
A2C: Self Destructing Exploit Executions via Input Perturbation

Yonghwi Kwon*, Brendan Saltaformaggio*, I Luk Kim*, Kyu Hyung Lee†, Xiangyu Zhang*, and Dongyan Xu*

*Department of Computer Science, Purdue University
{kwon58, bsaltafo, kim1634, xyzhang, dxu}@cs.purdue.edu
†Department of Computer Science, University of Georgia

kyuhlee@cs.uga.edu

Abstract—Malicious payload injection attacks have been a
serious threat to software for decades. Unfortunately, protec-
tion against these attacks remains challenging due to the ever
increasing diversity and sophistication of payload injection and
triggering mechanisms used by adversaries. In this paper, we
develop A2C, a system that provides general protection against
payload injection attacks. A2C is based on the observation that
payloads are highly fragile and thus any mutation would likely
break their functionalities. Therefore, A2C mutates inputs from
untrusted sources. Malicious payloads that reside in these inputs
are hence mutated and broken. To assure that the program
continues to function correctly when benign inputs are provided,
A2C divides the state space into exploitable and post-exploitable
sub-spaces, where the latter is much larger than the former, and
decodes the mutated values only when they are transmitted from
the former to the latter. A2C does not rely on any knowledge of
malicious payloads or their injection and triggering mechanisms.
Hence, its protection is general. We evaluate A2C with 30 real-
world applications, including apache on a real-world work-load,
and our results show that A2C effectively prevents a variety of
payload injection attacks on these programs with reasonably low
overhead (6.94%).

I. INTRODUCTION

Attacks which exploit software vulnerabilities are among
the most prevalent cyber-security threats to date. This is due,
in part, to many complex combinations of potential attack
vectors: Buffer overflow attacks, Return-to-libc attacks [58],
ROP [50], Jump-oriented programming (JOP) [10], and Heap
spraying [60], [27] to name just a few. Unfortunately, this ever
expanding variety of exploit attack vectors has led to a constant
“cat and mouse game” of building defenses as each new attack
is released.

In light of this, many existing protection mechanisms focus
on specific attack vectors and become less effective (or even
completely ineffective) for others. For example, non-executable
stack and heap have difficulty preventing code reuse (e.g.,
ROP) attacks because the executable payload is constructed
from the original code of the application. Shellcode detec-
tion techniques are only effective against injection of binary
executable code and are often bypassable [32], [26], [39],
[65]. Control Flow Integrity [66], [31], [73], [43] prevents
attacks which exhibit certain abnormal control flows within a

victim program. Further, some defense techniques may entail
non-trivial overhead (e.g., [6]) or require hardware support
(e.g., [41]), which affects their application in practice. Based
on this trend of attack-specific defense, we are motivated
to look for an entirely new, more fundamental weakness of
software exploits to provide an attack vector independent
protection mechanism.

It turns out that all software exploit attacks invariably
have two common characteristics: First, they all need to inject
an exploit payload into the target application. This payload
could be a piece of executable code (shellcode) or information
that allows constructing the malicious instruction sequence at
runtime (e.g., a ROP chain that contains the entry addresses
of gadgets). Second, these payloads are famously brittle.
Specifically, exploit payloads are designed with very strict
semantic assumptions about the environment (e.g., memory
layout, libraries, or known binary instructions) which require
each byte of the payload to be carefully tailored to a victim.

In this paper, we will show that these invariant characteris-
tics of exploit attacks make it possible to protect applications
from exploit injections independent of the attack vector they
use. Specifically, we leverage the observation that exploit
payloads (regardless of their attack vector) are so brittle that
any mutation would break their execution — i.e., cause the
execution to crash. For example, even simple mutation of
x86 shellcode results in invalid instructions. Similarly, most
sequences of ROP addresses no longer form an executable
gadget chain if even a single byte is changed. Secondly,
since these exploit payloads must be injected into a victim
application, their behavior eventually diverges from that of
the application’s legitimate inputs. Therefore, we propose that
exploit payloads may be easily disabled via a “shoot first
and ask questions later” policy, whereby all input to a victim
program is immediately mutated and only those that are
beyond the control of the adversary are decoded.

Based on the above observations, we have developed the
A2C (or “Attack to Crash”) technique. A2C naturally exploits
the brittleness of attack payloads by setting these attacks on
track to crash before malicious logic is executed. First, any
buffer inputs from untrusted sources are securely encoded
using A2C’s One-Time Dictionary, which varies for each input
buffer to prevent memory disclosure/value guessing based
attacks. Since all the untrusted inputs are mutated, malicious
payloads that reside in these inputs are also mutated, resulting
in broken payloads which will induce crashes when executed.
Later, A2C must undo the mutation in the buffer inputs,
when the program begins using these inputs to compute new
values, so that our mutation does not cause any exceptions for
legitimate input.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23476

Static Analysis Phase

Flow/Context/Field

Sensitive

Static Analysis

Decoding/Encoding

Sets (DE Sets)

Instrumentation Phase

Instrument Acc.

The DE Sets

Instrumented

Program

Target (Original)

Program
Runtime Phase

One-Time Dictionary

Based Encoding

Instrument Calling

Context Encoding
Decoding Frontier

Computation Phase

Constraint SolverUntrusted Input

Specification

Target (Original)

Program

Static

Taint Analysis

Untrusted Input

Specification

Target (Original)

Program

Uncontrollable

Operations Set

Fig. 1. Overall procedure of A2C.

Our evaluation shows that A2C is able to protect a variety
of applications against a wide spectrum of exploit attacks
regardless of their injection methods, without affecting the
normal functionalities of the program. Further, because A2C
requires no knowledge of the specific attacks (only leveraging
the two invariant characteristics mentioned above) it may even
prevent currently unknown injection attack types in the future.
The detailed threat model considered in this paper is presented
in Section V.

Our contributions are summarized in the following:
• We propose the novel idea of partitioning program

state space into the exploitable and post-exploitable
sub-spaces so that we only need to protect the smaller
exploitable sub-space, which is critical to A2C’s effi-
ciency and effectiveness.

• We develop a novel constraint solving based approach
that can determine the boundary of the two sub-spaces.
This serves as the basis to compute the execution
points where the mutation can be safely undone.

• We develop a flow-, context-, and field-sensitive static
analysis to identify the places at which A2C needs
to undo the mutation so that execution on legitimate
inputs is not affected.

• We develop an efficient runtime that leverages a One-
Time Dictionary, which projects a value to another
unique value. The dictionary varies for each input
buffer to prevent memory disclosure based attacks.
A2C also features efficient calling context encoding
to support undoing input mutation.

• We develop a prototype A2C. The evaluation results
show that A2C effectively prevents a number of known
payload injection attacks with low overhead (6.94%).

II. SYSTEM OVERVIEW

In this section, we present an overview of A2C, which is
based on the following two observations. (1) Most malicious
payloads reside in buffers and they only go through copy
operations or simple transformations before the attack is
launched. It is very rare for these payloads to undergo complex
transformations in the victim program before being executed.
This is due to the difficulty in controlling the transformations
(in the victim program) to generate meaningful payloads. (2)
Malicious payloads are very fragile. Any mutation often leads
to an unsuccessful attack. For example, changing a few bits at
the beginning of a shellcode can easily throw off the sequence
of executed instructions, leading to a crash.

The overarching idea of A2C is to protect a program
from malicious injection attacks by perturbing or encoding
inputs from untrusted sources. However, inputs from untrusted
sources (e.g., packets from remote IPs) are not necessarily
malicious. We need to ensure that our perturbation does not
fail executions based on non-exploit inputs. According to ob-
servation (1), we aim to undo the perturbation when the buffer

char Input[...];

Input = read(...);
Input[...] == 'C'; ...

x = (int) Input[...];

x = Input[...] & 1;

x = Input[...] * y / ... ;

 ...

Comparative

Uncontrollable

Transformative

write(Input, ✁); ...

Terminal

Decoding

Frontiers

memcpy(..., Input);

strcpy(✁, Input);

toupper(Input);

iconv(..., Input, ...);

mbtowc(..., Input, ...);

x = Input[...] + 3;

x = Input[...] * 2; ...

Controllable

Transformative

(Copy operations)*

... exit

Exploitable space Post-exploitable space

Fig. 2. Decoding frontiers.

data goes beyond copy operations/simple transformations and
starts being used in benign computation.

In the following, we use the diagram in Fig. 2 to illustrate
the life cycle of buffer data and hence the intuition behind
A2C. After the buffer data are loaded through input functions,
they may undergo a number of transformations, including copy
operations (e.g., memcpy() and strcpy()) that copy a buffer to
another target buffer, constant table lookup (e.g., in iconv(),
toupper(), mbtowc(), and wctomb()), and simple transfor-
mative operations (e.g., additions with a constant). Then, the
buffer data will eventually encounter one of the following three
kinds of operations: (1) Comparative operations, in which
elements in the buffer are used in comparisons; (2) Terminal
operations, in which the buffer data are passed to output
library functions (e.g., write(), send(), and printf()); (3)
Uncontrollable transformative operations, in which elements
in the buffer undergo transformations that disallow the attacker
to control the values beyond these transformations to construct
meaningful payloads. For instance, type widening copies a
value of smaller type (e.g., char) to an array element of larger
type (e.g., integer) so that each element in the array is padded
with leading 0’s. As such, the resulting byte sequence denoted
by the array cannot serve as a meaningful payload.

We call these three kinds of operations the decoding
frontier (DF) because A2C should undo the perturbation for
the buffer elements involved before executing the operations.
Intuitively, we consider the space before the frontier the
exploitable space where the malicious payloads are supposed
to take effect and without perturbation would successfully
exploit the program. Therefore, we use perturbation to achieve
protection in this space. The space after the frontier is referred
to as the post-exploitable space. This is because controlling the
payload becomes infeasible if it has gone through these benign
transformations conducted by the victim program. Therefore, it
is safe to undo our perturbation before the decoding frontier so
that benign inputs can be used in computation as usual1. The
core technical challenge for A2C is hence to identify the DF
of a subject program and perform instrumentation accordingly.
More discussion about the decoding frontier can be found in
Section IV-A.

Another interesting observation that makes our solution

1Here we assume that output library functions are hardened and thus cannot
be exploited by the decoded buffers.

2

3. Comparing the first 4 bytes ("POST")

2. Comparing the first byte ('P')

 ssize_t ngx_unix_recv(…) {

 …
136: n = recv(c->fd, buf, size, 0); Encode(buf, n);

File: ngx_recv.c

139: for (p = b->pos; p < b->last; p++) {

140: ch = *p;

 …
160: if (Decode(ch, 1) == ' ') {

 ...

179 case 4:

 ...

182: if (ngx_str30_cmp(Decode(m, 4) , 'P','O','S','T')) {

183: r->method = NGX_HTTP_GET;

File: ngx_http_parse.c

POST /index.php HTTP/1.1\r\nHost:...

ONRS..hmcdw-ogo.GSSO.0-0 . .Gnrs9...

POST..hmcdw-ogo.GSSO.0-0 . .Gnrs9...

PNRS..hmcdw-ogo.GSSO.0-0 . .Gnrs9...

