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Abstract

Smartphones are increasingly involved in cyber and real

world crime investigations. In this paper, we demon-

strate a powerful smartphone memory forensics tech-

nique, called RetroScope, which recovers multiple previ-

ous screens of an Android app — in the order they were

displayed — from the phone’s memory image. Differ-

ent from traditional memory forensics, RetroScope en-

ables spatial-temporal forensics, revealing the progres-

sion of the phone user’s interactions with the app (e.g.,

a banking transaction, online chat, or document editing

session). RetroScope achieves near perfect accuracy in

both the recreation and ordering of reconstructed screens.

Further, RetroScope is app-agnostic, requiring no knowl-

edge about an app’s internal data definitions or rendering

logic. RetroScope is inspired by the observations that (1)

app-internal data on previous screens exists much longer

in memory than the GUI data structures that “package”

them and (2) each app is able to perform context-free re-

drawing of its screens upon command from the Android

framework. Based on these, RetroScope employs a novel

interleaved re-execution engine to selectively reanimate

an app’s screen redrawing functionality from within a

memory image. Our evaluation shows that RetroScope

is able to recover full temporally-ordered sets of screens

(each with 3 to 11 screens) for a variety of popular apps

on a number of different Android devices.

1 Introduction

As smartphones become more pervasive in society, they

are also increasingly involved in cyber and real world

crimes. Among the many types of evidence held by a

phone, an app’s prior screen displays may be the most

intuitive and valuable to an investigation — revealing

the intent, targets, actions, and other contextual evidence

of a crime. In this paper, we demonstrate a powerful

forensics capability for Android phones: recovering mul-

tiple previous screens displayed by each app from the

phone’s memory image. Different from traditional mem-

ory forensics, this capability enables spatial-temporal

forensics by revealing what the app displayed over a time

interval, instead of a single time instance. For example,

investigators will be able to recover the multiple screens

of a banking transaction, deleted messages from an on-

line chat, and even a suspect’s actions before logging out

of an app.

Our previous effort in memory forensics, GUI-

TAR [35], provides a related (but less powerful) capa-

bility: recovering the most recent GUI display of an

Android app from a memory image. We call this GUI

display Screen 0. Unfortunately, GUITAR is not able

to reconstruct the app’s previous screens, which we call

Screens -1, -2, -3... to reflect their reverse temporal or-

der. For example, if the user has logged out of an app

before the phone’s memory image is captured, GUITAR

will only be able to recover the “log out” screen, which

is far less informative than the previous screens showing

the actual app activities and their progression.

To address this limitation, we present a novel spatial-

temporal solution, called RetroScope, to reconstruct an

Android app’s previous GUI screens (i.e., Screens 0, -1,

-2... -N, N > 0). RetroScope is app-agnostic and does

not require any app-specific knowledge (i.e., data struc-

ture definitions and rendering logic). More importantly,

RetroScope achieves near perfect accuracy in terms of

(1) reconstructed screen display and (2) temporal order

of the reconstructed screens. To achieve these proper-

ties, RetroScope overcomes significant challenges. As

indicated in [35], GUI data structures created for previ-

ous screens get overwritten almost completely, as soon as

a new screen is rendered. This is exactly why GUITAR

is unable to reconstruct Screen -i (i > 0), as it cannot find

GUI data structures belonging to the previous screens. In

other words, GUITAR is capable of “spatial” — but not

“spatial-temporal” — GUI reconstruction. This limita-

tion motivated us to seek a fundamentally different ap-
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proach for RetroScope.

During our research, we noticed that although the

GUI data structures for app screens dissolve quickly,

the actual app-internal data displayed on those screens

(e.g., chat texts, account balances, photos) have a much

longer lifespan. Section 2 presents our profiling results

to demonstrate this observation. However, if we follow

the traditional memory forensics methodology of search-

ing for [16,25,26,41] and rendering [35–37] instances of

those app data, our solution would require app-specific

data structure definitions and rendering logic, breaking

the highly desirable app-agnostic property.

