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Abstract
We present a novel technique to recover robotic vehicles
(RVs) from various sensor attacks with so-called software
sensors. Specifically, our technique builds a predictive state-
space model based on the generic system identification tech-
nique. Sensor measurement prediction based on the state-
space model runs as a software backup of the corresponding
physical sensor. When physical sensors are under attacks, the
corresponding software sensors can isolate and recover the
compromised sensors individually to prevent further damage.
We apply our prototype to various sensor attacks on six RV
systems, including a real quadrotor and a rover. Our evalua-
tion results demonstrate that our technique can practically and
safely recover the vehicle from various attacks on multiple
sensors under different maneuvers, preventing crashes.

1 Introduction

Robotic Vehicles (RVs) are complex cyber-physical systems
(CPS) that continuously change their physical states based
on sensor measurements. Specifically, various sensors moni-
tor the current system’s physical states and the environment.
Based on the measurements, the control components generate
actuation signals to control the vehicle for stable operations
according to the planned behaviors. RVs, such as drones,
ground rovers, and underwater robots [2, 6, 50], utilize multi-
ple sensors of different types. For example, a gyroscope sen-
sor measures angular velocities, an accelerometer measures
linear accelerations, a GPS provides geographic position in-
formation, and a barometer measures the pressure outside the
vehicle which is used for altitude calculation. Unlike the tradi-
tional cyber attacks, attackers aiming at RVs can compromise
sensor readings through external and physical channels. Since
RVs operate based on sensors, the security of RV sensors has
become a primary requirement and challenge.

Along with the wide deployment of safety-critical RVs,
many physical sensor attacks have been reported recently. For
instance, GPS spoofing [51, 54] is a typical physical sensor

attack to deceive GPS receiver by injecting incorrect GPS
signals. Gyroscopic sensor attack on UAV systems through
sound noises [49] can disrupt attitude measurements and lead
to crashes. Attackers can manipulate the measurements of
MEMS accelerometers via analog acoustic signal injection
in a controlled manner [52]. In optical sensor spoofing [8],
attackers can acquire an implicit control channel by deceiving
the optical flow sensor of a UAV with a physically altering
ground plane. Attackers in [47] corrupt automobile’s Anti-
lock Braking System (ABS) by injecting magnetic fields to
wheel speed sensors. In [42], researchers presented remote
attacks on camera and LiDAR systems in a self-driving car by
introducing false signals with a cheap commodity hardware.
These physical sensor attacks pose new challenges because
the traditional techniques to protect software are deficient.

To defend the external attacks, many methods have been
published recently [5, 22, 26, 36, 37, 57]. However, they only
focus on attack detection rather than attack resilience, which
is not a complete solution. A canonical counter-measure for at-
tack recovery is to leverage hardware redundancy [29], where
critical components are multiplicated to provide attack re-
silience. For instance, triple module redundancy (TMR) uses
three sensors to measure the same physical properties and pro-
duces a single output by majority-voting or weighted average.
This approach requires additional cost to deploy and sustain
the redundant hardware. Additionally, an adversary can still
attack multiple sensors as all these sensors are exposed to the
same compromised physical environment.

We propose a novel software sensor recovery technique
for multi-sensor RVs to be resilient to physical sensor attack.
Instead of using duplicated hardware, our approach uses so-
called software sensors as the backup of the corresponding
physical sensors. Our method can recover when multiple sen-
sors of the same kind or different kinds are under attack. Un-
like the transitional physical control systems, the emergence
of computationally powerful CPS allows new opportunities
to deploy more complex software-based control and recov-
ery components. With these advantages, a software sensor
continuously computes and predicts the reading of the corre-



sponding physical sensor. When an attack is detected on some
physical sensor(s), the corresponding software sensor(s) allow
to isolate and replace the compromised sensors, and recover
the system from corrupted internal states to prevent serious
attack consequences (e.g., crashes and physical damages).
Since our approach is purely software-based, not requiring
any additional hardware (e.g., HW duplication and mechani-
cal shielding), it can be deployed not only at design time but
also to patch existing systems (e.g., legacy systems).

Specifically, our technique builds a precise state-space
model of the vehicle that allows us to predict its physical
states (i.e., expected physical behaviors). The model is largely
determined by the gravity, control algorithms used, and the
physical characteristics of the vehicle (e.g., motor specifica-
tion, weight and frame shape). We then construct a set of soft-
ware sensors, one for each physical sensor, by transforming
the predicted physical states (i.e. the model output) into the
appropriate sensor readings using the mathematical conver-
sion equations. In practice, the predicted sensor readings tend
to deviate from the real sensor readings due to various reasons.
Therefore, to compensate for the intrinsic errors (conversion,
model, and external errors), we further develop a number of
error correction techniques.

Software sensor readings and physical sensor readings are
continuously monitored and compared. In normal operations,
both readings are almost identical. Substantial discrepancies
indicate that the corresponding physical sensor is under attack.
The compromised sensor is hence replaced with its software
version. Note that software sensors do not interact with the
(compromised) physical environment, thus allowing the vehi-
cle to continue normal operation (for a certain time duration)
in the presence of the attacks.
Contribution. Our contributions are summarized as follows.

• We propose a novel software-based technique, software
sensors, for recovery from various physical and exter-
nal sensor attacks. This is the first work on the sensor
recovery for RVs with the software sensors.

• We address a number of prominent challenges, including
how to generate software sensors using system identifica-
tion; how to recover from individual sensor failures; and
how to improve software sensor accuracy considering
external disturbances for practical usage.

• We conduct a set of comprehensive experiments on mul-
tiple RVs, including simulated RVs and two real ones
(a quadrotor and a rover), using various kinds of attacks
on one or multiple sensors. The results show that with
low overhead, our framework can successfully recover
from all the attacks considered for all the RVs, effectively
preventing physical damage to the subject vehicles.

Adversary Model. We target physical sensor attacks that ma-
liciously corrupt sensor signals though external channels. Ad-
ditionally, we assume that the attacker can compromise multi-
ple sensors at the same time with different attack techniques,
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Figure 1: Feedback control loop with sensor redundancy

resulting in disrupted sensor readings. The state-of-the-art
attacks (Section 6) can inject both noise or sensor values in
a controlled manner. However, we assume that the attacker
does not have access to the internal states of subject RV, such
as the true sensor readings and the intended navigation plan,
thus cannot generate constant deviation (smaller than any pre-
defined threshold). We argue that this is reasonable for the
following. (1) We target physical attack channels, for exam-
ple, acoustic noise (to attack inertia sensors), under which
achieving fine-grained manipulation is difficult. (2) To ensure
the applied error is consistently smaller than the detection
threshold, the attacker needs to have precise estimation of
the RV internal sensor readings, in the 400Hz (2.5ms) time
unit, which is practically hard by observing external behav-
iors. Note that while the attacker may use external observation
and modeling to estimate RV internal sensor readings when
the RV operates normally and has a predictable navigation
plan, such estimation becomes infeasible when the navigation
plan is not predictable and the RV’s internal states have been
corrupted by the attack itself. Without precise estimation, the
injected error may exceed the threshold and will be detected
by our technique (see Section 4.3 for an example).

We do not consider traditional attacks on software or
firmware in the cyber domain since those attacks can be effec-
tively handled by existing software security techniques [7,43].
Thus, we assume that our recovery framework – running as
part of the control program – is safe against cyber attack
vectors.

2 Motivation and Background

In this section, we first introduce control loop with hardware
redundancy as background. Later, we use an example to illus-
trate the physical sensor attack and recovery with the proposed
approach. This example simulates a sensor spoofing attack on
a real quadrotor by artificially inserting malicious signal data.

2.1 Background

A common control mechanism in RVs shown in Figure 1 is
the feedback-loop control which takes system outputs (i.e.,
current physical state) as the input in the loop. The controller
adjusts its control signal to make the vehicle reach the ref-
erence state over the loop. Most RVs utilize multi-sensor
measurements to obtain a more accurate view of physical



state since a single sensor cannot provide reliable data in a
real environment (due to sensor noises, possible sensor fail-
ure, etc.). In quadrotors, multiple redundant or heterogeneous
sensors (e.g., gyroscopes, accelerometers, and GPS) enable
the controller to recognize the current physical state and the
environment, and then accordingly control motor signals for
a stable flight.