Encoding/Decoding a request

1. Encoding a request
 ssize_t ngx_unix_recv(…) {

 …
136: n = recv(c->fd, buf, size, 0);

File: ngx_recv.c

139: for (p = b->pos; p < b->last; p++) {

140: ch = *p;

 …
160: if (ch == ' ') {

 ...

179: case 4:

 ...

182: if (ngx_str30_cmp(m, 'P','O','S','T')) {

183: r->method = NGX_HTTP_POST;

File: ngx_http_parse.c

POST /index.php HTTP/1.1\r\nHost:...

POST /index.php HTTP/1.1\r\nHost:...

Original Program Instrumented Program

 int ngx_http_do_read_client_request_body(…) {

 …
302: n = c->recv(c, rb->buf->last, size);

File: ngx_http_request_body.c

 int ngx_http_do_read_client_request_body(…) {

 …
302: n = c->recv(c, rb->buf->last, size); Encode(rb->buf->last, n);

 …

File: ngx_http_request_body.c

\x90\x90\x90\x90\x90\x90\x90\x90\x90...

\x89\x89\x89\x89\x89\x89\x89\x89\x89...

4. Injected Code by Heap overflow/spraying

 int ngx_http_request_handler(…) {

 …
2133: r->read_event_handler(r);

File: ngx_http_request.c

call r->read_event_handler (= 0x00b7c010)

call r->read_event_handler (= 0xffb6bf0f)

5. Jump to the injected code int ngx_http_request_handler(…) {

 …
2133: r->read_event_handler(r);

File: ngx_http_request.c

Fig. 3. Original and instrumented programs of demonstrative example.

feasible is that the exploitable space is usually much smaller
than the post-exploitable space as most computation happens
in the post-exploitable space. As such, the frontier tends to be
small and shallow and as explained above, operations beyond
the frontier do not need our attention.

Overall Procedure. Fig. 1 shows the complete procedure of
A2C. There are four phases: constraint solving based decoding
frontier computation, static analysis for determining encoding
and decoding places which are a superset of the decoding
frontier, instrumentation, and runtime.

First, we leverage constraint solving to determine the
uncontrollable operations. These operations, together with the
comparative and terminal operations, form the decoding fron-
tier. This phase simply marks all the operations on the frontier.

Second, a flow-, context-, and field-sensitive analysis is
applied to determine the places to instrument. It takes three
inputs: the LLVM IR of the program, the decoding frontier
from the first phase, and the untrusted input specification that
identifies a set of library functions that read inputs, such as
recv() for network inputs and read() for file streams. In this
phase, A2C produces two outputs. Specifically, the decoding
set is a superset of the decoding frontier and the encoding
set contains the statements to encode (input) values, such
as recv() in network programs. Interestingly, the encoding
set may also contain instructions that load constant values.
Explanations about why we need to encode constants can
be found in Section IV-C. The computation of decoding and
encoding sets (DE sets for short) is iterative as new elements on
encoding sets may introduce additional decoding operations.

Third, the instrumentation phase statically instruments the
program according to the DE sets. An important observation
is that the decoding frontier is context sensitive. Different
inputs may lead to different calling contexts of a function
invocation. The membership of a statement in the DE set may
change with those contexts. As such, upon the execution of a
statement in the DE set, we need to know the current calling

context to determine if the instrumented version or the original
version of the statement should be executed. Therefore, part
of the instrumentation phase handles the problem of efficiently
tracking the current calling context.

Lastly, the runtime supports execution of the instrumented
program. It features encoding based on a One-Time Dictionary,
which projects a plaintext value to a unique encoded value.
Different input buffers use different dictionaries to prevent
memory exposure based exploits.

III. ILLUSTRATIVE EXAMPLE

In this section, we use a real-world example to illustrate
A2C’s operation. We use the nginx 1.4.0 web-server as the
subject program. It has two known heap buffer overflow and
integer overflow vulnerabilities, which can be triggered by pro-
viding crafted HTTP requests containing malicious payloads.
Fig. 3 shows two code snippets with part of the original nginx
program on the left and the corresponding instrumented ver-
sion on the right. The column in the middle shows how the
two code snippets process the request differently.

First, both programs receive a POST request at Line 136 in
ngx_recv.c. Since the request is from an untrusted source,
the instrumented program encodes the buffer. For simplicity of
discussion, the encoding here is to subtract 1 from every byte.
Encode() denotes this modification. The HTTP request “PO
ST /index.php HTTP/1.1\r\nHost:...” is hence
encoded as “ONRS..hmcdw-ogo.GSSO.0-0..Gnrs9.
..”. The request is parsed at Lines 160 and 182 in ngx_
http_parse.c, which contain comparative operations on
some buffer data and are hence part of the decoding frontier.
Therefore, the instrumented program calls Decode() to undo
the perturbation so that the program can parse and process the
request correctly. Note that it only decodes a few bytes (of
fixed length) at a time so that the decoded data cannot be
run as any meaningful payload. Also observe that the original
buffer remains encoded. This is achieved by only decoding the

3

values after they are loaded into variables of primitive types
(e.g., bytes and words).

Next, the ngx_http_do_read_client_request_
body() function stores the contents of the request into a
different heap buffer. Notice that without A2C this becomes
vulnerable to heap spraying attacks which can be further lever-
aged to launch attacks such as ROP. Also, the same function
has a heap buffer overflow vulnerability that allows overwriting
a function pointer, read_event_handler, which will be
called inside ngx_http_request_handler(). However,
since the instrumented program encodes all external requests,
the payload at Line 302 and the address accessed at Line
2133 are mutated. Assume the malicious shellcode contains
a sequence of nop instructions (0x90*n) for the nop-sled
portion of a heap spray attack and the malicious address
injected is 0x00b7c010. In the instrumented program, the
nop instructions (0x90*n) are encoded to “0x89*n”, which
denotes a sequence of mov instructions that write to invalid
memory locations (e.g. mov ecx, ecx(-76767677h)).
At this point, even though the shellcode is successfully in-
jected, due to the mutation, it crashes upon execution. Simi-
larly, the injected function pointer at Line 2133 is also broken.
Note that if the request is valid, despite it being encoded by
the instrumented program, it will be decoded at the frontier
and will not affect normal execution.

IV. DESIGN

A. Decoding Frontier Computation via Constraint Solving.

The first phase of A2C is to determine the decoding frontier
that will be used to identify the encoding and decoding sets
in the next analysis phase. As we will see in the next section,
A2C needs to decode at more places than input related buffers.

According to the definition in Section II, the decoding
frontier consists of three kinds of operations: comparative,
terminal, and uncontrollable. While the identification of the
first two is straightforward, we focus on the third in this
section.

We first define controllable operations as follows: if valid
payloads can be generated in a memory region (e.g., a buffer)
right after a set of operations by manipulating program inputs,
these operations are controllable. An example of a controllable
operation is the toupper() transformation that turns a lower
case character into its upper case. Assume an application
transforms a text input buffer A into another buffer B using
toupper(). The attacker can carefully prepare the input so
that after the transformation, buffer B contains the intended
payload. It was indeed reported that existing operations in a
program could be leveraged to compute/decode payloads [5].

We further formulate the determination of controllable op-
erations as a constraint solving problem. We consider program
inputs as symbolic variables. We further model the operations
that compute the values for a memory region (at a given
program point) from the program inputs as a set of constraints.
We then assert the values (of the memory region) to be some
valid payload and query a solver if there is a satisfying (SAT)
solution. If so, one may be able to manipulate the input (e.g.,
using the SAT solution generated by the solver) to induce the
given payload. While it is difficult to precisely define what

constitutes a valid payload, we use the following procedure to
determine if operations are controllable.

Procedure to Determine Decoding Frontier. Given a pro-
gram to protect, A2C identifies all memory regions larger
than or equal to 16 bytes that can be affected by inputs
(through a standard static taint analysis). These regions include
buffers, consecutive local variables (on stack), consecutive
global variables (in data section), as well as structures. For
example, four consecutive local integer variables related to
inputs constitute a region for testing. For these regions, A2C
creates constraints according to the operations that compute the
values in the regions from program inputs. Other variables that
are not related to inputs are considered as free variables. This
makes our analysis a conservative one as free variables can take
any values during constraint solving, whereas in practice these
variables may have various restrictions. After we generate the
constraints, we use the Z3 solver [25] to test whether payloads
can be generated through these operations. In particular, we
collected 1.4GB binary codes, 200MB shellcode, and 200MB
ROP gadgets from Internet [1], [3], [51], [53], [52]. We also
generate 1.0G random numbers. We further break the data
sets down to sequences based on the size of the region under
testing. If the size is unknown, we use 16-byte sequences.
We then assert the values of the region equal to each of
these sequences one by one. If the constraint solver yields
SAT, TIMEOUT, or UNKNOWN for any of the sequences,
which implies that an attacker may be able to construct some
malicious payload through the operations, then the operations
are considered controllable. If the constraints are UNSAT for
all these sequences, the operations that define the values of
the memory region are considered uncontrollable.

Essence. Intuitively, we use the large pool of binary code and
shell code snippets to model the distribution of executable
payloads and the large pool of ROP gadget subsequences to
model the distribution of address-based payloads (for code
reuse attacks). We further use a large set of random number
sequences to model the distribution of other arbitrary pay-
loads. Since we only consider operations uncontrollable when
all these sequences yield UNSAT results, A2C provides strong
probabilistic guarantees that the values beyond these operations
are not exploitable.

Note that for complex programs, it may be difficult to
model the entire data flow from program inputs to the memory
region of interest due to various reasons such as unmodeled
library calls and uncertainty of data flow caused by aliasing.
A2C leverages backward slicing, starting from the memory
region of interest and traverses backward along data depen-
dencies until the traversal becomes infeasible (e.g., due to
unmodeled library calls). If program inputs cannot be reached
by the traversal, A2C treats the farthest variables that it
can reach as free variables. Note that this yields an over-
approximation, which is safe. The decoding frontier analysis
marks all the operations on the decoding frontier. Since the
algorithms in this phase are standard, details are omitted.

In the following, we use a number of examples to facilitate
understanding of decoding frontier.

Uncontrollable Operation Example One. Fig. 4 shows a code
snippet from 464.h264ref (i.e., a video decoding program) in
SPEC 2006.

4

// Declarations (Data Types)

1. unsigned int m7[...][...];

2. unsigned short img[...][...];

3. unsigned short mpr[...][...];

 ...

// Transformative Operations

4. for (int x = 0; ...; x++)

5. for (int y = 0; ...; y++)

6. m7[x][y] = img[...][...] - mpr[...][...];

; Constraints for Operations (img - mpr)

7. m7[0,1,2,3] = img[0,1,2,3] - mpr[0,1,2,3] /\

; Constraints for the range of unsigned short

8. 0 <= img[0,1,2,3] /\ 0 <= mpr[0,1,2,3] /\

9. img[0,1,2,3] <= 65535 /\ mpr[0,1,2,3] <= 65535 /\

; Constraints for Payloads (i will select a payload)

10. m7[0,1,2,3] = payload[i, i+1, i+2, i+3]

(a) Code snippet from 464.h264ref (b) Constraints from the code snippet

Fig. 4. Uncontrollable operations due to type widening in 464.h264ref.