We then turned our attention to the (app-agnostic) dis-

play mechanism supplied by the Android framework,

which revealed the most critical (and interesting) idea

behind RetroScope. A smartphone displays the screen of

one app at a time; hence the apps’ screens are frequently

switched in and out of the device’s display, following the

user’s actions. Further, when the app is brought back to

the foreground, its entire screen must be redrawn from

scratch: by first “repackaging” the app’s internal data

to be displayed into GUI data structures, and then ren-

dering the GUI data structures according to their layout

on the screen. Now, recall that the “old” app-internal

data (displayed on previous screens) are still in mem-

ory. Therefore, we propose redirecting Android’s “draw-

from-scratch” mechanism to those old app data. Intu-

itively, this would cause the previous screens to be re-

built and rendered. This turns out to be both feasible and

highly effective, thus enabling the development of Ret-

roScope.

Based on the observations above, RetroScope is de-

signed to trigger the re-execution of an app’s screen-

drawing code in-place within a memory image — a pro-

cess we call selective reanimation. During selective re-

animation, the app’s data and drawing code from the

memory image are logically interleaved with a live sym-

biont app, using our interleaved re-execution engine and

state interleaving finite automata (Section 3.2). This al-

lows RetroScope (within a live Android environment)

to issue standard GUI redrawing commands to the in-

terleaved execution of the target app, until the app has

redrawn all different (previous) screens that its internal

data can support. In this way, RetroScope acts as a “pup-

peteer,” steering the app’s code and data (the “puppet”)

to reproduce its previous screens.

We have performed extensive evaluation of Retro-

Scope, using memory snapshots from 15 widely used

Android apps on three commercially available phones.

For each of these apps, RetroScope accurately recov-

ered multiple (ranging from 3 to 11) previous screens.

Our results show that RetroScope-recovered app screens

provide clear spatial-temporal evidence of a phone’s ac-

tivities with high accuracy (only missing 2 of 256 re-

coverable screens) and efficiency (10 minutes on aver-

age to recover all screens for an app). We have open-

sourced RetroScope1 to encourage reproduction of our

results and further research into this new memory foren-

sics paradigm.

2 Problem and Opportunity

Different from typical desktop applications, frequent

user interactions with Android apps require their screen

display to be highly dynamic. For example, nearly all

user interactions (e.g., clicking the “Compose Email”

button on the Inbox screen) and asynchronous notifica-

tions (e.g., a pop-up for a newly received text message)

lead to drawing an entirely new screen. Despite such

frequent screen changes, an earlier study [35] shows that

every newly rendered app screen destroys and overwrites

the GUI data structures of the previous screen.

This observation however, seems counter-intuitive as

Android apps are able to very quickly render a screen

that is similar or identical to a previous screen. For ex-

ample, consider how seamlessly a messenger app returns

to the “Recent Conversations” screen after sending a new

message. Given that the previous screen’s data structures

have been destroyed, the app must be able to recreate

GUI data structures for the new screen. More impor-

tantly, we conjecture that the raw, app-internal data (e.g.,

chat texts, dates/times, and photos) displayed on previ-

ous screens must exist in memory long after their corre-

sponding GUI data structures are lost.

To confirm our conjecture about the life spans of (1)

GUI data structures (short) and (2) app-internal data

(long), we performed a profiling study on a variety of

popular Android apps (those in Section 4). Via instru-

mentation, we tracked the allocation and destruction (i.e.,

overwriting) of the two types of data following multiple

screen changes of each app. Figure 1 presents our find-

ings for TextSecure (also known as Signal Messenger). It

is evident that the creation of every new screen causes the

destruction of the previous screen’s GUI data, whereas

the app-internal data not only persists but accumulates

with every new screen. We observed this trend across all

evaluated apps.

Considering that a memory image reflects the mem-

ory’s content at one time instance, Figure 1 illustrates

a limitation of existing memory forensics techniques

(background on memory image acquisition can be found

in Appendix A). Specifically, given the memory image

taken after Screen 0 is rendered (as marked in Figure 1),

our GUITAR technique [35] will only have access to the

GUI data for Screen 0. Meanwhile, the app’s internal

1RetroScope is available online, along with a demo video, at:

https://github.com/ProjectRetroScope/RetroScope.
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Figure 1: Life Cycles of GUI Data Structures Versus App-Internal Data Across Multiple Screen Changes.