Sensor fusion [4] is a very common practice in control engi-
neering. The technique combines multi-sensor data to produce
enhanced results. Figure 1 shows typical sensor fusion with
the triple modular redundancy (TMR). A single physical prop-
erty is measured by multiple sensors, and a fusion algorithm
combines the redundant information to generate a single out-
put with high accuracy in a competitive way (e.g., voting) or
a complementary way (e.g., weighted average). Sensor fusion
is not limited to the same type of sensors. Complex sensor
fusion algorithms (e.g., extended Kalman filter) often utilize
heterogeneous sensor data to reduce uncertainty and produce
more accurate measurements. Although sensor fusion can
improve accuracy and tolerate failures of a subset of sensors
(of a specific kind), it is not effective for physical attacks. For
example, the sensor fusion with TMR utilizes the majority
voting technique in which, if any one out of the three sensors
is compromised or faulty, the other two sensors can identify
and mask the faulty one. However, if two sensors (the majority
of the sensors) are compromised at the same time, it is diffi-
cult to identify which sensors are problematic, which is the
Byzantine agreement problem [31]. In case of sensor fusion
with the weighted average technique, any single compromised
sensor can significantly degrade control performance.

2.2 Motivating Example
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Figure 2: Sequential snapshots from the video of the gyroscope
sensors attack (the full video is available at [11]).

Sensor spoofing attack [8, 30, 41, 47, 49, 51–54] is a popu-
lar physical attack on RVs. The adversaries maliciously dis-
rupt sensor measurements by perturbing the physical environ-
ment or directly compromising sensor internals with physical
means. In our example, we use a real commodity quadro-
tor, 3DR Solo. The vehicle is equipped with three Inertia
Measurement Units (IMU), each including a gyroscope, an
accelerometer, and a magnetometer. Among the different sen-
sors, we aim to disrupt multiple gyroscope readings with a
simulated acoustic sensor attack, leading to a physical crash.
In particular, the attacker intentionally injects acoustic noises
at the resonant frequency of the gyroscopes, causing the gyro-
scopes to generate erroneous angular rates. Here, we assume

that the attacker cannot access the internals of the target sys-
tem, but can know the resonant frequency by investigating the
sensors used by a similar system beforehand.

We illustrate our example in three steps: first, we show the
actual crash of the quadrotor under the example attack with
a video; second, we explain the low-level data flow compro-
mised by the attack using a code snippet; and lastly, we demon-
strate how our framework effectively recovers the quadrotor
under the attack with a graph of internal state value changes.

Figure 2 shows the video snapshots of the attack conse-
quence. During the stable flight (the first snapshot), the at-
tack, launched from the second snapshot, compromises the
gyroscope sensor measurements of the current angular rate,
corrupts the attitude, and causes a sudden increase in the at-
titude angle. Specifically, the attack corrupts the roll rate to
0.8 rad/s, and then the controller incorrectly tries to change
the roll rate to -0.8 rad/s, as it "thinks" 0.8 rad/s is the cur-
rent measurement. Subsequently, in the next snapshots, the
quadrotor under the attack turns over and crashes.

1 main_loop() {
2
3 // determines vehicle states
4 angles = read_AHRS();
5
6 // generates target values
7 targets = navigation_logic();
8
9 // generates actuation signal

10 inputs = attitude_controller(targets , angles);
11
12 // sends signals to actuators
13 motor.update(inputs);
14 }
15 read_AHRS() {
16
17 // read IMU sensor measurements
18 for(i=0; i<num_gyro; i++) {
19 gyros[i] = gyro_sensors[i] .read(); // *attack*
20
21 // *inserted code for attack recovery*
22 if(abs(soft_gyro[i] - gyros[i]) > k)
23 gyros[i] = soft_gyro[i];
24
25 // weighted sum
26 gyro += w[i] * gyros[i];
27 }
28 // return angles
29 angles = convert2angle(gyro);
30 return angles;
31 }

Figure 3: Control loop and sensor reading monitor

Next, Figure 3 shows the simplified code snippet in the
quadrotor’s control program. The function main_loop shows
the main control loop, which has a typical feedback control
loop structure [21]. Especially, read_AHRS() shows a fusion
process of gyro sensor readings. It acquires the readings of
the multiple gyro sensors via the sensor hardware interface at
line 19, and consolidates the information by weighted average
at line 26 (various algorithms may use different weights). The
data is then processed to obtain the angles (i.e., internal state
values) which are returned at line 30.

The sensor attack on the gyroscope compromises the an-
gular rate measurements at line 19. Since attitude_con-
troller() generates motor inputs based on the angles from
read_AHRS(), any compromised gyroscope reading would
disrupt the entire control loop. For example, in a stable hover-



ing operation, errors between the current and target angles are
minimal. However, the attack compromises the current angles
causing an instant increase in the errors. The controller then
generates motor input to reduce these fake errors, and conse-
quently introduces unwanted maneuvers. Since the compro-
mised sensor cannot provide the actual valid measurements,
the error accumulates over loop iterations.

Our Recovery Approach. Motivated by the sample attack,
we propose a software sensor based defense technique. We
first construct a system model that models the behaviors of the
controller, actuators, vehicle physics and dynamics. Specif-
ically, it predicts the next physical state given the system
input (i.e., reference) and the current state. Software sensors
do not interact with the physical environment such that they
are immune to physical attacks. Instead, they “measure” the
states produced by the system model. In the closed feedback
loop as shown in Figure 4, the software sensors are used as
standbys: they work in synchrony with the real sensors, and
are prepared to take over any time. The recovery switch de-
termines an attack by monitoring the difference between the
real and the software sensors measurements, and replaces the
real sensors with the corresponding software sensors in the
event of an attack. Additionally, if an attack is transient, the
switch determines when the attack ends by continuously mon-
itoring the difference, and switches back to the real sensors.
Our design is particularly suitable for handling diverse attack
scenarios, e.g., attacking one sensor, two sensors (of the same
kind), all sensors (of the same kind), and multiple sensors of
different kinds, because it detects the ones that misbehave
and replaces them with the software version. In contrast, tra-
ditional sensor fusion based fault tolerance techniques [4, 16]
(e.g., Extended Kalman Filter (EKF) [27]) rely on real physi-
cal sensors, including the compromised ones. Therefore, they
have difficulties dealing with attacks that corrupt majority
sensors of the same kind.
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Figure 4: Feedback control loop with our recovery modules

To describe how the recovery modules work, we inserted
the attack recovery code at lines 22-23 in Figure 3. The code
is placed right after the real sensors readings. At runtime, the
code checks if the difference exceeds a pre-defined threshold
k, and if so, uses the software sensor measurements instead.
The details of software sensor generation and how we distin-
guish attacks from non-deterministic environmental condition
changes will be described in Section 3.2 and Section 4.2.2.

With our recovery modules, the quadrotor can be recovered

Attack

Real measurement
Software sensor

(a) Attack without recovery

Attack
Real measurement
Software sensor
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Figure 5: Roll changes under the attack

from the attack. Figure 5 shows the changes of roll angle
(one of the attitude angles) under the attack with and with-
out the recovery modules during the same mission. The red
(star marker) and blue (circle marker) line show the real and
software sensor reading, respectively. Before the attack is
launched (green area), both are almost identical. However, af-
ter the attack, the roll angle is dramatically increased without
any recovery action in Figure 5a, whereas with the recovery
module in Figure 5b, the software sensor masks and replaces
the compromised real sensor measurement. Thus, the recovery
modules enable the quadrotor to maintain stable attitude.