Fig. 4 (a) shows three arrays m7, img, and mpr with
m7 a temporary array that stores intermediate values during
encoding, img holding raw input values and mpr calculated
by the program and not related to inputs. Observe that m7
is an int array whereas the other two are arrays of short int.
Fig. 4 (b) shows the constraints generated. Lines 7-9 denote
the constraints representing the operations. Line 7 denotes the
subtraction at Line 6. Line 9 denotes the range constraints of
img and mpr. We use “0,1,2,3” to represent that the same
constraint applies to four respective elements. Line 9 denotes
the payload assertion. We iterate this test with i from 0 to the
number of sequences in our test data set.

The test result shows that the constraints are always
UNSAT. This is mainly because the assignment of short
to int (called type widening) requires payloads to have two
zero bytes in every four bytes. As such, Line 6 is on the
decoding frontier. Type widening is one of the major reasons
for uncontrollability. Another popular form of type widening
is through bit operations, namely, only a few bits of a word
are set. Examples are omitted.

Uncontrollable Operation Example Two. Another common
kind of uncontrollable operation is one that induces intensive
correlations between values. For example, Fig. 5 (a) shows a
code snippet from 429.mcf in SPEC.

// Declaration (Data Types)

1. typedef struct network{

2. long n, n_trips, max_m, m;

 ...

3. } network_t;

 ...

4. network_t* net;

5. in[2] = read(InputFile);

// Transformative Operations

6. net->n_trips = in[0];

 ...

7. net->n = (in[0]+in[0]+1);

8. net->m = (in[0]+in[0]+in[0]+in[1]);

9. if (...) net->max_m = net-> m;

10. else net->max_m = 0xA10001;

; Constraints for Operations

11. net[0] = (2 * in[0] + 1) /\

12. net[1] = in[0] /\

13. ((net[2] = (3 * in[0] + in[1])) \/

14. (net[2] = 0xA10001)) /\

15. net[3] = (3 * in[0] + in[1]) /\

; Constraints for Payloads

; (i will select a payload to test)

16. net[0] = payload[i] /\

17. net[1] = payload[i+1] /\

18. net[2] = payload[i+2] /\

19. net[3] = payload[i+3]

(a) Code snippet from 429.mcf (b) Constraints from the code snippet

Fig. 5. Uncontrollable operations in 429.mcf program.

Fields n, n_trips, max_m, and m are consecutive in the
structure network and they are all related to inputs (in[0]
and in[1]). As such, A2C needs to test if the operations
on these fields are controllable. The constraints are shown in
Fig. 5 (b). Observe that the net→max_m (i.e., net[3] in the
constraint) and net→m (i.e., net[4]) are identical except
when net→max_m has a constant value 0xA10001. The
other 8 bytes are also closely correlated through in[0] and
in[1]. Consequently, the solver returns UNSAT for all the
payload tests.

Controllable Operation Examples. Most controllable oper-
ations are straightforward, such as copy operations. Method
toupper() is another example of a controllable operation.
The solver returns SAT for many payload sequences, such
as consecutive 0x90’s, which represent the NOP instructions

(nop-sled) in exploits. A2C also determines unicode conversion
functions (e.g., mbtowc()) as controllable. This is because
while unicode conversion translates an ASCII character to two
bytes with an additional byte (0x00), it also translates two
byte characters such as Chinese, Japanese, and Korean charac-
ters to two bytes [63], making payload construction feasible.
Our results echo the message conveyed in [5] that Unicode
conversion function can be leveraged to construct payloads.
In fact, all the data conversion/encryption/decryption/encoding
via table lookup (e.g., iconv(), mbtowc(), wctomb(),
and Inflate (Huffman Coding) Algorithm) are recognized as
controllable by A2C.

// Declarations (Data Types)

1. float v[...], sum;

2. int x, n;

// Transformative Operations

3. sum = FSum(v, n);

 // FSum returns a sum of all elements.

4. if (sum != 0.0)

5. for (x = 0; x < n; x++)

6. v[x] /= sum;

7. else

8. for (x = 0; x < n; x++)

9. v[x] = 1. / n;

; Constraints for Operations

10. sum = vold[0] + vold[1] + vold[2] + vold[3] /\

11. (vnew[0] = (vold[0] / sum) or (1.0 / n)) /\

12. (vnew[1] = (vold[1] / sum) or (1.0 / n)) /\

13. (vnew[2] = (vold[2] / sum) or (1.0 / n)) /\

14. (vnew[3] = (vold[3] / sum) or (1.0 / n)) /\

; Constraints for Payloads

; (i will select a payload to test)

15. vnew[0] = payload[i] /\

16. vnew[1] = payload[i+1] /\

17. vnew[2] = payload[i+2] /\

18. vnew[3] = payload[i+3]

(a) Code snippet from 456.hmmer (b) Constraints from the code snippet

Fig. 6. Controllable operations in 456.hmmer program.
Interestingly, we also observe that some operations of

complex types and performing complex computations are
determined as controllable by our analysis. Consider the
following example that leverages existing floating point op-
erations to construct malicious payloads. According to the
IEEE-754 floating point representation standard, even a very
small floating point value can affect all the 4 bytes of its
presentation. For example, a floating point variable 0.0001 is
encoded as 0x38d1b717 in memory. Fig. 6 shows FNorm()
in 456.hmmer from SPEC. It first adds all elements in v
into sum using FSum(), and then each element is divided
by the sum if the sum is not 0.0. If the sum is 0.0, all
the elements in v have 1.0 / n where n is the size of v.
Note that when there are multiple definitions of a variable
(e.g., v[x]), A2C disjoins the constraints for these definitions,
which are represented in the SSA form. The solver returns
SAT for the constraints. The exploit input is a sequence
of values (e.g., −12068,−18966,−14108,−13991, ...) whose
binary representations do not denote any meaningful payload.
But they are transformed to a meaningful payload by the
operations in Fig. 6. The payload issues a system call through
int 0x80 with arguments.

B. Static Analysis to Compute Decoding and Encoding Sets

In this section, we discuss the second phase, i.e., the
computation of decoding and encoding sets.

Language. A2C works on the Single Static Assignment (SSA)
LLVM IR, which is generated from program source code.
To facilitate precise discussion, we introduce a simplified
language which models the LLVM IR in Fig. 7.

Memory loads and stores are denoted by LOAD(xa) and
STORE(xa, xv), respectively, with xa holding the address and
xv the value. The address of a field access is explicitly
computed by x := xbase → f with xbase the base pointer
and f the field. Array accesses can be considered as a special
kind of field accesses. F(xa) models a call to function F with
xa the actual argument and xf the formal argument. Function
return is modeled by ret.

5

Program P ::= s

Stmt s ::= s1; s2 | skip | x :=` e | x :=` LOAD(ra) |
STORE`(xa, xv) | F`(xa) | ret` | goto`(`) |
if (x`) then goto(`1) | strcat`(xa1, xa2) |
x := lib`(x1, x2, ...) | x := malloc`(xs) |
x := φ`(y, x1, x2) | input`(xbuf , xsize)

Operator op ::= + | − | ∗ | / | < | > | == | ...
Expr e ::= x | c | x op c | x1 op x2 | x→ f
V ar x ::= {x1, x2, x3, ...}
Const c ::= {true, false, 0, 1, 2, ...}
Label ` ::= {`1, `2, `3, ...}

Fig. 7. Language.

Conditional or loop statements are not directly modeled.
Instead we define jumps using goto and guarded goto.
Conditional and loop statements can be constructed by com-
bining jumps and guarded jumps. strcat(xa1, xa2) denotes a
function that concatenates two strings. It appends the second
string denoted by pointer xa2 to the first string xa1. We define
lib(x1, x2, ...) to model library calls. It takes several xn’s as
arguments and returns a value in another variable. Function
input(xbuf , xsize) models library calls that read inputs such
as read() and recv(). The x := φ(y, x1, x2) denotes the φ
function in SSA that determines the value of a variable at the
joint point of two branches. In particular, if y is true, x := x1
otherwise x := x2. We also explicitly model heap allocation
through the malloc() function.

Operator denotes uncontrollable (computed by the previous
phase) or comparative operations. Each statement is annotated
with a label, which can be intuitively considered as the line
number of the statement in the program.

Addr a ::= ` | x | a.f
PointsTo σ ::= (Addr | V ar)× Context→ P(Addr)
Source SRC ::= CONST(`, x) | MARKED(`, x)
TaintStore τ ::= (Addr | V ar)× Context→ P(Source)
Context C ::= `
DecodeSet DEC ::= P(< Context, Label, V ar >)
EncodeSet ENC ::= P(< Label, V ar | Const >)

ChkSrc(`, x) ::=

if MARKED(`m, xm) ∈ τ`(x,C) then
DEC := DEC ∪ {< C, `, x >}

if ({C, `, x} ∈ DEC) then

foreach CONST(`c, c) ∈ τ`(x,C) then
ENC := ENC ∪ {< `c, c >}

ChkStrcat(`, xa1, xa2) ::=

if ∃a ∈ σ`(xa1, C), MARKED(`m, xm) ∈ τ`(a, C) then

if ∃b ∈ σ`(xa2, C), CONST(`c, c) ∈ τ`(b, C) then
ENC := ENC ∪ {< `c, c >}

if ∃a ∈ σ`(xa2,C), MARKED(`m, xm) ∈ τ`(a, C) then

if ∃b ∈ σ`(xa1, C), CONST(`c, c) ∈ τ`(b, C) then
ENC := ENC ∪ {< `c, c >}

TaintConst(`, x, c) ::=
if {< `, c >∈ ENC} then
τ`(x,C) := {MARKED(`, c)}

else

τ`(x,C) := {CONST(`, c)}

Fig. 8. Definitions for Abstract Interpretation Rules.

C. Static Analysis Phase

We formulate the static analysis as an abstract inter-
pretation process. Intuitively, abstract interpretation can be
considered as “executing” the program on the abstract domain
instead of the concrete domain. The abstract domain is specific
to an analysis. In abstract interpretation, it is often the case that
branch outcomes cannot be statically determined. Therefore, it

assumes all branches are possible. In the presence of loops,
the interpretation may go through the loop bodies multiple
times until a fix point is reached. If the abstract domain is
well designed, the interpretation procedure is guaranteed to
terminate.

Before the abstract interpretation, constants are propagated
during preprocessing using an existing LLVM pass (e.g.,
x1 ∗ x2 is rewritten to x1 ∗ c if x2 is determined to hold a
constant c). During the analysis, A2C iteratively goes through
program statements following the control flow and updating
the corresponding abstract states (e.g., the decoding set) until
a fix point is reached. Specifically, A2C taints input buffers
from untrusted sources. The taints are propagated through
controllable operations, which may be conducted through
library functions (e.g., memcpy(), toupper(), and icon
v()), linear operations (e.g., y = x and y = 3∗x), and so on.
If a tainted value reaches an operation on the decoding frontier
computed in the previous phase, which includes comparative,
uncontrollable, and terminal operations, taint propagation is
terminated and the operation is added to the decoding set.
However, the decoding set may be context-sensitive and path-
sensitive. To handle such cases, statements that load constant
values may need to be considered as sources and hence
encoded. As a result, more statements may be added to the
encoding set and the decoding set.

