may be difficult to connect cause
and effect without substantial amounts of domain knowledge

Fig. 1. Example log format

about the specific system being investigated. This makes it
difficult to find anomalies for further investigation.

Our goal is to assist investigators by helping them quickly
determine the root cause in an industrial control system and
to provide further points of interest at which the investigation
can continue. Ideally, we would like to do this in a way
that minimizes the need to consult experts on the system
in question. Our solution provides the point of interest from
where the investigation can be started, so that investigators do
not have to spend time manually understanding and analyzing
the system to determine the source of the problem.

Our main aim is to provide a non intrusive solution with
minimal to no overhead. Hence, any logging overhead incurred
to support forensics should also be non-intrusive and should
not affect the normal operation of the system being logged.
The system itself and any constituent programs should also
not need to be modified in any significant way.

D. System Abstraction

Control System Abstraction We have abstracted an industrial
control system as a collection of control, configuration, and
state variables for our purposes. The control variables are user
inputs, inputs from the sensors, and outputs to the actuators.
The configuration variables are the configuration settings for
the control system and the state variables represent the system
state. The abstraction allows us to strip away a significant
amount of vendor- and system-specific configuration and gen-
eralize a model across a broad spectrum of control systems.
This was inspired by the previous approaches in literature [6],
[7], [8].
Control Program A control program is an sequence of
operations running on a controller. A control program can
manipulate controller variables and can be run continuously,
on a timed loop, or in response to a particular variable. The
control program(s) in a controller represent the automation
logic present within that controller’s real-world analogue.
Controller All control variables in an industrial control sys-
tem reside in a controller. The controller is responsible for
manipulating the variables or using them to make decisions.
In the real world, controllers correspond to PLCs, RTUs, or
any other low-level device which is capable of aggregating
or manipulating data. Variables are not implicitly shared
between controllers, but two controllers can have a variable
that corresponds to the same logical value.
Log Entries Fundamentally, each remote action taken in
the system must consist of i) the requesting device, ii) the
requestee device, and iii) the data being transferred. Most ICS
protocols also include a fourth field which is the addressable
location of the data in question. Figure 1 shows an example
of the information collected by logging these actions. If the



data is being transferred over a network of some kind (as is
common in modern industrial control systems), the source and
destination device can be identified by their network addresses.

III. SYSTEM DESIGN

In this section we describe our system design, including the
logging of variables and important data, the construction of
a model containing those variables, our method of simulation
with deterministic replay, and forensic investigation to find the
root cause.

A. Logging Variables

Modern industrial control systems often interact with sen-
sors, actuators, and operators over a network of some kind.
Logging each operation can then be performed simply by
sniffing the network traffic and extracting protocol-specific
fields [7]. This allows for log collection that is unobtrusive,
does not significantly impact the performance of the system,
and is often supported by commercial monitoring tools. If
certain variables are not exchanged over the network, or are
modified in some other fashion, selective probing of those
variables can also fill in the gaps to provide a more complete
historical view of system behavior [9].

The logged actions at the control system level correspond
to “read” and “write” operations on variables in the system.
Since various industrial protocols encode this information in
different ways, it is necessary to decode each protocol before
converting relevant messages to a uniform log format (i.e. one
that records read and write operations). After collection, these
log entries can be combined together to create a single unified
log for the whole system.

Given these logs, we now have access to the raw data
associated with the past performance of a given control
system. However, these logs by themselves do not provide the
necessary details for a forensic investigation. While the logs
may provide a picture of what occurred, they shed no light on
why something occurred or whether something was the result
of normal system behavior or something more malicious.

B. Model Construction

Each physical controller is broken down into a set of
variables and a set of control programs. The control programs
themselves are gathered directly from the code executed on
the given physical device (e.g. a PLC) and ingested to form
an execution model. This model is composed of a hierarchical
set of function calls, with the leaf nodes in the hierarchy
being basic operations provided by the controller (e.g. add,
subtract, move). The models of each program may read and
manipulate the variables that are part of the controller, and
may also contain internal variables accessible only inside the
controller. All controllers also share a read-only time variable
that represents the current simulation time.