Technical Challenges. We should address several prominent
technical challenges to use the approach in practice on multi-
sensor vehicles: we need to (1) efficiently generate multiple
sensor predictions to recover from multi-sensor attacks; (2)
consider intrinsic errors such as model inaccuracy and exter-
nal disturbances (wind, noises, etc.); (3) isolate the specific
sensor under attack in time not to propagate corrupted mea-
surements to the vehicle’s internal; (4) set proper recovery
parameters such as the recovery switch threshold.

3 Design
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Figure 6: Overview of our recovery framework

Figure 6 presents a high level work-flow of our proposed
recovery framework. Each kind of RV, such as quadrotor,
hexrotor, and rover, has the same system model template, for
example, a polynomial with a specific order and unknown
coefficients. The system models of different vehicles (of the
same kind) can be considered as various concrete instan-
tiations of the template, that is, polynomials with concrete
coefficients. Hence, as the first step of our technique (Sec-
tion 3.1), given a model template and operation data (i.e., state
logs) for a target RV, we leverage system identification [32],
a widely used technique to derive system models for the RV.
Intuitively, one can consider that it is a training procedure
to derive the unknown coefficients such that the model be-
haviors have minimal errors with the operation log. These



coefficients are jointly determined by the RV’s physical at-
tributes (e.g. weight and shapes), its control algorithm, and the
laws of physics. Once the system model is derived, the frame-
work constructs software sensors (Section 3.2) that operate
on model responses. Mathematically, these software sensors
are also polynomials that take the physical states predicted
by the model as input and produce the corresponding sensor
readings. For example, the framework employs the model’s
angular velocity states to predict the gyroscope sensor’s mea-
surements, thus creating a software-based gyroscope sensor;
the reading of air pressure sensor is derived from the altitude
prediction of the system model. Software sensor is an approx-
imation and has inherent errors (Section 3.3). Such errors
accumulate over time (drifting). Hence, we synchronize the
predicted states with the real states periodically. Also, our
recovery switch utilizes the historical (i.e., accumulated) er-
rors to prevent false alarms and to limit the impact of stealthy
attacks by using a small time window. In the next step, we
determine the appropriate time window size. The window size
is RV specific and hence requires analysis. In addition, we
determine the threshold for the recovery switch, which is RV
specific and sensor specific. Finally, the framework patches
the original control program by inserting the recovery code
(Section 3.4) right after sensor reading acquisition.

3.1 System Model Generation

Operation Data Pre-processing. To generate a system
model, i.e., a mathematical model reflecting RV’s behavior,
we first collect a large corpus of input and output data of the
target RV under normal operations; where inputs are the tar-
get states, and outputs are the perceived states for the given
inputs over time. For the derivation of accurate model, we
collect and pre-process the data as follows: First, the data
is collected under different maneuvers to appropriately cap-
ture various control properties and dynamics. Our mission
generator produces random missions systematically based on
Mavlink [35] commands. However, since we constrain the
model with a template known a priori, the amount of data
needed by our approach is much less than an ML-based learn-
ing approach [26,46] – only those involved in the template are
needed. Second, the data is collected at a high sampling rate
to adequately reflect the highly reactive behavior of the RV to
the surrounding physical environment. However, as the log
system uses substantial system resources for saving values
to memory (e.g., flash card or disk), the typical log update
rates are lower than the control loop frequency with a limited
number of variables. Specifically, various RV components
have different update frequencies - e.g., 400Hz sampling rate
for critical sensors, 100Hz sampling rate for non-critical sen-
sors and RC modules, and 10Hz update rate for the RV’s own
log module. As such, aligning these different data streams
is a prominent challenge. To address the problem, we con-
vert various data streams to the same target frequency us-

Σ Controller
-

Reference
Actuators

Disturbance

+

Sensor Fusion

Signal

System Model

Sensors

x(t)

y(t)

u(t)

Figure 7: System model in closed loop

ing a resampling technique. It interpolates new data points
within the range of existing sample points by minimizing
overall curvature, resulting in a smooth line that passes the
existing samples. Here, we use spline interpolation, to avoid
Runges’ phenomenon [3] which causes oscillation in high
degree polynomials. Offline resampling enables us to obtain
high frequency data without additional runtime overhead.
Model Construction. The template of an RV’s system model
consists of the state and output equations, i.e., Eq. (1) and
Eq. (2), respectively:

x′ = Ax(t)+Bu(t) (1)
y(t) =Cx(t)+Du(t) (2)

where u(t) is system input (i.e., the target state as shown in
Figure 7), and y(t) is system output. Output y(t) is measured
by sensors. The model specifies how the physical states x(t)
of the system respond to external inputs and control signals
with the underlying control algorithm and system dynamics.
As shown in Figure 7, the system model (in the blue box)
can be considered a counterpart of the combination of control
algorithm, actuators, and vehicle dynamics (in the red box).
We leverage the system identification (SI) technique [32] for
deriving the system model, which is widely used in different
applications [5, 56]. Given the model template (Eq. (1), (2))
and a large set of collected operation data, SI instantiates the
A, B, C, D matrices so that the resulting equations produce the
best fit for the data. We use the SI Toolbox by MATLAB [34].
Note that the system model is not a software sensor. The
output of the model should be accordingly converted to the
individual sensors with our on-the-fly operation and error
correction technique.
Example. For a quadrotor system, we can generate the models
for individual state variables, defined by the following:

x =
[
x y z φ θ ψ ẋ ẏ ż p q r

]
(3)

where [x y z] is the position vector, [φ θ ψ] is the attitude an-
gles (roll, pitch, yaw), [ẋ ẏ ż] is the vehicle velocity, and [p q r]
is the vehicle angular velocity. For each variable, we first de-
termine the state and output template equations. Specifically,
we use a discrete-time state-space model template, encoding a
PID controller and dynamics equations known a priori for the
family of the subject RV. Then, for each variable, we specify
a model order (i.e., the degree of polynomial equations). We
then employ SI to instantiate the unknown coefficients of
the template using an iterative prediction error minimization



algorithm [32]. SI in our technique is not limited to the linear
state-space modeling. A non-linear model can also be derived
from the known template. However, for our purpose (e.g.,
rigid body RVs), the linear-model is sufficient to approximate
the actual higher-order close-loop dynamic, since the domi-
nating system dynamic is a second-order system. Even for an
advanced non-linear control algorithm, the control effort is
mainly from the linear portion, namely proportion, derivative,
and integral [24, 55].

We note that our model construction is generic, since the
same model template can be used to instantiate the models for
a family of vehicles with a similar physical structure. Besides,
our methodology is efficient. Given the profile data and known
model template, SI can optimize the coefficients and derive
a state-space model that accurately predicts the next states
with reasonable computation time (Section 4.2). Our model
construction is different from most SI applications in control
systems, which often focus on modeling the vehicle dynamics,
whereas ours models both dynamics and control algorithm.

3.2 Software Sensor Construction

Software sensor is a software-based virtual sensor which gen-
erates the prediction of the corresponding real sensor mea-
surement. It predicts real sensor reading based on the system
model output, i.e., the predicted new physical state. Since
the physical state prediction is completely model-based, soft-
ware sensors are independent of real sensor measurements
that are vulnerable to physical attacks. Specifically, at run-
time, software sensor readings are compared with real sensor
measurements. Once an attack is detected on some physical
sensor (i.e., its real measurement differs significantly from
the predicted one), the corresponding software sensor is used
to replace the real one. An RV often has many kinds of phys-
ical sensors. Their software version may require non-trivial
derivation from the system model outputs. In the following,
we explain the mathematical conversions entailed by software
sensors.

Conversion Operation. We provide the conversion opera-
tions for various sensors (accelerometer, gyroscope, barome-
ter, magnetometer, GPS).

An accelerometer measures linear acceleration of the vehi-
cle. However, the outputs of our example model contain only
12 states that do not directly include acceleration information.
Therefore, a conversion operation (Eq. (4)) is required.

a(t) = ck
v(t)− v(t− k)

k ·∆t
(4)

where v is the velocity, ∆t is the sampling time interval (tempo-
ral distance between two samples), ck is a constant coefficient
and k is the number of equidistant sample points; k is usu-
ally much larger than 1 to tolerate the noise induced by high
frequency sampling.