Definitions. To facilitate discussion, we introduce a few defi-
nitions in Fig. 8. Our analysis computes four kinds of abstract
information: the points-to set, the taint set, and the encoding
and decoding sets. The points-to set σ is a mapping from
an abstract address a (representing some memory location)
or a variable x, together with the calling context, to a set of
abstract addresses denoting the memory locations that may be
pointed-to by a or x. Abstract address Addr is denoted by some
variable representing an abstract global/stack array/buffer or a
label denoting an abstract heap buffer, followed by a sequence
of fields. Intuitively, one can consider it as the reference path to
some abstract memory location. The role of abstract addresses
in our static analysis is similar to that of concrete addresses
in dynamic analysis (e.g., to look up taint values). Since our
analysis is context-sensitive and field-sensitive, context is part
of the mapping and fields are explicitly modeled in abstract
addresses.

Source represents the (taint) source of a value. There are
two types of Source: CONST and MARKED, meaning a constant
value and an untrusted input source, respectively. We use the
term MARKED to indicate that a value originates from some
input buffer and has only gone through controllable operations.
Hence it is in the exploitable space (Section II). Such values
shall be in their encoded form at runtime. We track the
MARKED value propagation through our analysis. TaintStore
τ stores the (taint) source information for abstract addresses
and variables. Both σ and τ are flow-sensitive, meaning that
A2C computes separate σ and τ for different program locations
(i.e., labels). For example, we use τ ` to denote the abstract taint
mapping computed at `. It is implicit in the rest of the paper
for simplicity in discussion.

If MARKED values reach an operation on the decoding
frontier, the operation is inserted to the DecodeSet DEC.
The EncodeSet ENC contains the set of statements at which
the (input) values ought to be encoded. Context C is denoted

6

TABLE I. ABSTRACT INTERPRETATION RULES.

Statement Interpretation Rule Name

input`(xb, xs) foreach a ∈ σ`(xb, C) INPUT

τ`(a, C) := MARKED(`, xb);

ENC := ENC ∪ {〈`, xb〉};

x :=` x1 σ`(x,C) := σ`(x1, C); NON-

(x =` x1 op c) τ`(x,C) := τ`(x1, C); DF-OP

x :=` LOAD(xa) σ`(x,C) :=
⋃

∀a∈σ`(xa,C)
σ`(a, C) LOAD

τ`(x,C) :=
⋃

∀a∈σ`(xa,C)
τ`(a, C)

STORE(xa, xv) ∀a ∈ σ`(xa, C) : σ`(a, C) ∪ := σ`(xv, C) STORE

∀a ∈ σ`(xa, C) : τ`(a, C) ∪ := τ`(xv, C)

x :=` x1 op x2 σ`(x,C) := ⊥; DF-OP

ChkSrc(`, x1); ChkSrc(`, x2);

x :=` x1 → f σ`(x,C) := {a · f | ∀a ∈ σ`(x1, C)} FIELD

x := for each xi ∈ {x1, x2, ...} DF-TERM

lib`(x1, x2, ..) ChkSrc(`, xi);

x :=` c TaintConst(`, x, c); CONST

strcat`(xa1, xa2) ChkStrCat(`, xa1, xa2); STRCAT

F`(xa) C0 := C; C := C · `; CALL

// xf formal arg

σ`(xf , C) := σ`(xa, C0);

τ`(xf , C) := τ`(xa, C0);

foreach buffer var y ∈ F :

σ`(y, C) = {y};

ret C := C − last(C); RET

x := φ`(y, x1, x2) σ`(x,C) := σ`(x1, C) ∪ σ`(x2, C); PHI

τ`(x,C) := τ`(x1, C) ∪ τ`(x2, C);

x := malloc`(xs) σ`(x,C) := `; HEAP

by a sequence of labels (`’s) that models a call stack. Each
element in the DEC set includes a Context, suggesting that
we decode input buffers depending on the calling context. For
example, 〈C, `, x〉 ∈ DEC suggests that when the statement
denoted by ` is encountered under context C at runtime, A2C
will decode the variable x.

 VOID

 ngt_TrimStr(CHAR *String) {

 . . .

 // String can be either from

 // a configuration file or

 // a network message

40: start = String;

 . . .

46: ptr = strchr(start, '\0') ✁ 1;

47: while(((*ptr == ' ') || (*ptr == 9) ||

 (*ptr == 10) || (*ptr == 13) || �

 . . .

tool/tool.c

 VOID Read_Config(VOID){

 . . .

386: fd = fopen(NGIRCd_ConfFile, "r");

 . . .

441: if(!fgets(str, ..., fd)) break;

442: ngt_TrimStr(str);

conf.c

 Parse_Request(..., CHAR *Request){

 . . . /* Request is a user request

 through network. */

140: ngt_TrimStr(Request);

parse.c

Fig. 9. An Example of Context Sensitive Code.

Decoding Set is Context-Sensitive and Path-Sensitive. The
membership of a statement in the decoding set may change
with the context. Fig. 9 shows an example in ngircd, an
Internet Relay Chat (IRC) daemon program. In this example,
we treat all network functions as untrusted input sources. Thus,
the input data from these functions are encoded while data
from files are not. ngt_TrimStr() is a utility function
for trimming a string. It is invoked at different places. For
instance, Read_Config() calls it with a string from the
configuration file, which is not encoded. On the other hand,
Parse_Request() also calls it, but with a string from the
network. The string is encoded this time. Hence, A2C may
or may not decode the value in *ptr at Line 47, depending
on the context. Therefore, each statement in the DEC set is

annotated with a context such that decoding is only performed
when the same context is encountered at runtime.

The decoding set is also path-sensitive. Consider the exam-
ple in Fig. 10 (a), which contains code snippets from unrtf, a
program for converting documents in Rich Text Format (RTF)
to other formats such as HTML and LaTeX. At 2© and 3©,
str may hold a constant value or a tainted value ch. At 4©
and 5©, str is inserted to a hash map. Strings in the hash map
are loaded and used at 6©. Depending on whether 2© or 3© is
executed, Line 336 may or may not belong to the decoding set.
In other words, if tmp holds a constant string at 336, it does
not need to be decoded. Note that in this case, the context of
Line 336 cannot be used to distinguish the different behaviors
of the line. We cannot afford to track paths at runtime either.
Hence, our solution is to identify the related constant strings,
such as that at Line 326, and treat them as input sources so
that they will be encoded as well. As a result, the behavior at
Line 336 becomes path insensitive, always requiring decoding.
2

Abstract Interpretation Rules. The interpretation procedure
is formulated by the rules in Table I, which specify how
the abstract information is updated upon each statement.
Specifically, when the program reads data from untrusted input
sources through input(xb, xs) with xb the buffer address
and xs the size, the TaintStore of all the abstract memory
locations pointed to by xb are set to MARKED (Rule INPUT).
Note that using the context C makes our analysis context
sensitive. The encoding set is also updated. Rule NON-DF-
OP describes the interpretation of an operation that is not on
the decoding frontier, i.e., controllable operation such as copy.
In this case, A2C copies the points-to set and the abstract
taint set. Rule LOAD describes that for a load instruction,
the resulting points-to/taint set is the union of all the points-
to/taint sets of all abstract memory locations pointed-to by the
address xa. Similarly, for a store statement, the points-to/taint
set of the value variable xv is added to the points-to/taint set
of any abstract memory location pointed to by xa. A2C only
propagates taints for controllable operations. Rules DF-OP han-
dles an uncontrollable operation or a comparative operation.
It first resets the taint. It then calls function ChkSrc(`, x)
that checks if variable x is tainted as MARKED. If so, the
statement together with the current context and the variable are
inserted to the decoding set DEC. The context and variable
information is needed to indicate which variable should be
decoded and under what context. The function further tests if
the statement is already in DEC and the variable is currently
tainted as CONST, suggesting that the statement sometimes uses
a value from untrusted input and sometimes uses a constant.
This corresponds to the case in which the decoding set is
path sensitive. To eliminate such path sensitivity, A2C adds
the source of the constant to ENC, indicating that the source
should be tainted as MARKED in the next round of abstraction
interpretation.

Rule DF-TERM handles the other kind of operations in the
decoding frontier: the terminal operations.

Rule CONST handles constant assignment, including con-
stant string assignment. It tests if the constant assignment has
been inserted to the ENC set (by Rules DF-OP or DF-TERM),
indicating that the constant should be encoded so that we need

7

 static int read_word (FILE *f) {

 ...

246: ch = getchar(f);

 ✁

266: switch(ch) {

 ✁

323: case '\t':

326: strcpy(str, "\\tab");

327: fprintf (�, str[1]);

 ...

331: case ';':

332: str[0] = ch;

 ...

 }

 ✁

454: word_new (str);

parse.c

 void process_font_table (Word *w) {

 �

 // word_string(w) returns

 // hash[...]✂str stored by word_new

335: tmp = word_string(w2);

336: if(!strncmp("\\f", tmp, 2)) {

 ...

 }

convert.c

ch

ch

str

str[1]

hash[�]✂str

 ...

str

hash[�]✂str

tmp (=hash[...]✂str)

tmp

1-2461

1-2661

2-3261

2-3271

5-1081

 ...

3-3321

5-1081

6-3351

6-3361

(c) Abstraction interpretation state

{M}

{M}

{C}

{C}

{C}

 ...

{M}

{C,M}

{C,M}

{C,M}

 Word* word_new(char *t){

 ✁

108: hash[✁]✂str = my_strdup(t);

 }

word.c

{ch246}

{ch246}

{ch246}

{ch246}

{ch246}

 ...

{ch246}

{ch246}

{ch246}

{ch246, "\\tab"326 }

{}

{ch266}

{ch266}

{ch266}

{ch266}

 ...

{ch266}

{ch266}

{ch266}

{ch266, tmp336}

1

2

3

4

6

5

...

str

str[1]

hash[�]✂str

 ...

str

hash[�]✂str

tmp (=hash[0]✂str)

tmp

...

2-3262

2-3272

5-1082

 ...

3-3322

5-1082

6-3352

6-3362

...

{M}

{M}

{C,M}

 ...

{M}

{C,M}

{C,M}

{C,M}

...

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

 ...

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

...

{ch266, tmp336}

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

 ...

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

(a) unrtf program source (each circled number represents a block index)

 char* word_string (Word* w) {

 ✁

84: t_str = hash[✁]✂str;

 ✁

86: return t_str;

 }

word.c

1st iteration.