ContactList.java 

Model View 

Conversation.java 

MessageItem.java 

 

 class MessageItem { 

   … 

   String mTimestamp; 

   String mAddress; 

   String mBody; 

   String mContact; 

   String mSubject; 

   … 

 } 

SlideView.java 

ImageAttachmentView.java 

MessageListView.java 

 

 class MessageListView { 

   void draw (Canvas canvas){ 

     … 

     String str; 

     str = MessageItem.format(); 

     canvas.drawText(str); 

     … 

   } 

 } 

Figure 2: The Typical Model/View Implementation Split

of Android Apps.

data are maintained by the app itself for as long as the

app’s implementation allows (e.g., we never observed

TextSecure deallocating its messages because they may

be needed again). However, without app-specific data

definitions or rendering logic, it is impossible for exist-

ing app-agnostic techniques [6, 36, 41] to meaningfully

recover and redisplay the app’s internal data on Screens

-1 to -5 in Figure 1.

It turns out that the Android framework instills the

“short-lived GUI structures and long-lived app-internal

data” properties in all Android apps. Specifically, An-

droid apps must follow a “Model/View” design pat-

tern which intentionally separates the app’s logic into

Model and View components. As shown in Figure 2, an

app’s Model stores its internal runtime data; whereas its

View is responsible for building and rendering the GUI

screens that present the data. For example, the Mes-

sageItem, Conversation, and ContactList (Model) classes

in Figure 2 store raw, app-internal data, which are then

formatted into GUI data structures, and drawn on screen

by the MessageListView class. This design allows the

app’s View screens to respond quickly to the highly dy-

namic user-phone interactions, while delegating slower

operations (e.g., fetching data updates from a remote

server) to the background Model threads.

Further, the Android framework provides a Java class

(aptly named View) which apps must extend in order

to implement their own GUI screens. As illustrated

by Figure 2’s MessageListView class, each of the app’s

screens correspond to an app-customized View object

and possibly many sub-Views drawn within the top-level

View. Most importantly, each View object defines a draw

function. draw functions are prohibited from performing

blocking operations and may be invoked by the Android

framework whenever that specific screen needs to be re-

drawn. This makes any screen’s GUI data (e.g., format-

ted text, graphics buffers, and drawing operations which

build the screen) easily disposable, because the Android

framework can quickly recreate them by issuing a redraw

command to an app at any time. This design pattern pro-

vides an interesting opportunity for RetroScope, which

will intercept and reuse the context of a live redraw com-

mand to support the reanimation of draw functions in a

memory image.

3 Design of RetroScope

RetroScope’s operation is fully automated and only re-

quires a memory image from the Android app being in-

vestigated (referred to as the target app) as input. From

this memory image, RetroScope will recreate as many
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previous screens as the app’s internal data (in the mem-

ory image) can support. However, without app-specific

data definitions, RetroScope is unable to locate or un-

derstand such internal data. But recall from Section 2

that the Android framework can cause the app to draw its

screen by issuing a redraw command, without handling

the app-internal data directly. This is possible because

the app’s draw functions are invoked in a context-free

manner: The Android framework only supplies a buffer

(called a Canvas) to draw the screen into, and the draw

function obtains the app’s internal data via previously

stored, global, or static variables — analogous to starting

a car with a key (the redraw command) versus manually

cranking the engine (app internals). Thus, RetroScope is

able to leverage such commands, avoiding the low-level

“dirty work” as in previous forensics/reverse engineering

approaches [36, 37].