A gyroscope measures angular velocities which are critical
in maintaining stable movement, especially for aerial vehi-
cles. To obtain accurate measurements, the gyroscope in IMU
operates with a high sampling rate. Other sensors further help
to correct gyroscope sensor errors to estimate accurate orien-
tation state (i.e., attitude angles). Gyroscope intrinsically has
drift error over time due to an integration operation over angu-
lar velocities for obtaining angles. In the recoverability test of
our approach under the different combinations of attacks on
multiple sensors (see Section 4.2.2), gyroscope sensor is the
most sensitive and requires accurate prediction for recovery.
In this case, it turns out that using software gyroscope alone is
not sufficient (leading to reduced stability and operation time)
when all the physical gyros are compromised. As such, we
introduce a compensation approach to improve accuracy by
leveraging other types of real sensors. The details are shown
in Section 3.3.

A barometer measures atmospheric pressure, which is nec-
essary to determine altitude. We use Eq. (5) to calculate air
pressure from altitude (position z in the system model states).

Ph = P0 · exp
[
−g0 ·M · (z−h0)

R ·T0

]
(5)

where P0 is the base air pressure (Pa), g0 is the gravitational
acceleration (9.87m/s2), M is the molar mass of Earth’s air
(0.02896kg/mol), h0 is the base altitude, R is the universal
gas constant (8.3143N ·m/mol ·K), T0 is the base temperature
(K), and z is the current altitude from the model states.

A magnetometer, also known as compass, measures the
strength of the Earth’s magnetic fields in 3-axis, which is used
to calculate orientation (heading) information. The following
equation shows the transformation of the magnetic fields to
orientation status (i.e., the heading direction of the RV):

H = atan2(−my · cosφ+mz · sinφ,

mx · cosθ+my · sinθ · sinφ+mz · sinθ · cosφ)
(6)

where H is the heading direction yaw, and mx,my,mz are
the magnetic field measurements along each axis. Control
systems do not directly use the magnetic field measurements,
but rather rely on the extracted orientation. Therefore, instead
of converting the system model responses to raw magnetic
field sensor measurements, we directly use the orientation
states from the system model.

Global Position System (GPS) measures geometric posi-
tions and velocities which collectively enhance the position
and attitude estimation along with other sensors. GPS mea-
surements can be directly acquired from the system model.
Coordinate System Transformation. Based on the system
model responses and conversion equations, we can approxi-
mate sensor measurements. Note that internal state variables
and sensor measurements may be aligned with different refer-
ence frames. Intuitively, each frame can be considered a dif-
ferent coordinate system. Information can be exchanged/ag-
gregated only after they are projected to the same coordinate



system [33]. Hence during software sensor conversion, we
have to perform frame canonicalization. Specifically, for an
RV with a rigid body, we commonly use different reference
frames for describing its position and orientation (i.e., pose).
The inertial and body frames are used to provide the pose
in the global and local coordinate systems, respectively. The
inertial frame is an earth-fixed frame, whereas the body frame
is aligned with the vehicle’s body (hence the sensors). The
sensor measurements are usually related to the body frame
where the sensors are attached to, and must be converted from
the body frame to the inertial frame and vice versa. Frame
conversion is accomplished by multiplying with constant con-
version matrices. The detailed equations are in Appendix A.

3.3 Error Correction
Software sensors aim to closely predict real sensor measure-
ments. However, the errors between software and real sensors
are intrinsic for the following reasons: (1) the conversion
(from model states to sensor readings) introduces conversion
errors, (2) the system model provides only an approximation
of the real states and hence introduces model errors over time,
(3) external disturbances and noises affect the accuracy of
model prediction, which introduce external errors.

Obtaining an accurate prediction model - thus avoiding
the above errors - through precise modeling of complex real-
world effects for a specific system is neither practical nor
generic. Instead, we choose to tolerate model inaccuracies
through integrating additional error correction techniques to
compensate for the errors. Note that our recovery does not
aim to replace the real sensors permanently when the attack is
continuous, but rather aims to isolate the compromised sensor
and provide the needed feedback to the control loop for a
certain time duration so that we can ensure continuous stable
operation for some time without catastrophic consequences
(e.g., immediate crashes) or take an appropriate emergency
action (e.g. safe landing).

(a) Raw measurement (b) Filtered measurement
Figure 8: Raw and filtered acceleration measurements with software
sensor output

Conversion Errors. Although the concept of comparing soft-
ware sensor readings and real readings is straightforward, di-
rect comparison is problematic. Specifically, on the software
sensor side, higher-order state variables (e.g, acceleration)
may contain noise at high-frequency. The conversion process
introduces additional errors. As such, directly comparing such
software sensor readings with the real ones leads to numer-

ous false alarms. To address the problem, we leverage error
reduction techniques [40]. Specifically, to mitigate output in-
accuracy caused by numerical differentiation, we can use a
simple finite differentiation method like Eq. (4). However,
with this method, the output tends to be close to zero in the
presence of high frequency noise. To tackle this, we imple-
ment a smooth noise-robust differentiator that provides noise
suppression [25].

On the real sensor side, raw measurements have various
kinds of errors, such as noise, bias, and time lags. Figure 8a
shows that a highly fluctuating raw signal is not ideal for
comparison with the software sensor signal. Therefore, we
smooth it out with a basic filter (see Figure 8b). Specifically,
we apply the low-pass filter [40] which is a standard filter to
attenuate high frequencies with a pre-selected cutoff.
Model Errors. The system model approximates the real RV
states. Such approximation contains intrinsic model error.
This is because the model is constructed from a universal tem-
plate (for a family of vehicles), which does not describe the
details and nuances of a concrete RV. In addition, the model
assumes a simple linear PID controller whereas real RVs may
use non-linear control algorithms. To mitigate intrinsic model
errors, we introduce periodic synchronization and error reset.
Although model errors are marginal at any time instance, they
tend to aggregate overtime, namely prediction drift. Thus,
errors should be corrected periodically.

Specifically, our solution regularly resets software sensor er-
rors, by synchronizing with the real sensor readings to remove
prediction drift during normal operations. To reset errors, we
partition the entire operation duration to small time windows
of a fixed duration and synchronize the software sensor read-
ings with the real ones at the start of each window. Note that
the synchronized readings are then fed to the system model,
eliminating errors in the predicted system states.
Recovery Parameters. We select the recovery parameters
(i.e., window sizes and recovery thresholds) systematically.
The window size (N) for historical error is an important param-
eter. If N is too large, there can be a significant accumulation
of the error which could cause false alarms. Conversely, if
N is too small, the synchronization of the software sensors
with the real sensors will be so frequent that it would lead
to false negatives. Moreover, the conversion might introduce
a small delay in the generation of software sensor measure-
ment, causing it to not align with the real sensor. Therefore,
to achieve the measurement synchronization at correct time-
steps, N should be more than a potential time-displacement
between the software and real sensor signals. We choose N to
be the maximum time-displacement computed from the large
set of operation data using the dynamic time-warping algo-
rithm [45] that computes the optimal alignment of two data
sequences. Once the window size is determined, we calculate
the maximum error between two signals within each window
in the large set of operation data. We select the threshold
T = emax +m, where emax is the maximum accumulated error



and m is a margin parameter. For example in the 3DR Solo
quadrotor, the main control loop is invoked at every 2.5ms and
we use the 575ms (i.e., 230 loop counts) as the window size
which is chosen as described above. We evaluate the effect of
different recovery parameters in Section 4.2.

Model PredictionNext Real StateCurrent State

(a) Hovering with no wind

wind wind

Model PredictionNext Real StateCurrent State

(b) Hovering with wind

Figure 9: External force and external error (state discrepancy)

External Errors. So far, our technique does not model exter-
nal forces that may introduce errors. For example, when the
wind speed is 5 mph west, it introduces external forces that
move the aerial vehicle to the east. To adapt software sensors
to external disturbances, we calculate an estimation of exter-
nal force by measuring errors within the previous window.
The key observation is that external forces are likely static
across two consecutive windows in practice as long as the
wind is not drastically changing. Specifically, the time unit is
400Hz (2.5ms), and the window is 2Hz (500ms) less. Within
0.5s, the forces are highly likely unchanged.