PLC programs are often written using graphical languages
such as a function block diagram or ladder logic, as defined
by IEC 61131-3 [10] (the IEC standard for programming
languages in PLCs). In our evaluation system, we extract
control programs out of a given ladder logic diagram. Different
vendors and devices can use a variety of different program

formats, so a one-time manual effort would have to be made
to ingest programs from a new type of device.

Control programs usually consist of program logic that is
executed in a loop. For our purposes, they will be normally
simulated as executing on a timer; a specific program will
execute its logic periodically on a set interval, either taken
from the program specification or specified by the user. It
is possible for a control program to run at other times (e.g.
activating when a certain condition occurs), but this is not
implemented in the current iteration of our model.

C. Discrete Event Simulation

Algorithm 1: Event Simulator Replay Algorithm
Data: one or more log files; one or more controller programs
Result: a collection of historical variable values
initialize event calendar 4E4=C�0;;
foreach input log file ; 5 do

place ; 5 ’s first event into 4E4=C�0; at its logged time;
end
foreach controller program ?A>6 do

parse ?A>6 into a list of statements;
initialize all variables used by ?A>6;
extract execution interval 8=C4A E0; from prog;
place a ?A>6 execution event in 4E4=C�0; 8=C4A E0; time

after the earliest event;
end
create a variable history for each defined variable;
while 4E4=C�0; contains at least one log event do

get event 4E4=C from 4E4=C�0; with the earliest time;
set 2DAA) 8<4 to be 4E4=C’s time;
if 4E4=C is a log entry event then

// For each variable being accessed in
4=CA H

foreach (E0A , E0;D4) in 4=CA H do
if 4=CA H shows data flowing to controller then

set E0A to E0;D4 and E0A ’s trace to 4=CA H’s id;
record [2DAA) 8<4, E0;D4, trace] in E0A ’s

variable history;
end
else if 4=CA H shows data flowing from controller then

get E0A ’s value and trace, B8<+ 0; and CA024;
record [2DAA) 8<4, E0;D4, B8<+ 0;, CA024] in
E0A ’s variable history;

end
end
place next log entry (if any) from associated log file into
4E4=C�0; at its logged time;

end
else if 4E4=C is a program execution event then

extract (?A>6, 8=C4A E0;) from 4E4=C ;
// See algorithm 2 for program execution
execute ?A>6 and update affected variables;
place another ?A>6 execution event in 4E4=C�0; at time
2DAA) 8<4 + 8=C4A E0;;

end
end
return each non-empty variable history;

After the logs are ingested and the system model con-
structed, the entire system is simulated in a discrete event
simulator. This process is shown in algorithm 1. Events in
the simulator consist of log events, which occur at the time
given in their log entry, and program execution events, which
occur periodically as they are specified. While a program
execution may not occur quickly enough to be a discrete
event, in many systems the actual variables are exchanged
over the network all at once at the end of an execution cycle



instead of continuously. In either case, simulating executions
of a program as discrete events serves well enough for our
purposes.

When a log event describing data flowing into a controller is
simulated, the corresponding variable in the execution model
is simply updated, ready to be used when that controller’s
program(s) next execute. When a log event describing data
flowing out of a controller is simulated, the value itself is
checked against the value in the simulation. If the simulated
value and the actual value from the log differ by more than a
certain threshold, an error is generated and logged. This error
threshold is configurable and is based on the total range of
the variable during the observed period. Warning thresholds
can also be set to show less severe deviations. If the logged
value is within the threshold, the variable is noted as having
successfully been verified.