DF-OP

STORE

DF-OP

2nd iteration

CONST

DF-TERM

(b) Abstract interpretation path

1 2 4 5 3 4 5 6

...... 3rd iteration

1

Abstract Addr/VarRef. Taint ENC DEC Description

Fig. 10. An example of the iterative interpretation procedure on unrtf.

to figure out its decoding places. In this case, it sets the taint
as MARKED, otherwise CONST. Rule STRCAT handles string
concatenations. When a string from an untrusted source is
concatenated with a constant string, we add the constant string
to the ENC set to indicate that the string shall be encoded.
Such concatenation happens frequently when a program uses
string formatting functions such as sprintf(). Rule CALL
updates the current context. It further propagates the points-to
and taint sets from the actual argument to the formal argument.
At the end, it sets the points-to sets of all the local buffer
variables to contain themselves. The RET rule pops the last
entry in the context. The PHI rule specifies that since x takes
the value of either x1 or x2, its abstract sets are the union of
those of x1 and x2. A2C does not model path conditions so
that it essentially considers all paths are feasible and computes
merged results along various paths. Rule HEAP describes that
we use the label of the allocation statement to denote the
abstract heap region allocated. In addition, the σ and τ entries
computed at a location are also propagated to its control flow
successors. The rules are omitted as they are standard. The
abstract interpretation is iterative until a fix point is reached.
It is easy to infer that our analysis must terminate as all the
abstract domains are finite.

Example. Fig. 10 shows how the analysis works for unrtf
that reads an RTF file and transforms it to various formats.
Fig. 10 (a) shows some code snippets of the program. The
description of them can be found at the beginning of Sec-
tion IV-C. The program is simplified and slightly changed from
its original version for illustration.

The abstract interpretation procedure is equivalent to
traversing the path in Fig. 10 (b). The real interpretation order
inside A2C is slightly different due to the φ functions that are
omitted for easy explanation, although the outcome is identical.
In the path, the two branches of the switch are traversed in
two sub-paths: 1© 2© 4© 5© and 1© 3© 4© 5©. They insert strings to
the hash table and the strings are later accessed at 6©.

Fig. 10 (c) shows the abstract states computed by A2C in
multiple rounds. Each round follows the path in (b) during
interpretation and corresponds to a sub-table in (c). The first
column shows the block, line and round numbers of each
statement. For instance, 2-3261 means Line 326 inside 2©

in the first round of interpretation. Here, we only show the
statements related to our analysis. The next two columns
present the abstract address or variable that each statement
accesses and its taint set. C means the CONST type and M
denotes the MARKED type. The next two columns show the
contents of ENC and DEC. The last column presents the
rules applied.

First Round. ENC and DEC sets are empty at the beginning.
At 1− 2461, since ch is loaded from an input source, we add
ch246 to ENC to indicate that we should encode ch at Line
246. Then, ch is used in a comparison at 1 − 2661, thus we
add ch266 to DEC, meaning that we should decode ch at
Line 266. For simplicity, we ignore the contexts in the DEC
set. At 2− 3261, a constant string is copied to str, and part
of it is printed at 2− 3271. Since str has a constant taint at
this point, it does not need to be decoded. Later it is stored
into the hash table at 5− 1081. Then, a character from a file
is copied to str at 3 − 3321, and is then stored in the hash
table at 5 − 1081. Since A2C cannot distinguish if the hash
table write and the previous write access different (abstract)
memory locations, it unions the two taints so that the hash
table is tainted with both CONST and MARKED, according to
Rule STORE.

Later, at 6−3351 and 6−3361, the stored string is loaded
and compared with a constant string “\\f”. According to Rule
DF-OP, since Line 336 is comparative and tmp is tainted with
MARKED, it shall be decoded. An entry is hence inserted to the
DEC set. Also according to the second if statement inside
ChkSrc(), which is invoked by Rule DF-OP, the constant
string at Line 326 is added to ENC, meaning that the constant
string shall be encoded.

Second and Third Rounds. The second round traverses the
same path. At 2−3262, the constant string is MARKED as it is in
ENC, meaning that we should track its propagation to figure
out the decoding places (Rule CONST). As a result, str[1]
at Line 327 is added to DEC according to Rule DF-TERM.
The rest is similar to the first round. In the third round, none
of the abstract sets are updated, a fix point is reached. The
analysis terminates.

From the final ENC and DEC sets, we should encode

8

at Lines 246 and 326, and decode ch, str[1] and tmp at
Lines 266, 327 and 336, respectively. 2

D. Runtime

Supporting Context Sensitivity. Once the analysis phase
is finished, we have the DEC and ENC sets. Since both
DEC and ENC are context sensitive, meaning that decoding
and encoding should be performed only under certain calling
contexts, the instrumentation needs to compare at runtime if
the current context matches with that in DEC/ENC in order
to perform decoding/encoding.

A straightforward way to obtain the current context is to
perform stack walking. However, it incurs significant overhead.
Furthermore, the resulting contexts are verbose and difficult to
compare. To address the problem, we adopt a precise calling
context encoding algorithm [64]. The algorithm maintains an id
which is a unique number for each context. Given a program
and its call graph, the algorithm automatically determines a
unique id for each context. It further instruments the program
in such a way that the instrumentation (at call sites) guarantees
to produce the corresponding id when a context is reached. The
instrumentation only requires simple (and low-cost) additions
and subtractions before and after a subset of call sites. Context
comparison becomes simple id comparison. Since the encoding
algorithm is not our contribution, details are elided.

Encoding Based on One-Time-Dictionary. Simple encod-
ings such as subtract-by-one are easy for the adversary to
reverse engineer. He/she can prepare the exploit accordingly so
that the exploit inputs become the plain-text payloads after our
encoding. To address the problem, we use one-time-cipher. In
particular, A2C has a large number of pre-generated random
one-to-one mappings that project a byte to another unique
byte. Whenever the program reads inputs from an untrusted
source, A2C selects a mapping to encode the buffer. Since
the dictionary for each untrusted input buffer is different from
others, knowing previous mappings (e.g., through memory
disclosure) does not help in launching subsequent attacks.
More discussion can be found in Section V. Another thing
we want to point out is that A2C mutates every byte from an
untrusted sources. As such, none of the instructions from the
original payload can be properly executed.

Using different dictionaries for different buffers requires
A2C to track the dictionaries for individual buffers so that
decoding can be properly performed. This is achieved by
adding runtime taint propagation logic for controllable op-
erations in the exploitable space. For controllable operations
that are not simple copies (e.g., y = 3 ∗ x), A2C decodes
the source operand(s), performs the operation, and encodes
the resulting operand using the same mapping. Since the
exploitable space is very small, the entailed runtime overhead
is low (see Section VI).

V. THREAT MODEL

A2C assumes the subject program is benign but the inputs
may be malicious. The user specifies which part of the inputs
cannot be trusted such as network inputs and/or local file reads.
It trusts the kernel. It also trusts that the low level output
libraries are free of vulnerabilities, as it decodes the buffer
values before calling these libraries. If they cannot be trusted,

we can mitigate the problem by postponing the decoding to
before output syscalls, which requires instrumenting libraries.
Note that we do not trust all library functions. For example,
we do not decode inputs for functions that copy data such as
strcpy and memcpy. In practice, such functions are com-
monly exploited by attackers whereas output library functions
such as write and send are not.

A2C aims to protect against payload injection attacks. It
cannot handle other attacks that do not inject payload. It
also requires the payload injection go through explicit input
channels, which is true for most attacks. A2C currently only
supports C/C++ programs and hence cannot deal with payload
injections for programs in other languages such as JavaScript,
although the idea is general.

Attacks In the Post-exploitable Space. A2C leverages
constraint solving and a large pool of payload test cases that
models the distribution of valid payloads to determine the de-
coding frontier with strong probabilistic guarantees. However,
it may still be possible to construct some payloads via the
very limited controllability of those uncontrollable operations
on the decoding frontier. We argue that such payloads will have
very limited functionalities. Moreover, we only protect against
payloads that are larger or equal to 16 bytes. While it may
be possible to construct payloads smaller than that, we again
argue that such payloads will have very limited functionalities.
Note that if a primitive value of four bytes is related to input,
the attacker could inject a four byte payload to that primitive
if there existed one. Protecting against such small payloads is
almost impossible and unnecessary. In practice, we have not
seen any examples of these payloads.

Memory Disclosure. Memory disclosure vulnerabilities can
reveal memory contents of a process. Attackers can access
memory pages that contain the encoded values and thus reverse
engineer dictionaries. For example, he/she can manipulate the
input by providing a sequence of unique values and then search
in the disclosed memory for regions that have a sequence of
unique values of the same length. By contrasting the two,
the dictionary can be revealed. However, since A2C uses
different dictionaries for individual input buffers, disclosing
previous dictionaries does not help in subsequent attacks.
Since A2C uses a random dictionary each time, it is really
difficult to guess the next dictionary even knowing the previous
dictionaries (i.e., 1 out N with N the number of pre-generated
dictionaries). We use N = 106 in this paper.

VI. EVALUATION

A2C is implemented on LLVM [2]. We evaluate A2C
on 18 different real world programs shown in Table II. All
the experiments were done on a machine with Intel Core i7
3.4GHz, 8GB RAM, and 32-bit LinuxMint 17.

We searched exploit-db.com to choose target pro-
grams. We tried the listed programs with reported exploits
and selected those which we could reproduce. We have 6
network programs, with two client programs: prozilla and
stftp, and four server programs: apache, nginx, yops,
and ngircd. We have 12 user applications. mupdf reads and
displays pdf documents. unrar is a decompressor program.
mcrypt encrypts and decrypts files. gif2png converts gif
to png. unrtf converts RTF files to other formats such as

9

HTML. mp3info reads and modifies meta tags of MP3
files. rarcrack and fcrackzip recover passwords of
compressed files (e.g., zip and rar files) using different
strategies. vfu is a text-mode file manager. chemtool is
a GUI program for drawing chemical structures. Xerces-C
is an XML parser. Among these programs, we have two
GUI programs that require user interactions: mupdf, and
chemtool. vfu requires text-based user interactions.

The first two columns of Table II show the programs and
their size in C source code lines (CLOC). The third and fourth
columns present the number of entries in DEC and ENC
computed by our analysis. They are essentially LLVM IR
statements annotated with contexts. The fifth column shows
the number of statements in DEC that behave differently
depending on the context. One such statement has multiple
entries in the DEC set (for different contexts). The sixth
column represents the number of instrumented IR statements
for calling context encoding. The last two columns show the
time spent on computing the decoding frontier, and the static
analysis for DEC/ENC set computation and instrumentation,
respectively. The overhead of decoding frontier computation
includes the running time of Z3 constraint solver. We use one
minute as the timeout threshold. We also avoid testing identical
payload sequences.

From the table, we have the following observations. A2C
can handle large and complex programs such as mupdf and
apache. The number of entries in ENC/DEC is small with
respect to the program size. This supports our speculation that
the exploitable space is small. The data in the fifth column also
supports that context sensitivity is needed. Finally, the analysis
overhead is acceptable. Some large programs take a few hours.
However, we argue that this is one-time cost.

TABLE II. EVALUATION RESULTS FOR ANALYSIS.