Based on our observation, we calculate the average error by
comparing the real state and model prediction within each win-
dow. Figure 9 illustrates a simple external error. The quadro-
tor maintains a stable attitude during hovering. Without wind
(a), the real next states and model prediction are the same
since both cases are affected only by thrust force (the blue
up-arrow). However, with the wind (b), to maintain a stable
state without tilting, the controller increases the right thrust (in
red) such that the drone does not tilt right, whereas the model
(without the wind force) thinks the vehicle tilts left with the
increased right thrust. We use the average error from the pre-
vious window as an estimate of external forces in the next
window. The correction result can be found in Section 4.2.2.
Supplementary Compensation. Certain sensor types and us-
age scenarios require very accurate measurements. As such,
using software sensors alone may not be sufficient, especially
for lengthy operations. To increase an accuracy of these spe-
cial sensors and to extend the operation time under the recov-
ery mode, we employ additional error correction techniques.
Specifically, we leverage other types of sensors - less sensitive
ones - to reduce the estimation errors. Under this approach, we
can provide real sensor readings in model prediction. Since
model prediction is based on the model and real input, the
real sensor measurement (converted from different sensors)
would contain more realistic feedback with real disturbances
factored in. We present an example of this approach that
estimates angle status from the accelerometer and magne-
tometer (where angle status is typically measured by gyro)
in Appendix B. Note that this compensation approach is not

Algorithm 1 Runtime Recovery Monitoring
1: u control input of the real vehicle
2: m sensor measurement
3: x control states of the real vehicle
4:
5: procedure RECOVERYMONITOR(u, m)
6: y←C · x+D ·u . calculates model response
7: x← A · x+B ·u
8: m← f ilter(m)
9: ms← convert(y)

10: t ++
11: if !recovery_mode && t > window then . checkpoint
12: t← 0
13: r← 0
14: e← error_estimation(r,m,ms)
15: ms = m
16: end if
17: ms← ms− e . error compensation
18: r← r+ |m−ms|
19: if r > Ton then . checks residual
20: recovery_mode← true
21: sa f e_count← 0
22: end if
23: if recovery_mode then
24: m← ms . recovers sensor
25: if r < To f f then
26: sa f e_count ++
27: end if
28: if sa f e_count > K then . switches back
29: recovery_mode← f alse
30: end if
31: recovery_action() . optional action
32: end if
33: end procedure

necessary for majority of the sensors. In most cases, using
our software sensors for recovery - without other real sensors
- is sufficient. In our evaluation (Section 4.2.2), among all the
studied scenarios, we leverage this technique only when all
the gyros are compromised at the same time, which is rare.

3.4 Recovery Monitoring

Algorithm 1 describes our proposed recovery procedure. The
recovery_monitor() function is inserted right after the sen-
sor reading code in the main control loop. It takes runtime
inputs and actual sensor measurements as the parameters. It
then computes the predicted new state (x) and output (y) from
the previously predicted states (line 6 and 7). The real sensor
measurements (m) are first filtered to attenuate noises (line
8). The model output is then converted into sensor predic-
tion (ms) according to the sensor type (line 9). In lines 11-16,
when the current time is a checkpoint, that is, the start of a
new window, the error (e) is calculated using the function
error_estimation() that estimates the model and external
error (see Section 3.3). Error compensation is applied to the
sensor prediction within the window (line 17). At line 18, the
cumulative difference (residual r) is computed by comparing
the values with the real measurement. If the difference ex-
ceeds the recovery threshold Ton, then it changes to recovery
mode and starts new sa f e_count (line 19-22). In the recovery
mode, the real sensor measurement (m) is replaced by the
sensor prediction (ms) (line 24). At the same time, the differ-
ence is continuously checked by the recovery-off threshold
To f f (usually, To f f < Ton) and when the difference is smaller



than the threshold, the sa f e_count is increased (lines 25-27).
When the difference is below the threshold for more than K
times, we resume using the real sensors, assuming the attack
is over (lines 28-30). If there is predefined recovery action,
we trigger it through calling the function recovery_action.

4 Evaluation

We have developed a prototype that includes a mission gen-
erator based on Mavlink [35], a customized log module us-
ing Dataflash log system, and a system model construction
component implemented in Matlab. The recovery module is
implemented in C/C++ and includes the software sensors,
recovery switch, error correction modules (i.e., differentia-
tor, low-pass filter and supplementary compensation). The
model validation and parameter selection components using
the profile data are implemented in Matlab. Additionally, we
implemented attack modules to simulate physical sensor at-
tacks that maliciously modify the sensor measurements via a
remote trigger at runtime.

4.1 Evaluation Setting
We evaluate our framework with both simulated and real-
world RVs, including quadrotor, hexarotor, and rover. Table 1
shows the subject vehicles. We first evaluate the effective-
ness of our technique under various simulated environmental
conditions, since it is difficult to realize different wind ef-
fects/conditions in real-world. We then confirm the results
with real vehicles including a 3DR Solo quadrotor and an
Erle-Rover in real-world conditions.

Table 1: Subject Vehicles in Evaluation

Type Model Controller Software Number of Sensors
G A M B P

Quadrotor APM SITL ArduCopter 3.4 2 2 1 1 1
Hexacopter APM SITL ArduCopter 3.6 2 2 1 1 1

Rover APM SITL APMrover2 2.5 2 2 1 1 1
Quadrotor Erle-Copter ArduCopter 3.4 2 2 1 1 1

Rover Erle-Rover† APMrover2 3.2 1 1 2 1 1
Quadrotor 3DR Solo† APM:solo 1.3.1 3 3 3 2 1

* G: gyroscope, A: accelerometer, M: magnetometer, B: barometer, P: GPS
† Real Vehicles

Real Testbed. Our real testbed consists of two commodity
RVs: a 3DR Solo [1] and an Erle-Rover [18]. 3DR Solo is a
typical commercial quadrotor that leverages heterogeneous
and redundant sensors for flight stability. The aerial vehicle is
highly dynamic and can be easily affected by environmental
factors. The 3DR Solo system is implemented in Pixhawk
2 from the open-source autopilot project Pixhawk [44], and
uses APM:Copter, an open-source flight controller based on
the MAVlink protocol and part of the ArduPilot project [2].
Erle-Rover is equipped with various sensors and is a represen-
tative ground RV. Erle-Rover is implemented with Erle-Brain
3, a linux-based system provided by Erle Robotics. We use
the open-source control software APMrover 2 for the rover.
Table 2 lists the sensors in 3DR Solo and Erle-Rover. 3DR

has 12 sensors and the rover has 6. Note that many sensors
are replicated with different hardware to avoid the same type
of failures. For example, 3DR has three gyroscope sensors
manufactured by different vendors. To compromise the en-
tire set of sensors of the same type, the attacker should have
different attack techniques.
Attack and Recovery Setting. To generate the physical sen-
sor attacks discussed earlier (See Section 1), we insert attack
modules into the firmware. Since it is difficult to implement
the actual hardware attacks which require special devices, we
simulate the same effects with the attack modules - but the
actual attack does not access internals. Specifically, we add a
piece of malicious code into the sensor interface that transmits
the sensor measurements to the main closed control loop. The
attacks modify sensor measurements (through attack code)
to mimic the effect of real "controlled attacks" that control
sensor readings (e.g, a sinusoidal wave, random or selected
values). Moreover, we consider continuous attacks rather than
instantaneous attacks since temporary attacks can be easily
recovered by our method. We map Mavlink commands to var-
ious attack types to remotely trigger via the ground control.