RetroScope mimics this process within the target app’s

memory image by selectively reanimating the app’s

screen drawing functions via an interleaved re-execution

engine (IRE). RetroScope can then inject redraw com-

mands to goad the target app into recreating its previ-

ous screens. An app’s draw functions are ideal for re-

animation because they are (1) functionally closed, (2)

defined by the Android framework (thus we know their

interface definition), and (3) prevented from perform-

ing I/O or other blocking operations which would oth-

erwise require patching system dependencies. Finally,

RetroScope saves the redrawn screens in the temporal or-

der that they were previously displayed, unless the draw

function crashes — indicating the app-internal data could

not support that screen.

To support selective reanimation, RetroScope lever-

ages the open-source Android emulator to start, control,

and modify the execution of a symbiont app, a minimal

implementation of an Android app which will serve as a

“shell” for selective reanimation.

3.1 Selective Reanimation

Before selective reanimation can begin, RetroScope must

first set up enough of the target app’s runtime environ-

ment for re-executing the app’s draw functions. There-

fore RetroScope first starts a new process in the An-

droid emulator, which will later become the symbiont

app and the IRE (Section 3.2). RetroScope then syn-

thetically recreates a subset of the target app’s memory

space from the subject memory image. Specifically, Ret-

roScope loads the target app’s data segments (native and

Java) and code segments (native C/C++ and Java code

segments) back to their original addresses (Lines 1-4 of

Algorithm 1) — this would allow pointers within those

segments to remain valid in the symbiont app’s memory

space. RetroScope then starts the symbiont app which

will initialize its native execution environment and Java

runtime. Note that the IRE will not be activated until

later when state interleaving (Section 3.2) is needed.

Isolating Different Runtime States. The majority of

an Android app’s runtime state is maintained by its Java

runtime environment2. For RetroScope, it is not suffi-

cient to simply reload the target app’s memory segments.

Instead the symbiont app’s Java runtime must also be

made aware of the added (target app’s) runtime data prior

to selective reanimation. Later, the IRE will need to dy-

namically switch between the target app’s runtime state

and that of the symbiont app to present each piece of

interleaved execution with the proper runtime environ-

ment.

RetroScope traverses a number of global Java run-

time data structures from the subject memory image with

information such as known/loaded Java classes, app-

specific class definitions, and garbage collection trackers

(Lines 5–9 of Algorithm 1). Such data are then copied

and isolated into the symbiont app’s Java runtime by in-

serting them (via the built in Android class-loading logic)

into duplicates of the Java runtime structures in the sym-

biont app. Note that, at this point, the duplicate runtime

data structures will not affect the execution of the sym-

biont app, but they must be set up during the symbiont

app’s initialization so that any app-specific classes and

object allocations from the memory image can be han-

dled later by the IRE.

At this point, the symbiont app’s memory space con-

tains (nearly) two full applications (shown in Figure 4).

The symbiont app has been initialized naturally by the

Android system with its own execution environment. In

addition, RetroScope has reserved and loaded a subset

of the target app’s memory segments (those required

for selective reanimation) and isolated the necessary old

(target app’s) Java runtime data into the new (symbiont

app’s) Java runtime. The remainder of RetroScope’s op-

eration is to (1) mark the target app’s View draw func-

tions so that they can receive redraw commands and (2)

reanimate those drawing functions inside the symbiont

app via the IRE.

Marking Top-Level Draw Functions. RetroScope tra-

verses the target app’s loaded classes to find top-level

Views (Lines 10–17 in Algorithm 1). Top-level Views

are identified as those which inherit from Android’s par-

ent View class ViewParent and are not drawn inside

any other Views. As described in Section 2, top-level

Views are default Android classes which contain app-

customized sub-Views. Further, we know that all Views

must implement a draw function (which invokes the sub-

Views’ draw functions). Thus RetroScope marks each

top-level draw function as a reanimation starting point.

2Please see Section 5 regarding Dalvik JVM versus ART runtimes.
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Algorithm 1 RetroScope Selective Reanimation.

Input: Target App Memory Image M

Output: GUI Screen Ordered Set S

⊲ Rebuild the Target App runtime environment.

1: for Segment S ∈ M do ⊲ Remap memory segments.

2: if isNeededForReanimation(S) then

3: Map(S.startAddress, S.length, S.content)

4: SymbiontApp.initialize() ⊲ Set up Symbiont App.