Algorithm 2: Controller Program Simulation
Data: variables used by the called function; a list 4G42DC8>=!8BC

of function call statements which compose the program
Result: the function’s outputs
initialize local variables from arguments;
foreach statement 4 in 4G42DC8>=!8BC do

collect 4’s arguments from local or global variables;
if 4 is a controller builtin function then

execute 4 using the predefined function;
else

recursively execute 4;
end
collect >DC ?DCB from executed function;
copy >DC ?DCB and their traces into variables specified in 4;

end
collect A4BD;CB from local variables;
return A4BD;CB;

When a program execution event is simulated, the logic
of the program corresponding to the event is executed. The
program is executed by performing a depth-first traversal of
the execution hierarchy, reading and updating the controller’s
variables along the way. This process is shown in algorithm 2.
At the bottom of the execution hierarchy are leaf functions that
represent the basic functions of the controller being simulated
(e.g. add, subtract, compare). These functions are manually
specified based on the manufacturer’s specifications rather than
being read in from the controller’s program. A new execution
event is also generated in the future after the appropriate
interval if applicable.

In addition, whenever a log event changes a variable, a
unique id corresponding to that log event is added to the trace
set of the variable in question. Whenever that variable’s value
is used to compute another value during the execution of a
controller program, the trace set follows the value to the new
variable. This trace propagates forward to all variables that
ultimately end up being affected by the value written in that
input event. Whenever an output event occurs, this trace set
can then be extracted and saved, connecting the output event
to the input events that influenced its value. This allows for
the dynamic tracing of data through the system as it executes.

This simulation relies on the fact that control systems
are usually built as deterministically as possible in order to
maximize the reliability of the controlled process. This makes

deterministic simulation of the system’s behavior practical
[11] when the inputs and outputs of the system are logged
in their entirety. This high degree of determinism makes
this simulation approach more feasible in industrial control
systems than it would be in traditional computing systems.

D. Forensic Investigation

In a forensic investigation, investigators will generally ex-
amine log data in order to determine what happened after some
triggering event involving suspicious behavior on the part of
the system or a suspected attack originating from outside the
system. An investigator may also examine logs to determine if
an attack actually occurred during the time period given. We
now split attacks into two categories, which are investigated
differently: i) control program-based attacks and ii) data-based
attacks.

1) Control Program-Based Attacks: These kind of attacks
alter the control program of one or more controllers. These
controllers then behave in a manner that is different from the
“reference” program provided to the simulator. As a result, if
an altered control program produces a different output than the
reference program would have, the simulator will take note and
generate a notification that the expected output and the actual
output do not match.

If the output is close, but not identical, to the expected
output, the simulator will classify it as normal behavior, a
warning, or an error based on configurable thresholds. More
strict thresholds will result in more false positive errors from
noise, while more lax thresholds may result in missing the
influence of an attacker’s alterations. Note that if the altered
control program always produces the same expected outputs
as the original control program in the logged time period, the
attack does not actually affect the modeled system.

After it finishes running, the simulator produces a timeline
showing the output variables in the system and the points at
which they were in an “expected” state, a “warning” state,
or an “error” state. These thresholds are configurable; in our
evaluation, a “warning” is recorded if the difference is more
than 1% of the recorded range of the variable and an “error”
is recorded if the difference is more than 10% of the recorded
range of the variable.

2) Data-Based Attacks: These kind of attacks tamper with
the data flowing into controllers. In these attacks, the behavior
of the system is unaltered when compared with normal system
behavior. Instead, an attacker modifies the input data (e.g.
from sensors) or issues commands that could have been issued
by an authorized user. In both of these cases, the simulator
will generally show the system operating normally, since the
control logic of the controllers has not changed.

In order to investigate these types of attacks, an investigator
will need some starting point in the system which he suspects
has been altered by an attacker. This can come in the form of
a suspect IP address, sensor reading, or user command. If the
investigator provides this starting point to the simulator, the
simulator will first identify which input log events correspond
to the given criteria. The simulator can then trace the influence
of those particular log events through the program, which



reveals the outputs which were affected by the suspected ma-
licious input. These malicious input points may be discovered
by more traditional enterprise forensics, or through the use of
previous work which focuses on identifying anomalous sensor
inputs [12], [13], [14].

Similarly, if the investigator identifies one or more suspi-
cious outputs (e.g. a open valve which causes a tank overpres-
sure), they can use the simulator’s tracing to determine which
logged inputs had an influence in producing the given output.
For each output, the simulator logs which input log events
influenced the value that was output, based on the results of
the simulation. This will identify some set of user actions and
sensor readings which directly contributed to the given output
value. In this way, the simulator helps cull the list of relevant
log entries that the investigator needs to look at in order to
determine the root cause of an undesirable event.