We say recovery is successful, when after an attack is
launched, the technique detects it and triggers the recovery
logic to ensure the current states are within a certain error
bound of the expected states for a certain period of time:

Rsucc := |Yt − Ȳt | ≤ ε, t ∈ [1...k] (7)

where Yt is the real output, Ȳt is prediction, ε is the error
margin, t is the timestamp in the recovery mode, and k is
the maximum time to decide recovery success. For example,
ε = 3 and k = 10 indicate that a RV performs missions within
3 meters error for 10 seconds under the recovery mode.

Note that our recovery technique does not consider the
previous maneuvers (at t ≤ 0) since our software sensors
accurately predict the real measurements in the "various ma-
neuvers" (Figure 12). As long as recovery starts with the
accurate initial states via software sensors, subsequent sensor
feedbacks are precise and the control loop can obviously con-
trol the vehicle to stable states and recover. Also, our goal is
to prevent immediate crash and provide the transition time for
emergency operation (e.g., manual mode), not to replace the
compromised sensor permanently. Therefore, after recovery
mode on, the vehicle would conduct stable operation (e.g.,
hovering) before changing to the emergency operation.

4.2 Experiments and Results
4.2.1 Efficiency

In terms of the space overhead, we measure the firmware size
before and after our recovery code is inserted. For the runtime
overhead, we compare the execution time of the main control
loop before and after. Specifically, we first measure the (space
and runtime) cost of the original code as a baseline, which



Table 2: Sensors in 3DR Solo quadrotor and Erle-Rover
Vehicle Sensors Manufacturer Model Location Measurement Data Type Frequency

3DR Solo

Gyroscope1 InvenSense MPU6000 Pixhawk 2 (onboard) Angular Rate Angular Motion 400Hz
Gyroscope2 InvenSense MPU6000 Pixhawk 2 Angular Rate Angular Motion 400Hz
Gyroscope3 STMicroelectronics L3GD20 Pixhawk 2 Angular Rate Angular Motion 400Hz

Accelerometer1 Measurement Specialties MPU6000 Pixhawk 2 Acceleration Linear Motion 400Hz
Accelerometer2 InvenSense MPU6000 Pixhawk 2 Acceleration Linear Motion 400Hz
Accelerometer3 STMicroelectronics LSM303D Pixhawk 2 Acceleration Linear Motion 400Hz
Magnetometer1 Honeywell HMC 5983 Pixhawk 2 Magnetic Field Angular Position 100Hz
Magnetometer2 STMicroelectronics LSM303D Pixhawk 2 Magnetic Field Angular Position 100Hz
Magnetometer3 Honeywell HMC 5983 Body (Leg) Magnetic Field Angular Position 100Hz

Barometer1 Measurement Specialties MS5611 Pixhawk 2 Air Pressure Linear Position 50Hz
Barometer2 Measurement Specialties MS5611 Pixhawk 2 Air Pressure Linear Position 50Hz

GPS u-blox NEO-7M Body (Head) Position Linear Position 50Hz

Erle-Rover

Gyroscope Erle Robotics Erle-Brain Erle-Brain 3 (onboard) Angular Rate Angular Motion 50 Hz
Gravity Sensor Erle Robotics Erle-Brain Erle-Brain 3 (onboard) Acceleration Linear Motion 50 Hz

Compass1 Erle Robotics Erle-Brain Erle-Brain 3 (onboard) Magnetic Field Angular Position 10 Hz
Compass2 u-blox Neo-M8N External (roof) Magnetic Field Angular Position 10 Hz

Pressure Sensor Erle Robotics Erle-Brain Erle-Brain 3 (onboard) Air Pressure Linear Position 10 Hz
GPS u-blox Neo-M8N External (roof) Position Linear Position 50 Hz

does not include the recovery code. Then, for each sensor, we
insert the recovery code including the required libraries that
correspond to the sensor (e.g., filters and utility functions)
and measure the overhead. Finally, we insert all the recovery
code for all sensors to obtain the total overhead (for all the
simulated and real RVs).

Figure 10: Space and Runtime overhead

Space Overhead. Unlike traditional computing systems, RVs
usually have limited memory space. As such, code size is an
important performance factor. As shown in Figure 10, the
increase of code size (i.e., additional firmware size needed)
incurred by our recovery modules is marginal. The space
overhead is at most 1.3% when all software sensors are loaded
and less than 0.7% for individual sensors. Note that some
code pieces are shared across software sensors. The simulated
vehicles have negligible overhead since the executables are
relatively larger than those of the real vehicles.
Runtime Overhead. We measure the average per-iteration
execution time of the main loop which includes various con-
trol functions and auxiliary tasks. In ArduCopter and APM-
rover2, the system loop execution frequency is 400HZ and
50Hz respectively. Every 2.5ms or 20ms, the scheduler exe-
cutes the control functions, and then schedules auxiliary tasks
using the remaining time in the epoch. Basically, all the tasks
should be completed within the hard deadline (i.e., 2.5ms or
20ms). Figure 10 shows the results. The runtime overhead
introduced by the recovery module for single sensor recovery
is at most 6.9%, whereas, for multiple sensor recovery, the
total overhead is at most 8.8%. We also consider the CPU
utilization rate (for real vehicles), which is the iteration exe-
cution time over the hard deadline. For the 3DR Solo, the rate

(a) GPS sensor (positon E) (b) Barometer (pressure)

(c) Gyroscope (roll rate) (d) Magnetometer (normalized)

Figure 11: Sensor prediction

increases from 63.32% to at most 67.68% (i.e., by 4.36%)
for single sensor recovery, and to 68.88% (i.e., by 5.56%)
for multiple sensor recovery. For the Erle-rover, the rate in-
creases from 26.7% to at most 27.8% (i.e., by 0.9%), and to
28.4% (i.e., by 1.7%) for single and multiple sensor recovery,
respectively. Note that the observed overhead does not im-
pact normal operations, as the per-iteration runtime does not
exceed the hard deadline. Real recovery cases in Section 4.3
demonstrate that our technique is practically effective.

4.2.2 Effectiveness

We evaluate effectiveness as follows. (1) We first show soft-
ware sensors can precisely predict real sensor measurements
under various maneuvers; (2) we show that the error correc-
tion techniques can effectively attenuate the prediction errors;
(3) we demonstrate that parameter selection is effective; (4)
we show that our framework can successfully recover from
multiple attacks with real vehicles in real environments; (5)
last, we further evaluate our technique under various environ-
mental conditions and attack scales.

Software Sensors. Figure 11 shows how closely software
sensors predict (blue lines) the real readings (red lines) in
the various maneuvers of 3DR Solo. The figures for other



systems are similar and hence omitted. It can be observed
that there are errors (e.g. drift and external error) between the
predictions and the real measurements, which we will remove
using the error correction techniques demonstrated below.

(a) Roll prediction and accumulated errors without correction

(b) Roll prediction and error correction with synchronization

Figure 12: Drift correction with synchronization and error reset

Error Corrections. Figure 12 shows the drift in the roll angle
prediction before and after error correction. We measure the
roll value and the prediction error during a real flight of the
quadrotor (left of (a)). As shown in (b), at each window start,
the initial state is synchronized, and the accumulated error is
reset. As such, the accumulated error is significantly reduced
(right of (b)). In this experiment, we used 1.0s window size
with the main sampling rate Ts = 2.5ms. The results for other
sensors and vehicles are similar.

wnwn+1

(a) Constant wind

Dynamic wind

(b) Dynamic wind
Figure 13: External force (wind) corrections for different winds

Figure 13 shows the external force estimation and correc-
tion for when there is wind. Here, a simulated APM quadrotor
is flying north. We use a simulated RV as we need to create
different windy conditions. First, we generate an artificial
wind towards the south with a constant velocity 29mph (i.e.,
a strong breeze in Beaufort scale 6). As the wind pushes the
vehicle to the opposite direction, the real acceleration mea-
surement is lower than the software sensor which does not
model the wind. We correct this external error in software
sensor by subtracting the average error in a window from the
following window predictions (see Figure 13a). Similarly, we
present the error correction under a dynamic wind - composed
of randomly generated wind portions with a random selection
of speed ([10...30]mph), direction (N,S,E,W) and the portion
duration ([2..10]s) - in Figure 13b. Observe that software

sensors can produce accurate predictions after correction.