Program Size |ENC| |DEC| CS1 CCE2 Analysis Time
DF Comp.3 SA4

mupdf 483K 598 2283 241 172 1h 5m 12m 11s
prozilla 54K 98 754 391 104 9m 49s 2m 43s
stftp 18K 42 144 42 37 6m 51s 1m 58s
yops 9,215 49 153 4 12 24s 13s
nginx 335K 151 1005 37 72 34m 14s 17m 22s
ngircd 119K 123 391 113 249 7m 39s 10m 1s
unrar 99K 36 239 44 164 17m 21s 7m 11s
mcrypt 36K 83 278 40 35 12m 41s 4m 20s
gif2png 16K 32 129 28 22 8m 19s 1m 38s
mp3info 17K 33 91 23 19 6m 9s 2m 17s
fcrackzip 48K 18 37 23 11 8m 17s 2m 58s
chemtool 176K 100 388 27 39 20m 35s 7m 41s
vfu 180K 64 129 49 318 12m 51s 8m 21s
unrtf 25K 31 220 291 178 14m 5s 2m 43s
rarcrack 1,364 7 19 39 9 0s 5s
make 124K 106 719 125 94 31m 14s 1h 40m
Xerces-C 415K 121 1137 102 213 1h 28m 6h 21m
apache 208K 364 1586 98 63 1h 56m 5h 41m
1# of Context Sensitive Statements.
2# of instrumentations for Calling Context Encoding.
3Decoding Frontier Computation Phase. 4Static Analysis Phase

A. Performance
Performance for Programs with Vulnerabilities (i.e., those
in Table II). To evaluate the runtime overhead of A2C, we
run both the original program and the instrumented version 10
times and take the average. We use large inputs. For example,
we use document files that are larger than 10MB to test file
processing programs unrtf, Xerces-C, and gif2png. As
such, the native executions usually last for more than a few

seconds. For the programs that require user interactions, we
force them to quit after they load, process, and render the
inputs, and before they take any user interactions. We manually
identify the locations in the source files that indicate such
status (e.g., before calling a function to change the status bar to
show the input is successfully loaded and rendered) and insert
exit() to these locations. We then measure the overhead
for these shortened executions. Note that, this usually leads
to over-approximation of the overhead as our instrumentation
largely lies in the initial input loading and parsing logic.

0%

2%

4%

6%

8%

10% 6.11%

Fig. 11. Normalized Overhead on Programs in Table II.

Fig. 11 shows the result. The average overhead is 6.11%.
In most cases, the overhead is less then 6%. There are a
few exceptions. Programs dedicated to processing and parsing
input files such as make, Xerces-C, unrtf, and gif2png
have relatively higher overhead. This is because the instru-
mented statements are being executed throughout the execu-
tion. Also, the programs that require interactions, e.g., mupdf,
chemtool, and vfu, have relatively higher overhead. This
is because of the way we measure the overhead. apache has
the highest overhead (9.84%) due to the complex structure of
input filters that leads to many constant strings being encoded.

0%

2%

4%

6%

8%

10%

12%

14%
8.18%

Fig. 12. Normalized Overhead on SPEC CPU2006.

SPEC CPU2006. We also evaluate the performance of A2C
on SPEC CPU2006. We run both the original and instrumented
programs 10 times using the reference inputs. Fig. 12 shows
the result. The average overhead is 8.18%. 401.perlbench,
403.gcc, and 483.xalancbmk have relatively higher over-
head because they process inputs intensively. 456.hmmer has
9.94% overhead as it processes inputs even during the execu-
tion of its main algorithm. 429.mcf and 462.libquantum
have extremely low overhead, less than 1.5%. This is because
they process inputs once at the very beginning. As such, A2C
only needs to decode at the beginning and the rest of the
execution does not cause any overhead. The average overhead
for all 30 programs including programs in Table II and SPEC
CPU2006 is 6.94% and the geometric mean is 5.94%.

10

TABLE III. EVALUATION RESULTS FOR ATTACK PREVENTION.

Program # of Inputs # of # of Payloads # of Crashes # of ins. exec. # of ROP Gadgets Precision/Recall(Mal./Benign) Vulnerabilities (Shellcode/ROP) (Mal./Benign) in Payloads Exec. in Payloads
mupdf 10 / 20 1 (CVE-2014-2013) 50 / 50 1000 / 0 3.62 0.1 100% / 100%
mcrypt 10 / 20 21 50 / 50 1000 / 0 3.62 0.18 100% / 100%
sftp 10 / 20 1 (EDB-ID: 9264) 50 / 50 1000 / 0 3.6 0.08 100% / 100%
yops 10 / 20 1 (EDB-ID: 14976) 50 / 50 1000 / 0 3.62 0.05 100% / 100%
nginx 10 / 20 1 (CVE-2013-2028)* 50 / 50 1000 / 0 3.62 0.09 100% / 100%
ngircd 10 / 20 22 50 / 50 1000 / 0 3.62 0.11 100% / 100%
unrar 10 / 20 1 (EDB-ID: 17611) 50 / 50 1000 / 0 3.62 0.18 100% / 100%
prozilla 10 / 20 23 50 / 50 1000 / 0 3.6 0.09 100% / 100%
gif2png 10 / 20 1 (CVE-2009-5018) 50 / 50 1000 / 0 3.62 0.09 100% / 100%
mp3info 10 / 20 1 (CVE-2006-2465) 50 / 50 1000 / 0 3.62 0.05 100% / 100%
fcrackzip 10 / 20 1 (EDB-ID: 14904) 50 / 50 1000 / 0 3.62 0.05 100% / 100%
chemtool 10 / 20 1 (EDB-ID: 36024) 50 / 50 1000 / 0 3.6 0.18 100% / 100%
vfu 10 / 20 1 (EDB-ID: 35450) 50 / 50 1000 / 0 3.61 0.18 100% / 100%
unrtf 10 / 20 1 (CVE-2004-1297) 50 / 50 1000 / 0 3.62 0.18 100% / 100%
rarcrack 10 / 20 24 50 / 50 1000 / 0 3.62 0.05 100% / 100%
make 10 / 20 1 (EDB-ID: 34164) 50 / 50 1000 / 0 3.62 0.18 100% / 100%
Xerces-C 10 / 20 1 (CVE-2015-0252) 50 / 50 1000 / 0 3.62 0.07 100% / 100%
apache# 10 / 20 25 50 / 50 1000 / 0 3.6 0.13 100% / 100%

1(CVE: 2012-4409, 2012-4527) 2(CVE: 2005-0226, 2005-0199) 3(CVE: 2005-0523, 2004-1120)
4(EDB-ID: 15062, 15054) 5(CVE: 2004-0940, 2006-3747) *This CVE includes multiple vulnerabilities #Version 1.3.31

B. Effectiveness

To evaluate the effectiveness of A2C in preventing attacks
and allowing benign executions, for each program, we prepare
10 exploits and 20 other benign inputs. For each exploit input,
we prepare 100 different malicious payloads, including 50
shellcodes and 50 ROP payloads.

The shellcodes are generated from [51], and we use ROP
attack creators [52], [53] to generate 50 different ROP payloads
for each vulnerable application. Thus, we have 1,000 attack
executions and 20 benign executions for each program. Note
that, as shown in Table III Column 3, some programs have
more than one vulnerability, which require unique exploit
inputs. The table also shows the results. Observe in the fifth
column, A2C successfully crashes all the attacks and allows
all the benign inputs to proceed to normal termination and
produce the expected outcomes. The next two columns show
the average number of payload/gadget instructions that got
executed before crashing. They are all in very small numbers.
As such, they can hardly cause any damage to the system.

Decoding Frontier (DF) Operation Classification. We fur-
ther analyze the DF operations for all the subject programs and
classify them into a few categories. Fig. 13 shows the results,
from which we have the following observations.

0%

20%

40%

60%

80%

100%

Comparative

(63%)

Terminal

(19%)

Uncontrollable transformative

(18%)

Type

Widening

(5%)

Indexing

(3%)

Primitive Type

Conversion

(5%)

Irreversible

Calculation

 (5%)

Fig. 13. Different Types of Decoding Frontiers.

First, 63% operations on DFs are Comparative Operations.
Note that comparative operations are mostly conducted on
individual buffer elements (of primitive types), A2C only
decodes the element needed by the operation. The decoded
value is dead (e.g., overwritten) right after the operation.
Such DF operations cannot be exploited. Second, 19% DF
operations are Terminal Operations. For a terminal operation,

A2C first copies the original buffer to a temporary buffer, and
then decodes the temporary buffer. Also, after the terminal
operation, A2C releases the temporary buffer to minimize
the attack window. Third, we also identify a few kinds of
Uncontrollable Transformative Operations. In particular, Type
Widening expands each element in a buffer by padding it
with some specific byte(s) such as 0x00. Note that we use
the constraint solver to determine whether each case of type
widening is controllable as not all type widening cases are
uncontrollable. In fact, casting a one-byte data type to a two-
byte data type is solvable in many cases. Note that some binary
operations (e.g., multiplication) of values with smaller types
yield a value of a large type. These are not type-widening as the
bits in the resulting value are often fully/largely controllable.
Irreversible Calculation means arithmetic transformations that
cause intensive correlations among values so that the solver
returns UNSAT for all tests. An example can be found in
Section IV-A. Primitive type conversion means that a buffer el-
ement is converted to a value of primitive type (e.g., atof())
and this value is not stored to any array/buffer. Since single
primitive values can hardly be exploited to inject payloads
due to the size, decoding is safe. Note that A2C protects
consecutive primitive values if they can form a region larger
than 16 bytes. Indexing means that an encoded value is used
to index a non-constant array. It is safe to decode the value
because the decoded value is of a primitive type and soon dies
after the operation. The entire buffer is never decoded.

Decoding Frontier (DF) Computation. Table. IV shows
the evaluation results of decoding frontier computation. The
first column shows the programs. The next three columns
show the numbers of controllable operations, uncontrollable
operations, and their sum, respectively. The last column shows
the average number of constraints for each memory region
under test. Recall that if the solver returns SAT, TIMEOUT
or UNKNOWN for a constraint in any payload sequence test,
the corresponding operations are considered controllable.

We make the following observations. First, in most cases,
there are more UNSAT cases than SAT cases. This means that
most input related computations are not controllable. There
are a few exceptions. gif2png, apache, and chemtool
have more SAT cases as our modeling of the external library

11

TABLE IV. RESULTS FOR DECODING FRONTIER COMPUTATION.

Program # of Operations Avg. # of
Controllable Uncontrollable Total Constraints

mupdf 9 141 150 16.4
Prozilla 4 20 24 15.9
stftp 2 8 10 11.5
yops 0 1 1 8
nginx 4 41 45 17.2
ngircd 2 12 14 14.1
unrar 6 33 39 14.2
mcrypt 4 24 28 18.3
gif2png 13 10 23 16.9
mp3info 4 9 13 15.3
fcrackzip 4 4 8 13.6
chemtool 29 22 51 14.1
vfu 3 25 28 15.5
unrtf 2 22 24 14.5
rarcrack 0 0 0 0
make 9 53 62 15.4
Xerces-C 14 75 89 14.8
apache 145 129 274 17.7
Average 14.1 34.9 49 14.05

calls is not complete and the modeling of floating point
functions is conservative. For example, we assume exp()
function can return any positive floating point values while
the parameter of the exp() function may have constraints,
hence it may not be able to produce some floating point
values. Note that such a conservative assumption only causes
over-approximation. Second, the total number of operations
for testing is not large (apache has the largest number
274). This is because the controllability classification for most
operations is straightforward (e.g., comparative operations and
copy operations) and hence does not require constraint solving.
Third, the average number of constraints in our tests is not
large, suggesting that controllable operations are often shallow
in the data flow, meaning that they are close to program
inputs. This supports our assumption that most computation
happens in the post-exploitable space. Note that we do not
need to test controllability of operations if their operands are
not controllable.