IV. EVALUATION

We evaluated our approach using a modified version of the
the GRFICS [15] graphical interface. The GRFICS graphical
portion is designed to simulate the Simplified Tennessee
Eastman process, in which reactants mix together into a tank
to form a liquid product. Instead of running GRFICS with
its default setup, we connected the simulation interface to
a Micrologix 1100, a PLC manufactured by Allen-Bradley.
In this way, we were able to construct a “hardware-in-the-
loop” setup in which a physical PLC controlled the GRFICS
simulation. This allowed us to construct a realistic testbed
without having to build a physical process to be controlled.

A. Experimental Setup

Our test setup consisted of two machines networked with
the physical PLC device on a local area network. One machine
ran a simulation of the physical process and the other ran
an HMI (human-machine interface) that monitored the status
of the simulated process. The HMI was run on a Windows
10 machine, while the simulation was run on a VM running
Ubuntu 18.04. The second machine with the HMI was also
used to sniff and log network packets. The basic configurations
of both machines were taken from GRFICS, but were modified
to accommodate using the physical PLC.

The simulation machine includes a graphical component
written in the Unity Engine [16] that shows the current
physical status of the plant. Both the simulation itself and
the graphical component were taken from GRFICS [15], but
the scripts that handled communication were modified to
accommodate communication with the original PLC using the
Ethernet/IP [17] protocol instead of Modbus over TCP [18].
The second machine ran the GRFICS HMI built in Advanced
HMI [19] with the communications modified in a similar way.

All tests were performed by first starting the logging
mechanism, which passively sniffed packets traveling over
the shared LAN used by all devices in the system. Logging
was performed by a custom python script that used pyshark
[20] (a python interface for Wireshark) to sniff network traffic
that appeared to be Ethernet/IP traffic. This sniffed data was
converted to the log format used by the simulator in real time
and stored locally. After logging was started, the graphical

Fig. 2. Error Timeline for Normal Operation

interface for the emulated system was started and the PLC
was placed into “run” mode, starting the program. Finally, the
HMI program was started, simulating an operator monitoring
the process. This ensured that no log data was missed and
that the actions of the PLC were fully captured. The system
was then allowed to run for a set period of time, or until the
attack had completed (usually 10-15 minutes), at which point
the logs were saved for analysis.

TABLE I
SIMULATOR TRIAL RESULTS

Trial Log Entries Accuracy Simulation Time (s)
Normal Operation 40060 99.9% 72
Program Attack 55379 99.8% 135

Data Attack 50881 99.7% 155

After the system was run and logging data collected, the
simulator was run over the collected data. For our specific
setup, a configuration file was created detailing the IP address
of the PLC and some information about its starting state and
cosmetic settings for the output. After being fed the PLC
program and the log file, the simulator was run to produce
error data for each variable, which was then graphed. Each
simulation run was performed using an Intel i7 5700 CPU. The
results are detailed in each subsection below. Statistics from
each run are shown in table I. While the attack simulations
took longer because of the longer physical running time of the
trial (with the data attack also having some additional tracing
overhead), all simulations were able to run substantially faster
than real time.

B. Normal Operation
This test was performed to demonstrate the accuracy of the

simulator in simulating the normal behavior of the system. The
system was run normally for about 10 minutes with no attack



being performed. 58 log entries were flagged as warnings
(more than 1% deviated, but less than 10%) and 2 log entries
were flagged as errors (more than 10% deviated), leading to
a total false positive rate of 0.1%.

Figure 2 shows the number of errors detected in the system
over time for each variable being monitored in the system.
Blue sections represent values that were less than 1% deviated
from expected values (when compared to the total range of
observed values), yellow sections represent values that were
between 1% and 10% deviated, and red sections represent
values that were more than 10% deviated. Variable names are
to the right of each bar. As no attack was performed, most
of the graph is blue, with some very short periods of small
deviations for some variables.