Selected Parameter

(a) False positives rates

Selected Parameter

(b) False negative rates

Figure 14: Different recovery parameters and FP/FN rates

Parameter Selection We study the effect of recovery param-
eters (i.e., window size and recovery switch threshold) on
the recovery mode activation. We generate 20 missions (i.e.,
a sequence of primitive moves like straight fly, turns, etc.)
with no attack, to measure the FP rates (i.e. how many times
recovery is activated), and 20 missions with the injected at-
tacks to measure the FN rates (i.e. how many times recovery
activation is missed). Figure 14 shows the results for different
parameter values. Observe that, (1) for a given window, the
larger threshold raises less FPs and more FNs; (2) for a given
threshold, the larger window causes more FPs and less FNs.
Also note that the values chosen by our parameter selection
strategy (see Section 3.3) lead to zero FPs and FNs.

Table 3: Attack combination and recovery result
Test# GPS Barometer 1 2 Gyroscope 1 2 3 Recovered

C1 Compromised Benign Benign X
C2 Benign Compromised Benign X
C3 Benign Benign Compromised X†

C4 Compromised Compromised Benign X
C5 Compromised Benign Compromised X†

C6 Compromised Compromised Compromised X†

X: success, †Supplementary Compensation Applied

attack

(a) without compensation

attack

(b) with compensation
Figure 15: all-gyroscopes attack recovery and compensation

Multiple Sensor Attacks and Results. We perform combi-
natorial attacks on heterogeneous sensors of 3DR. For the
same type of sensors, we attack the entire set of sensors at
the same time. Table 3 shows the results. In this experiment,
we observe that the sensors have different sensitivity and im-
portance. When GPS and Barometers are compromised, we
can recover the vehicle. However, when all gyros are attacked
(C3, C5, and C6), the recovery duration was short (3 sec).

To further investigate the gyroscope recovery case, we per-
form different attacks on the available gyroscope sensors.
Table 4 shows the results and the comparison with a tradi-
tional fail-safe mechanism (i.e., TMR). We can recover from



Table 4: Attack on attitude (gyro) sensors and recovery result

Test# Gyroscope 1 Gyroscope 2 Gyroscope 3 Proposed TMR

T1 Compromised Benign Benign X X
T2 Compromised Compromised Benign X 7

T3 Compromised Compromised Compromised X1 7

X: success, 7: fail to recover, 1: recovery with supplementary compensation

the attack on a single gyro (Test T1) and the attack on the ma-
jority gyros (more than half – Test T2) without supplementary
compensation. When all gyro sensors are compromised, we
can recover from the attack with the complementary approach,
leading to increased recovery duration. In comparison, the
traditional fail-safe mechanism fails to recover when the ma-
jority of gyro sensors are compromised. In general, some RV
systems are equipped with failsafe modes (e.g., emergency
landing or manual mode). However, those approaches still rely
on the remaining benign sensors, or otherwise they undergo
immediate crashes even with the failsafe mode.

To increase the recovery duration, we leverage our com-
pensation approach described in Section 3.3. Specifically, to
compensate for the accuracy loss, the gyroscope readings are
combined with readings from other types of sensors. Figure 15
shows that the internal state (i.e., roll rate) changes during
recovery without and with compensation. The red curve rep-
resents the actual physical state (ground truth roll rate) of the
vehicle in real-world. Under attack, the software sensor (blue
curve) replaces the real measurement (black curve). However,
without compensation, a small error in the software sensor pre-
diction accumulates over time and causes the actual roll rate
to oscillate significantly after a few seconds (see Figure 15a).
Note that our recovery technique prevents an immediate crash
even without compensation applied. Our compensation ap-
proach increases the software sensor accuracy by adding the
supplementary measurements, leading to a more stable roll
rate and a longer recovery duration (see Figure 15b). The
video is available at [12]. More discussion of the recovery
cases can be found in Section 4.3.

Threshold

(a) Wind Effects

Threshold

(b) Attack Scale
Figure 16: Errors under different wind speeds and attack scale

Wind Effects and Attack Scale We evaluate the error (i.e.,
the difference between software and real sensors) under differ-
ent wind speeds and attack scales while the vehicle performs
missions including straight flies and turns. We also measure
the duration of stable operation after recovery, called the re-
covery duration. Specifically, we artificially inject wind in the
simulation with different speeds from 0 to 35mph. For the
different attack scales, we change the maliciously injected roll
rate from 5 to 90deg/s. To measure the recovery duration, we

find the value of k in Eq. (7) with ε = 3 and maximum t = 20.
Figure 16a shows that the error (brown area) is small with
small (0-7mph) and moderate (8-15mph) wind, and signifi-
cantly increases with strong wind (above 20mph). Observe
that the errors are lower than our recovery threshold (=38)
with in most case. Only the very strong wind (above 27mph
- a gale in Beaufort scale) generates errors exceeding the
threshold. However, commodity drones are recommended
not to fly in wind speed exceeding 22mph. And, Figure 16b
shows the error during the gyroscope attack. Observe that it
is significantly larger than the recovery threshold (=38) for
all the attack scales. The magnitudes of errors in the two
figures demonstrate that the our selected threshold value can
distinguish between wind and attack. Lastly, as shown by the
blue curve in Figure 16a, the recovery duration is at least 10
seconds with small/moderate wind. When the wind is strong
(> 20mph), the duration is significantly reduced.

4.3 Case Studies
We present case studies with the two real RVs with four dif-
ferent attacks under various movements: gyroscope and GPS
attacks on the 3DR Solo, two GPS attacks on the Erle-rover.
Gyroscope recovery on 3DR Solo. In this attack, 3DR Solo
takes off from home and maintains its position at a prede-
fined altitude (i.e., hovering). Then, we launch an attack on
its available gyroscope sensors (3 in total). Specifically, we
insert constant values (under the attacker’s control) to disrupt
the gyroscope roll rate measurements. Without our recovery
framework, the vehicle instantly deviates from its hovering
condition and crashes. Figure 17a show the trajectory in red
(top) and roll rate changes (bottom) during the mission. The
green region indicates the normal operation without the attack
while the red region shows the roll rate changes under the
attack. When the attack is launched, the controller uses the
compromised roll rate (∼ 0.6rad/s2) and accordingly tries
to reduce the rate to match the target state (zero). This con-
versely decreases the roll rate leading to overturning and con-
sequently crashing the vehicle. With recovery, the software
sensor prevents the crash by providing the proper feedback
to the control loop under the attack. Figure 17b shows the
real trajectory (top) and roll rate changes (bottom) during the
attack and recovery. During the normal operation, the mea-
surement (blue curve) takes the real sensor readings whereas
under the recovery mode (after the attack), the measurement
takes the software sensor (red curve). Observe the software
sensor introduces a reasonable amount of oscillation that was
not seen under the real benign sensors because of inevitable
inherent errors. However, despite the errors, it still allows the
vehicle to maintain the hovering position under the attack,
preventing the crash. Videos are available at [9].
GPS recovery on 3DR Solo. We compromise the GPS sensor
reading with a more complex mission. The 3DR Solo per-
forms a waypoint navigation mission where it flies through
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Figure 17: Attack and recovery under the sensor attacks on 3dr Solo

five waypoints in a square shape trajectory after take-off. We
launch the attack by modifying the longitude positional in-
formation of the GPS measurement - set to 20 meters left
from the actual position. As shown in Figure 17c, the vehicle
deviates from the expected trajectory (black line) and flies to
the right (red star), due to the compromised measurements.
With recovery, Figure 17d shows that the vehicle continues its
planned mission (with a marginal deviation) as the compro-
mised measurements were replaced by the software sensor.
Videos can be found at [10] and [15], respectively.

(a) Random Attack

Planned trajectory

(b) Controlled Attack
Figure 18: GPS attacks and recovery on Erle-rover

GPS recovery on Erle-rover. We conduct two different GPS
attacks on Erle-Rover: random and controlled GPS attacks.