C. Case Studies

Running Web Servers on Real-world Traffic. To further
evaluate the robustness of A2C, we run the instrumented web
servers on a real-world traffic log. We obtained our institution’s
server access log from November 2015 to January 2016. The
log contains 5.6 million requests with 4.2 million unique
requests, including some suspicious requests with binary pay-
loads (about 100 of them). We also randomly inject 300 exploit
inputs to the access log. We ran three servers (apache,
nginx, and yops) with these requests. The results show that
the instrumented versions produce the same expected results
as the original versions except for the attacks. All attacks are
prevented. The throughput is only reduced by 8.83%, 7.37%,
and 5.49%, respectively.

Code Injection Through Benign Functions and Payload
Triggered Through Integer Overflow. In this case study,
we show how a payload can be injected through benign and
non-vulnerable program logic and later triggered by an integer
overflow vulnerability. Such a combination makes it difficult
for traditional defense techniques. Fig. 14 shows code snippets
of the victim program, mupdf. First, observe that the xps_
read_dir_part() function reads a file. It opens a file at
Line 455, then gets the size of file at Line 458. Later, it reads
the file and puts it into a heap buffer (part->data) at Line

462. Note that the function xps_read_dir_part() is not
vulnerable. But still, the attacker can provide a crafted xps file
that contains a malicious payload. The payload will be injected
through the normal file read in the benign function. Thus,
most existing protection schemes including CFI, DFI, ASLR,
and boundary checkers cannot prevent such injection. While
malicious payload detection methods can identify the injected
shellcode by scanning the input file at the fread function,
the attacker can use obfuscation techniques to circumvent such
detection.

To trigger the payload, the attacker exploits an integer over-
flow vulnerability. The integer overflow happens as follows.
It reads input from a file at Line 91 in lex_number().
Then the input is propagated to Line 97 where the integer
overflow occurs. The program assumes the input c is between
‘0’ to ‘9’, and converts it into an index (i). At Line 106,
the converted index is stored into buf->i. Later, the index
is used to write elements into a structure (at Lines 176-178
in pdf_repair_obj_stm()). Note that the earlier index
is propagated to variable n which is also used as an index.
This integer overflow can be leveraged to overwrite some
critical data fields such as function pointers in order to change
control flow of the program to the injected shellcode. Note
that the exploit may not be detected by address sanitizers as
the attacker can manipulate the offset n to directly overwrite
the target memory addresses that may fall into other legitimate
memory regions, without overwriting the canaries.

In contrast, A2C defeats the attack by breaking its weakest
link, which is the injected payload itself. In particular, A2C
mutates the input including the shellcode at the fread in Line
462. The original shellcode is shown in Fig. 14 (a), and the
corresponding mutated shellcode in Fig. 14 (b). Observe that
the mutated shellcode is broken and not executable.

 static int lex_number (✁) {

 ...

 91: int c = fz_read_byte(f);

 ...

 case RANGE_0_9:

 97: i = 10*i + Decode(c)

 - '0';

 ✁

106: buf->i = i;

pdf/pdf_lex.c

 static void

 pdf_repair_obj_stm (...) {

 ...

172: n = buf.i;

 ✁

 // Triggering the shellcode

176: xref->table[n].ofs = num;

177: xref->table[n].gen = i;

178: xref->table[n].stm_ofs = 0;

pdf/pdf_repair.c

(a) Injected Shellcode (b) Mutated Shellcode

 push 0x2e2e2e62

 mov edi, esp

 xor eax, eax

 ...

 ret 0x84c8

 test

 in eax, dx

 ...

Hex: c2 c8 84 84 84 23 4d 99 ...Hex: 68 62 2e 2e 2e 89 e7 33 ...

 static xps_part* xps_read_dir_part(...) {

 ✁

455: file = fopen(buf, "rb");

 ...

458: fseek(file, 0, SEEK_END);

459: size = ftell(file);

 ...

462: fread(part->data, 1, size, file); // Shellcode Injection

xps/xps_zip.c

Fig. 14. Integer Overflow in mupdf.

Note that A2C does not prevent the integer overflow. Even
through it encodes the input value at Line 91, it decodes the
value right before the overflow (at Line 97) because that is an
operation of primitive type. In other words, the attacker can

12

still exploit integer overflow vulnerabilities. However, when
the control flow of the program is redirected to the injected
shellcode, the execution crashes almost immediately as the first
instruction of the mutated shellcode is “ret 0x84c8”, which
does not have a valid return address.

One might think the attacker can exploit the integer over-
flow to direct the control flow to some buffer in the post-
exploitable space. However, as we pointed out in Section V,
the transformations performed by the subject programs are
complex enough that the attackers cannot generate plain-text
payloads in the post-exploitable space.

Preventing ROP attacks. As DEP (Data Execution Preven-
tion) becomes more and more popular, attackers now use ROP
to bypass such protection. In this case study, we show how
A2C prevents ROP attacks using an example.

 void process_font_table (...) {

 ...

331: char name[255];

 ✁

341: while (w2) {

342: tmp = word_string(w2);

343: if (tmp &&

 Decode(tmp[0]) != '\\')

344: strcat(name, tmp);

convert.c (a) Injected ROP gadgets

0x804d820 mov ebx,0x0; ret

0x804ec7d mov eax,0x806275c; ret

... ...

Address Instructions

(b) Mutated ROP gadgets

0xa2ae728a Invalid address

0xa2ae46d7 Invalid address

... ...

Address Instructions

Fig. 15. Stack Buffer Overflow in unrtf.

Fig. 15 shows unrtf which has a stack buffer overflow
vulnerability. It can be leveraged to inject a malicious payload
that allows constructing a ROP gadget chain. The program first
gets a user provided string at Line 342. Then, it compares the
string with a constant at Line 343. As it is a comparative op-
eration, A2C decodes the value, allowing proper comparison.
The buffer overflow happens when the program copies the user
provided buffer (tmp) to a local buffer name at Line 344 in
process_font_table(). Observe that the size of name
is only 255. Thus, providing a long enough input to the tmp
buffer will result in a stack overflow.

Fig. 15 (a) shows the injected ROP payload and the
corresponding gadgets. The address column shows the payload
that contains the raw addresses of the ROP gadgets. The
instructions column shows the instructions from the ROP
gadgets. Observe that they all end with a ret instruction.
These chains of instructions are essentially the ones that get
executed once the attack is launched. Fig. 15 (b) shows the
mutated payload. For demonstration purpose, we use a simple
encoding/decoding scheme even though our implementation
uses one-time-dictionary. In particular, the mutation is to xor a
value with 0xAA. Observe that all the addresses in the original
payload are encoded and point to invalid addresses. Hence, the
attack fails. Note that since A2C prevents attacks by mutating
payloads, the injection methods do not affect our protection.

Preventing English Shellcode. As a counter attack to shell-
code detection techniques, Mason et al. proposed an auto-
matic way to generate shellcode which is similar to English
prose [39]. Such technique can be used to avoid existing
shellcode identification techniques [67], [37], [45], [18].

Fig. 16 shows an example of English Shellcode presented
in [39]. As shown in the ASCII column, the shellcode is an
English statement. The corresponding assembly instructions
are listed in the first column. While we are just showing

English Shellcode and Mutated English Shellcode

 push esp

 push 0x20657265

 ...

Assembly Opcode ASCII

 54

 68 65 72 65 20

 ...

There is a

majorcenter of

economic activity, ...

 inc dl

 iret

 ...

 fe c2

 cf

 ...

No ASCII character

found

Fig. 16. English Shellcode Example.

one example, in practice attackers also use other various
shellcode obfuscation and compression techniques [38], [59]
to avoid shellcode identification. A2C mutates all untrusted
inputs including shellcodes as they are part of the inputs. The
mutated English Shellcode includes those shaded in Fig. 16.
For demonstration, we again apply the xor with 0xAA muta-
tion. Observe that the mutated shellcode is completely different
from the original shellcode. While the first instruction is exe-
cutable, it does not help attackers to achieve anything useful.
More importantly, the second instruction is iret, which can
only be executed in a kernel mode. Executing iret results
in a segmentation fault. One interesting observation is that
the first a few instructions in the mutated shellcode are often
executable. The fifth column of Table III shows the average
number of instructions executed in the mutated payload is
very small (<4). It is also important to note that such a
few (mutated) instructions do not have the same semantics
as the original malicious logic. They often immediately lead
to crashes and do not cause any damage to the system.

Buffer Overflow In Structure. AddressSanitizer [56] is an
important technique to prevent various buffer overflow attacks
including heap and stack overflows. It works by placing
canaries before and after a buffer. One of the limitations of
the technique is that it cannot handle buffer overruns within a
structure.

 void process(RECORD* p) {

1: fread(p->name, ✁);

2: printf("Name: %s\n",

 Decode(p->name));

3: p->handler(p->privilege);

Program.c

typedef struct tag_RECORD {

 char name[255];

 void (*handler)(int);

 int privilege;

} RECORD;

Program.h

Fig. 17. Buffer Overrun in Structure.

Fig. 17 shows a buffer overflow vulnerability in a structure.
Specifically, buffer name in the structure RECORD can affect
adjacent data fields including a function pointer handler.
At Line 1, it reads a file to fill the name buffer. By provid-
ing an input string longer than 255 bytes, it can overwrite
handler. Note that A2C mutates the input in fread at
Line 1, the handler is overwritten with a mutated address.
Then, the program calls printf to display the name on
the screen. As printf is an external call, A2C decodes
the input buffer name. Specifically, in our implementation
of the decoding function, when A2C decodes a buffer for
a library call, it allocates a new buffer, copies the original
encoded buffer, and then decodes it in the new buffer before
passing it. Since A2C does not decode the original buffer,
the injected malicious payload remains mutated. At Line 3,
the program calls handler. Although it is overwritten, the
function pointer no longer points to the injected shellcode.
Note that the privilege field can also be overwritten to
launch non-control data attacks [16]. A2C mitigates the attacks
by encoding the inputs from untrusted sources. As a result, the
attacker cannot control the overwritten value.

13

VII. RELATED WORK

Control-flow Integrity (CFI). Recent advances in control-
flow integrity have developed very robust systems for prevent-
ing malicious/abnormal control flows within a victim program.
These typically monitor execution to enforce pre-determined
control flow paths [44], [9], [66], [31], [73], [74], [72], [43],
[68], [40]. In contrast, A2C provides protection by corrupting
input payloads, which is a perspective orthogonal to the en-
forcement of a program’s legitimate control flow graph. There-
fore, A2C is complementary to and can be deployed alongside
CFI, e.g., to prevent exploit injection attacks that may employ
indirect calls or not violate control flow integrity [24], [29],
[15], [55], [54], [40], [19], [14].