In general, most detection errors stem from places where
outputs change very quickly. An example is when the purge
valve rapidly moves from fully closed to fully open around
the 17:30 mark of the test. In such cases, the simulated
outputs are slightly out of sync with the real outputs, with
the large changes causing this slight synchronization error to
trip a warning or error. Some other detection errors also stem
from differing default values when the controller first starts
(before either the simulated or the actual controller executes
one program cycle). Those errors go away once the simulation
and controller have had a chance to execute on the same data.

Overall, the simulator generated very few false positives
while being run on the normal operation log data. Each false
positive represents one log entry (out of 40k) that was flagged
as being different from expectations. In isolation, a single
anomalous log entry (or even just a few) is unlikely to indicate
an actual malicious event. In general, the false warnings are
transient enough to not be too suspicious, and investigators can
customize the warning and error thresholds to better detect
subtle attacks or remove false positives depending on the
sensitivities of the application.

C. Program Modification Attack

The system was run normally (as in the first test) for five
minutes, after which the control program on the PLC was
modified maliciously to increase the pressure in the tank to
dangerous levels. The modified program set all of the outputs
to fixed values, effectively sticking both the input valves to
the tank open and both the output valves of the tank closed,
causing a pressure buildup. The attack also modified the HMI
outputs so that an operator looking at the HMI would not
immediately notice anything wrong. The attack successfully
caused the simulated tank to explode. The effects of the attack
were fairly obvious, with the simulator easily detecting the
malicious values. Figure 3 shows the number of errors detected
in the system over time during the program modification
attack. The attack itself begins at timestamp 19:26:24. The
sustained red bars clearly show that some of the controller’s
outputs are deviating form its expected programming when the
attack begins. Throughout the attack, the simulator correctly
flags all deviating values that the attacker has modified.

Note that in this case, while the fake HMI values and
the product valve are quickly marked as erroneous when the
attack begins, other logged outputs take some time to diverge

Fig. 3. Error Timeline for Program Modification Attack

Fig. 4. Actual logged value of the purge valve setpoint (solid line) vs. the
simulated value (dashed line)

from the simulated values, or do not diverge at all. This is
because those outputs happen to be the same (or similar)
in the attacker’s program and the original program, with the
differences between them still being sufficient to cause the tank
to explode. However, the outputs that do deviate are clearly
suspicious because they are a sustained deviation from normal
values over a long period of time.

Figure 4 shows a comparison between the actual value of
the purge valve as logged (solid blue line) versus the expected
value based on the simulation (dashed red line). The values of
this particular variable range from 0 when the valve is fully
closed to 216 when the valve is fully open (vertical axis labeled



Fig. 5. Error timeline for stealthy program data attack (virtually identical to
benign case)

with percentages for clarity). The purge valve is normally
supposed to open when the pressure in the tank reaches a
certain threshold to relieve pressure. Early in the graph, the
dashed line is covered by the solid blue line, indicating that
the simulated and actual values are very close to each other.

Note that the purge valve (correctly) opens early in the run
as part of normal operation, but fails to open as simulated
towards the end of the run. This is because the attacker’s
new program differs from the simulated program in that the
purge valve will never open, thus leading to an explosion.
The simulated purge valve also briefly opens in the middle
of the run due to the simulated controller recording values
being written the controller as part of the attacker’s program
upload. While this makes the detection of the time of program
upload a little easier, it would not be considered a meaningful
or reliable deviation. The later deviation, which is sustained
and shows the influence of the attacker in the operation of the
purge valve, would be detected even if the malicious program
upload was not logged.

D. Data Modification Attack

This attack was intended to test the tracing capabilities
of the simulator. In this scenario, the HMI machine was
compromised by replacing a communications DLL used by
the HMI program with a malicious substitute. Every so often,
this malicious DLL sent a command to the PLC to change the
pressure setpoint of the tank. This caused the purge valve to
open, wasting the raw material of the reaction unnecessarily.
The compromised communications library then lied about the
status of the valve to the HMI program, concealing the attack
from operators. The goal of this attack was not to make the
reactor explode, but rather to stealthily waste resources over
a long period of time.