In the random attack, we inject random signals to compro-
mise positional information (i.e., longitude and latitude) while
the vehicle is driving straight. Figure 18a shows the attack
(red star). As depicted, right after the attack, the compromised
measurements (red curve) is replaced with the software sen-
sor (blue curve), allowing the vehicle to continue its intended
trajectory (i.e., straight line). A video is available at [14].

In the controlled GPS attack, the attacker maliciously crafts
the injected signal based on her/his estimation of the rover’s
current physical states. In this case, the rover performs a more
complex mission in which it moves straight, makes a sharp
turn to the left and then drives straight again. During the first
straight movement, the attacker injects a signal that closely
follows the estimated trajectory but has a small constant er-
ror, which misdirects the rover gradually. Specifically, we
inject the estimated longitude values with around 0.00001
degrees error, making the attack quite stealthy as it cannot be
directly detected. Under this scenario, the vehicle’s controller
thinks that the vehicle is deviating from the planned mission
as the sensed positional measurement are slightly incorrect.
To correct the error, the vehicle adjusts its behavior by slightly

moving right. To avoid detection, the attacker makes sure that
the error is less than our threshold by accurately estimating
the changing real states according to the planed move, and
also the effect of the attack. However, during the next maneu-
ver (sharp turn), which is unknown to the attacker, she fails to
precisely estimate the real states. Consequently, our recovery
monitoring successfully detects the attack and activates the
software sensor. Figure 18b shows the planed trajectory (black
dotted line), the actual trajectory (black line), the measure-
ments (red curve) used in the controller, the software sensor
measurements (blue curve), the attack (red star) and recovery
(green star). As shown, during the straight move, the attacker
maintains small error by estimating the planned states and
the vehicle moves right gradually. However, during the turn,
the attack is detected. In this case, the software sensor stops
the drift to the right, but it cannot compensate the error intro-
duced by the lengthy attack. In practice, additional emergency
steps can be taken, such as reboot or estimate GPS location
through external channel (e.g., surroundings and nearby RVs).
A video of this attack and recovery is available at [13].

5 Discussion

Recovery Duration. The drift during recovery is inevitable
since the software sensor is an approximation. Although our
recovery technique successfully prevents sensor attacks tem-
porarily, software sensors cannot replace physical sensors
permanently or for a prolonged duration due to the drift effect.
Our experiment in Section 4.2 shows that the operation time
of the recovery mode can be at least 10 seconds in most cases,
enough for launching emergency operations (e.g., emergency
landing, manual mode switch with an alert) to avoid devas-
tating incidents. The empirical studies in [17, 23] shows that
the takeover time to resume control from a highly automated
vehicle is around 3 to 7s. Our recovery duration is 10 seconds.

Advanced Attack. Our experiment in Section 4.3 shows that
a small-error attack (carry-off attack) can be detected and pre-
vented. The first reason is that the attacker has no access to the
internal sensor readings. However, if the attacker can precisely
model such readings, she/he may be able to manipulate the
error in a way to evade our defense. For example, if the navi-



gation plan of an RV is extremely simple (e.g., straight-line),
the attacker can estimate the internal GPS reading even after
it is contaminated by the attack through observing the RV’s
velocity and considering the accumulated errors introduced so
far, and accordingly applies the attack continuously until the
goal is reached. One way to defend against this is to avoid any
predictable navigation plan, for example, by proactively ma-
neuvering the RV in a specific and secret way unknown to the
attacker. Second, our detection mechanism utilizes historical
error changes rather than an instant error. This approach can
limit the stealthy attack. Specifically, the error between real
and model states are calculated with accumulated deviation
during a certain time duration. This is distinct from a simple
bad-data detector or estimator.

6 Related Work

Our approach is inspired by both traditional hardware and soft-
ware fault-tolerant techniques. The traditional redundancy-
based approach [29] can recover a system when less than
half of the components have a failure. Moreover, hardware
replication requires additional hardware costs. There has been
a lot of work regarding physical attacks on RVs in recent
years. Many external attacks [8, 47, 49, 51, 52, 54] have been
proposedAt the same time, corresponding attack detection
techniques [5, 20, 22, 26, 28, 36, 37, 57] have been proposed.
However, they focus only on attack detection (i.e., significant
anomalies) and do not provide a recovery mechanism for
continuous operations. As such, the RV may still crash even
though it detects the attack.

State estimation [39] has been well researched in control
engineering, aiming to improve the accuracy of noisy sensors.
Especially, secure state estimation [19,38,48] was introduced
to handle sensor attacks. However, it mostly utilizes the re-
maining benign sensors or sensor redundancy to securely
estimate system states in the presence of significant noises
or attacks. They restrict attackers to corrupt only a subset of
sensors in which case the estimation needs to rely only on
the benign sensors. In comparison, our approach uses soft-
ware sensor based on system modeling regardless of the set
of sensors under attack, which is practical and generic.

System identification [32] is used to detect attacks [5] and
debug RV failures [56]. Similar to our method, they build
models for RVs with SI. However, they only detect extreme
deviations and cannot provide accurate feedback to the control
loop after detection. In addition, we precisely model individ-
ual sensor readings while they cannot.

7 Conclusion

We propose a novel sensor attack recovery technique for multi-
sensor RVs. The technique uses generic state-space model
based software sensors as a safe backup of the physical sen-

sors. Software sensors can precisely predict physical sensor
readings while they are largely isolated from the (malicious)
environment. Evaluation with real RVs demonstrates our tech-
nique can recover from single and multi-sensor attacks.
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Appendix

A Quadrotor Model and Frames
The Figure 19 shows a quadrotor with two frames: inertia and
body frame. The linear position of the quadrotor is defined in
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Figure 19: Inertial and body frame

the inertial frame with ξ (x, y, z). The attitude (i.e., angular
position) is defined in the inertial frame with η (φ,θ,ψ). The
roll(φ), pitch(θ), yaw (ψ) angle (i.e., Euler angle) determine
the rotational angles around the x, y, z axis, respectively. The
origin of the body frame is defined in the center of mass of the
quadcopter. The linear velocities in the body frame is defined
with VB and angular velocities determined by ω (p,q,r). The
rotation matrix R from the body frame to the inertial frame is
denoted as:

R =

CψCθ CψSθSφ−SφCφ CψSθCφ +SψSφ

SψCθ SψSθSφ +CψCφ SψSθcφ−CψSφ

−Sθ CθSφ CθCφ

 (8)

where Sx = sin(x) , Cx = cos(x). R is orthogonal thus R−1 =
RT . The RT is for rotation from the inertial frame to body
frame. The transformation matrix Wη for angular velocities
from the inertial frame η̇ to the body frame ω is:

ω =Wηη̇,

p
q
r

=

1 0 −Sθ

0 Cφ CθSφ

0 −Sφ CφCθ

 φ̇

θ̇

ψ̇

 (9)

Also, the Euler angular velocity is then

η̇ =W−1
η ω,

 φ̇

θ̇

ψ̇

=

1 SφTθ CφTθ

0 Cφ −Sφ

0 Sφ/Cθ Cφ/Cθ

p
q
r

 , (10)

B Supplementary Compensation.

We present an example of the supplementary compensation
approach that estimates angle status from the accelerometer
and magnetometer. Note that angle status is typically mea-
sured by gyro. The conversion equation is the following.

φacc = atan2(yacc,
√

x2
acc,z2

acc)

θacc = atan2(xacc,
√

y2
acc,z2

acc)

ψmag = atan2(−ymag · cosφ+ zmag · sinφ,

xmag · cosθ+ ymag · sinθ · sinφ+ zmag · sinθ · cosφ)

(11)

The conversion errors and the real sensor errors (e.g. sensor
noise, bias) cause fluctuations in the equations’ output. We use
low-pass filter to smooth the outputs. Combining the outputs
from Eq. (11) and our software sensor (using weighted sum),
we acquire more accurate measurements.

https://bit.ly/2O0zYft
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