Malicious Payloads Detection. In [67] and [37], researchers
proposed analyzing inputs to detect malicious payloads with
little runtime overhead. However, Fogla at el. [28] demon-
strated that polymorphism techniques can defeat these ap-
proaches. Dynamic analysis using emulation [46], [61] have
been proposed to uncover polymorphic payload injection at-
tacks, but they cause non-negligible performance penalty. A2C
mutates all input buffers from untrusted sources and thus is
resilient to polymorphism. It does not require emulation and
causes low overhead. Nozzle [48] proposed a novel technique
to detect heap spraying attacks at runtime. It uses runtime
interpretation and static analysis to analyze suspicious objects
in the heap. While Nozzle focuses on detecting heap spraying
on JavaScript, A2C takes a more general approach to prevent
a wider range of input injection attacks.

Randomization Approaches. Address space layout random-
ization (ASLR) is one of the most widely deployed defense
mechanism to mitigate payload injection and triggering. ASLR
randomizes the memory layout of a program when the OS
loads the binary and dynamic libraries. ASLR is already a de-
fault defense mechanism in most operating systems including
Linux, MacOS, BSD, and Windows. Address space layout per-
turbation [34] and fine-grained randomization techniques [70],
[42], [7], [22], [17], [30] have been developed to provide
higher entropy. Instruction set randomization [33], [47], [41]
aims to change the underlying instruction set to prevent
executing injected code. However, it was shown recently that
randomization could be evaded by brute-force attacks [58],
[8], memory disclosure attacks [11], [57], [36], and just-in-
time code reuse attacks [62]. In [23], researchers presented a
novel defense technique to mitigate counterfeit object-oriented
programming (COOP) attacks [54]. They randomize the layout
of the code pointer table and plant booby-traps to prevent
brute-force attacks. Compared to these techniques, A2C pro-
vides protection by working from the input perspective, which
is complementary to randomization. Data randomization [6],
[13] dynamically decrypts a buffer upon each buffer access
and encrypts it again after the access. It encrypts all buffers
including those not related to inputs. It also uses different
keys for various buffers. A2C shares a similar idea of buffer
encoding with data randomization. The differences lie in that
A2C focuses on input related buffers; it encodes only once for
each input and decodes only at the decoding frontier. As such,
A2C has relatively lower overhead. PointGuard [20] encrypts
pointer values at runtime.

Bounds Checking. Stackguard [21] inserts a secret value (ca-
nary) before each return address and frame pointer. However, it

can be defeated through information leak attacks that reveal a
canary value [49], [12]. Compile-time code analysis [69], [35]
have been proposed to detect unsafe array and pointer accesses.
However, they often generate many false positives and focus
on specific kinds of vulnerabilities. Cling [4] and AddressSan-
itizer [56] provide pointer safety to prevent exploiting pointer
related bugs such as use-after-free. However, as shown in our
case study, they can hardly handle advanced attacks [71]. In
contrast, A2C aims to break the weakest link of attacks, which
is the payload itself.

VIII. CONCLUSION

We present A2C that provides general protection against a
wide spectrum of payload injection attacks. It mutates all input
buffers from untrusted sources to break malicious payloads. To
assure the program functions correctly on legitimate inputs, it
decodes them right before they are used to produce new values.
A2C automatically identifies such places at which it needs to
decode using a novel constraint solving based approach and a
sophisticated static analysis. Our experiments on a set of real-
world programs show that A2C effectively prevents known
payload injection attacks on these programs with reasonably
low overhead (6.94%).

ACKNOWLEDGMENT
We thank the anonymous reviewers for their construc-

tive comments. This research was supported, in part, by
DARPA under contract FA8650-15-C-7562, NSF under awards
1409668 and 0845870, ONR under contract N000141410468,
and Cisco Systems under an unrestricted gift. Any opinions,
findings, and conclusions in this paper are those of the authors
only and do not necessarily reflect the views of our sponsors.

REFERENCES

[1] Exploits database by offensive security. https://www.exploit-db.com/.
[2] The llvm compiler infrastructure. http://llvm.org/.
[3] Penetration testing software. metasploit. https://www.metasploit.com/.
[4] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing

memory error exploits with wit. In S&P’08.
[5] C. Anley. Creating arbitrary shellcode in unicode expanded strings,

the “venetian” exploit. https://www.helpnetsecurity.com/dl/articles/
unicodebo.pdf, 2002.

[6] S. Bhatkar and R. Sekar. Data space randomization. In DIMVA’08.
[7] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi. Timely

rerandomization for mitigating memory disclosures. In CCS’15.
[8] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh.

Hacking blind. In S&P’14.
[9] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with

control-flow locking. In ACSAC’11.
[10] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented

programming: A new class of code-reuse attack. In ASIACCS’11.
[11] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good

instructions go bad: Generalizing return-oriented programming to risc.
In CCS’08.

[12] Bulba and Kil3r. Bypassing stackguard and stackshield. http://
phrack.org/issues/56/5.html, 2000.

[13] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro. Data
randomization. Technical Report MSR-TR-2008-120.

[14] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-
flow bending: On the effectiveness of control-flow integrity. In SEC’15.

[15] N. Carlini and D. Wagner. Rop is still dangerous: Breaking modern
defenses. In SEC’14.

[16] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data
attacks are realistic threats. In SEC’05.

14

[17] Y. Chen, Z. Wang, D. Whalley, and L. Lu. Remix: On-demand live
randomization. In CODASPY’16.

[18] R. Chinchani and E. van den Berg. A fast static analysis approach to
detect exploit code inside network flows. In RAID’05.

[19] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,
C. Liebchen, M. Qunaibit, and A.-R. Sadeghi. Losing control: On the
effectiveness of control-flow integrity under stack attacks. In CCS’15.

[20] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguardtm:
Protecting pointers from buffer overflow vulnerabilities. In SEC’03.

[21] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In SEC’98.

[22] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz. Readactor: Practical code randomization
resilient to memory disclosure. In S&P’15.

[23] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz. It’s a trap: Table
randomization and protection against function-reuse attacks. In CCS’15.

[24] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection. In SEC’14.

[25] L. De Moura and N. Bjørner. Z3: An efficient smt solver.
TACAS’08/ETAPS’08, Berlin, Heidelberg. Springer-Verlag.

[26] T. DETRISTAN, T. ULENSPIEGEL, Y. MALCOM, and V. UN-
DERDUK. Polymorphic shellcode engine using spectrum analysis.
http://phrack.org/issues/61/9.html, 2003.

[27] Y. Ding, T. Wei, T. Wang, Z. Liang, and W. Zou. Heap taichi: Exploiting
memory allocation granularity in heap-spraying attacks. In ACSAC’10.

[28] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymor-
phic blending attacks. In SEC’06.

[29] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-
tokalidis. Size does matter: Why using gadget-chain length to prevent
code-reuse attacks is hard. In SEC’14.

[30] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. Ilr:
Where’d my gadgets go? In Proceedings of the S&P’12.

[31] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch: Securing C++ virtual
calls from memory corruption attacks. In NDSS’14.

[32] K2. Admmutate documentation. http://www.ktwo.ca/ADMmutate-
0.8.4.tar.gz, 2003.

[33] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection
attacks with instruction-set randomization. In CCS’03.

[34] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space layout
permutation (aslp): Towards fine-grained randomization of commodity
software. In ACSAC’06.

[35] D. Larochelle and D. Evans. Statically detecting likely buffer overflow
vulnerabilities. In SEC’01.

[36] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee. From zygote to morula:
Fortifying weakened aslr on android. In S&P’14.

[37] Z. Liang and R. Sekar. Fast and automated generation of attack
signatures: A basis for building self-protecting servers. In CCS’05.

[38] C. Linn and S. Debray. Obfuscation of executable code to improve
resistance to static disassembly. In CCS’03.

[39] J. Mason, S. Small, F. Monrose, and G. MacManus. English shellcode.
In CCS’09.

[40] B. Niu and G. Tan. Per-input control-flow integrity. In CCS’15.

[41] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis.
Asist: architectural support for instruction set randomization. In
CCS’13.

[42] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the
gadgets: Hindering return-oriented programm ing using in-place code
randomization. In S&P’12.

[43] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent rop
exploit mitigation using indirect branch tracing. In SEC’13.

[44] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lachmund, and
T. Walter. Code pointer masking: Hardening applications against code
injection attacks. In DIMVA’11.

[45] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Compre-
hensive shellcode detection using runtime heuristics. In ACSAC’10.

[46] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Emulation-
based detection of non-self-contained polymorphic shellcode. In
RAID’07.

[47] G. Portokalidis and A. D. Keromytis. Fast and practical instruction-set
randomization for commodity systems. In ACSAC’10.

[48] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A defense against
heap-spraying code injection attacks. In SEC’09.

[49] G. Richarte et al. Four different tricks to bypass stackshield and
stackguard protection. World Wide Web, 1, 2002.

[50] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented
programming: Systems, languages, and applications. ACM Trans. Inf.
Syst. Secur., 15(1):2:1–2:34, Mar. 2012.

[51] J. Salwan. Shellcodes database for study cases. http://shell-storm.org/
shellcode/.

[52] S. Schirra. ROPgadget - Gadgets finder and auto-roper. http://shell-
storm.org/project/ROPgadget/.

[53] S. Schirra. Ropper - rop gadget finder and binary information tool.
https://scoding.de/ropper/.

[54] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz. Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications. In S&P’15.

[55] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag,
and T. Holz. Evaluating the effectiveness of current anti-rop defenses.
In RAID’14.

[56] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-
sanitizer: A fast address sanity checker. In ATC’12.

[57] F. Serna. Cve-2012-0769, the case of the perfect info leak. http://
zhodiac.hispahack.com/my-stuff/security/Flash ASLR bypass.pdf.

[58] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh.
On the effectiveness of address-space randomization. In CCS’04.

[59] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee. Impeding Malware
Analysis Using Conditional Code Obfuscation. In NDSS’08.

[60] Skylined. http://www.edup.tudelft.nl/b̃jwever/advisory iframe.html.php.
[61] K. Snow, S. Krishnan, F. Monrose, and N. Provos. Shellos: Enabling

fast detection and forensic analysis of code injection attacks. In SEC’11.
[62] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-

R. Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization. In S&P’13.

[63] M. Suenaga. Evolving shell code. Whitepaper, Symantec Security
Response, Japan, 2006.

[64] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise calling
context encoding. In ICSE’10.

[65] M. D. Team. Metasploit project. http://metasploit.com, 2006.
[66] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,

L. Lozano, and G. Pike. Enforcing forward-edge control-flow integrity
in gcc & llvm. In SEC’14.

[67] T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract
payload execution. In RAID’02.

[68] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida. Practical context-sensitive
cfi. In CCS’15.

[69] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In NDSS’00.

[70] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code. In
CCS’12.

[71] E. Wimberley. Bypassing AddressSanitizer. https://packetstormsecu-
rity.com/files/123977/Bypassing-AddressSanitizer.html.

[72] Y. Xia, Y. Liu, H. Chen, and B. Zang. Cfimon: Detecting violation of
control flow integrity using performance counters. In DSN’12.

[73] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and randomization
for binary executables. In S&P’13.

[74] M. Zhang and R. Sekar. Control flow integrity for cots binaries. In
SEC’13.

15