Figure 5 shows that, unlike the previous attack, the simulator
did not notice any incorrect behavior from the controller. This
is because the system was still functioning correctly; in this
case the attacker is using a seemingly-valid command from the
(compromised) HMI to accomplish their goals. The simulator
saw the command from the HMI in the logs and saw that the
controller reacted appropriately to the command, so reality
ended up perfectly matching the simulation.

In this scenario, the simulator instead aims to help an in-
vestigator either pinpoint the cause of an undesirable behavior
(like the purge valve opening when it shouldn’t) or determine
the effect of a known malicious component of the system
(such as the compromised HMI), since it might be difficult to
determine whether an action is malicious if that action mimics
normal operator behavior.

Suppose an investigator knows that the HMI was compro-
mised during a specific window of time. They would then
reasonably want to know what effect the HMI had on the
system during that period. Given the IP address of the HMI
as input, the simulator is able to separately note each log entry
that involves the HMI and track the variables it modifies. In
this case, a value of 0 is written to the variable ?A4BBDA4 B?

(the target pressure setpoint of the tank) around timestamp
17:57:30. The simulator then notes that ?A4BBDA4 B? is in-
volved in a calculation that sets ?DA64 E0;E4 B? (the output
setpoint of the purge valve). The investigator now knows
that the HMI’s modification of ?A4BBDA4 B? had a secondary
effect on the value of ?DA64 E0;E4 B?, even if they do not
know the particulars of how the system is implemented.

Fig. 6. Sources of data related to the purge valve at the moment it opens;
log entry ids are circled in red

Similarly, the simulator can trace backwards from an end
effect to its causes to aid an investigation. Suppose that in this
scenario, someone notices the purge valve is open too often.
An investigator can query the simulator about all influences on
the position of the purge valve at the time that it opens. Figure
6 shows an example output of the simulator, which shows all
influences on the purge valve position at the given time. All
values that begin with underscores are internal system values
and aren’t relevant to the investigation. The three numbers
circled in red, however, are log entry ids that correspond
to the log entries of inputs that affected this output. The
investigator can then narrow his search to these three log
entries (out of tens of thousands) and notice that the HMI
writes a value of 0 to the variable ?A4BBDA4 B?. Since this
is a strange value (a desired pressure of 0 is unlikely to be
legitimate), the investigator can reasonably conclude that the
HMI is the source of the strange behavior and continue his
investigation there, where they will discover evidence of the
attacker’s intrusion.



V. RELATED WORK

Much work has been done in the area of attack detection
and monitoring in industrial control systems. Most approaches
to intrusion detection and prevention either use a learning-
based model to determine the correct behavior of the system,
or use a specification provided by domain experts. Using one
of these model types, attacker actions can be differentiated
from benign actions, triggering a spectrum of warnings and
remedial actions. While much of the work does not have to
do with forensic investigation, detecting an attack in real time
and investigating an attack that happened in the past can use
similar techniques for discovering attacker actions.

Many learning-based approaches [21], [22], [13] perform
anomaly detection solely on the data in a control system. This
minimizes the performance overhead involved in monitoring
for anomalies and reduces or eliminates the need for a formal
specification. This ease of use is balanced by their inability
to take advantage of knowledge of how the larger system
operates. Our method eliminates the need to collect large
amounts of training data at the beginning and any time
the system’s configuration changes. Knowing the complete
specification of the system also accounts for rare scenarios
and inputs that may not be captured in training data.

Hadziosmanovic et al. [7] created an IDS that extracts
semantic information from networked control protocols and
attempts to forecast the behavior of each variable in the sys-
tem. This allows for detection of attacker actions as anomalies
which do not match the forecasted model. Other works expand
on the idea of anomaly detection by selective probing of other
variables not passed on the network [9], looking for suspicious
sequences of events [22], and by decoding even unknown
control system protocols [23]. Barbosa et al. [24] also propose
a method for whitelisting flows of data rather than sniffing
packets for individual variables. Our work uses similar data
collection methods, but seeks to detect anomalies based on a
system specification rather than statistics.

Other approaches focus on creating a specification for how
the system is supposed to operate using expert knowledge.
However, creating such a specification is time-consuming,
especially for complicated systems, and it can be difficult to
generalize approaches across different processes and hardware
vendors. Our method seeks to partially automate the construc-
tion of a system model in order to allow forensic investigators
who may not be familiar with the system to quickly determine
the cause of a problem.

Wang et al.[6] describe a system for detecting false data in-
jection attacks. The users provide a specification of the system,
either directly or through analysis of control firmware. This
specification is used to create a state transition diagram which
describes the valid behavior of the system. Deviations from
this state transition model can then be detected and flagged
for anomalous behavior. Some approaches [25] propose using
redundant controllers with identical programming in place of
a formal model of the system. Fauri et al. [26] propose a
method that uses a hybrid approach, with expert intervention
being used to derive and refine features for anomaly detection.
Another approach by Hadziosmanovic et al. [27] constructs

a formal model of the system with methods borrowed from
safety research and combines it with pattern matching on
log entries to attempt to detect suspicious behavior. Our
method expands on this work by introducing a simulation of
the system and using that to validate the system’s behavior
against its specification. This also allows for a more precise
reconstruction of historical events using log data.

Work has also been done in incorporating the physics of the
process being controlled into a model. This allows for more
precise detection of anomalies, but also requires more analysis
by subject-matter experts. Physical models can also be difficult
to generalize for use in more than a single process. Giraldo et
al.[28] provide a survey of methods that use physical models.
Many of these models rely only on an abstracted model of
the system, which removes some of the differences between
specific implementations. Ghaeini et al.[29] and Do et al. [13]
both use Cumulative Sum (CUSUM) to detect anomalies in
the physical process itself. Mo et al.[14] and Krotofil et al.[30]
describe systems for specifically detecting falsified sensor data.
Our method can be seen as complementary to these methods,
as it focuses on validating control system behavior rather than
the physical process being controller.

VI. DISCUSSION

The method described in this paper was created to assist
forensic investigation, but it could potentially be applied to
intrusion detection. In this case, the simulator would be fed
(near) real-time input from the process and would verify
controller output as it was produced. The results would then
trigger an alert whenever certain conditions were met (e.g.
sustained deviation over a threshold for a certain length of
time). This would make it more analogous to existing intrusion
detection systems. While some additional factors such as the
ordering of log entries must be considered in this case, we
believe that this is a promising avenue of future research.

One limitation of this method is that it relies on having
a clean copy of the programs of each controller. This could
be difficult if the program is proprietary information or if
an attacker somehow managed to corrupt all saved copies of
the program. A related problem is that controller programs
can come in many different formats and paradigms, even if
we limit ourselves to the industrial control space. While we
believe the model is generalizable between different vendors
and languages, a manual one-time effort is still needed to
support each new type of program. Future work would likely
include testing on a wider variety of hardware, and on more
complicated systems, especially those that are actually used
in the real world. This would more clearly demonstrate the
method’s advantages over trying to make sense of the data
manually.

Nevertheless, we believe that our method is a step forward in
control system forensics. It allows investigators to determine
what happened over a given time in the system, provides a
baseline for what should have happened in the system, and
assists in discovering why certain things of interest happened.
This aids forensic investigators in quickly investigating an
attack on a control system while requiring less manual effort
from experts familiar with the system.



VII. CONCLUSION

We introduced a method for simulating the historical ex-
ecution of a control system. The system is abstracted into a
set of variables controlled by one or more controllers, and
the behavior of the system is simulated based on some set of
logged values. This allows for a complete reconstruction of the
historical behavior of the system while limiting needed logging
to just the inputs and outputs of the system and not requiring
any instrumentation of the logged system. We constructed
a hybrid testbed with a simulated version of the Simplified
Tennessee Eastman process connected to a Micrologix 1100
PLC as hardware-in-the-loop to evaluate the solution. The
solution was able to detect all the times a controller deviated
from its expected behavior and allow for tracing of named
outputs and inputs while signaling a false positive on less than
0.3% of log entries on average.
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