5: JavaGlobalStructs G ←∅ ⊲ Isolate the Target App runtime state.

6: for Segment S ∈ M do ⊲ Find Java control data.

7: if containsJavaGlobals(S) then

8: G ← getJavaGlobals(S)

9: break

⊲ Register reanimation points with the IRE.

10: InterleavedReexecutionEngine IRE

11: View Set V ←∅ ⊲ Top-level Views.

12: for Class C ∈ G �Classes do ⊲ Find top-level Views.

13: if C <: ViewParent then ⊲ ‘<:’ denotes subtype.

14: if not isSubView(C) then

15: IRE.beginOn(C.draw) ⊲ Register drawing function.

16: View Set views ←C.instances

17: V ←V ∪ views

18: View T ← SymbiontApp.getTopLevelView()

19: T .invalidate() ⊲ Cause screen redraw command to be issued.

20: procedure CATCHREDRAWCOMMAND

⊲ Invoked when redraw command is issued.

21: for View view ∈V do

22: T ← view ⊲ Override the Symbiont App’s top-level View.

⊲ Record largest subView ID.

23: largestID ← max
v∈view.subViews

v.getField(ID)

24: deliverRedrawCommand()

⊲ IRE handles re-execution of redrawing code.

25: Screen s ← T .copyGUIBuffer()

26: S.insert(largestID, s)

27: end procedure

Selective Reanimation. Once all top-level draw func-

tions are identified, RetroScope can begin selective rean-

imation of each. First, RetroScope invalidates the sym-

biont app’s current View (Line 19 of Algorithm 1). This

will cause Android to set up and issue a redraw com-

mand to the symbiont app along with a buffer to draw

into. However, RetroScope first intercepts this command

and replaces the symbiont app’s top-level View with one

of the target app’s top-level Views identified previously

(Lines 20–27 in Algorithm 1). Note that RetroScope

does not distinguish between different instances of top-

level Views, it simply reissues redraw commands for ev-

ery previously identified top-level View instance, even if

duplicates exist.

Since the top-level Views of the symbiont app and the

target app are both default instances of (or inherit from)

the same Android View class, they are interchangeable

as far as the Android framework is concerned (both with

the same functionality). Now RetroScope can inject the

redraw command into the symbiont app which, upon re-

ceiving this command, will naturally invoke the target

app’s top-level draw function (previously marked for re-

animation).

This will trigger the IRE to begin logically interleav-

ing the draw function execution with the symbiont app’s

GUI drawing environment. Most importantly, this will

direct input code/data accesses (i.e., queries to the target

app’s Model) to the appropriate target app functions and

output code/data accesses (i.e., drawing of screens) to

the symbiont app’s running GUI framework. Upon suc-

cessful completion of each draw function reanimation,

RetroScope retrieves and stores the symbiont app’s (now

filled) screen buffer, switches the top-level View to an-

other marked target app View, and re-injects the redraw

command — reloading the memory image in between to

avoid side effects.

Finally, RetroScope reorders the redrawn screens to

match the temporal order in which they were displayed.

This is done via comparison of View ID fields in the tar-

get app’s Views (recovered from the memory image). A

View’s ID is an integer that identifies a View. The ID

may not be unique, as some Views may alias others, but

it is always set from a monotonically increasing counter.

This yields the property that app screens can be ordered

temporally by comparing the largest ID among their sub-

Views. Intuitively, the most recently modified portion of

the screen (sub-View) will yield an increasingly large ID.

3.2 Interleaved Re-Execution Engine
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Figure 3: State Interleaving Finite Automata.

The key enabling technique behind RetroScope is its

IRE which logically interleaves the state of the target

app into the symbiont app just before it is needed by

the execution. To monitor and interleave the execu-

tion contexts, the IRE intercepts the execution of Java

byte-code instructions corresponding to function invoca-

tions, returns, and data accesses (i.e., instance/static field

reads/writes). The IRE’s operation is similar to parsing

a lexical context-free grammar: The current byte-code

instruction (i.e., token) and the context of its operands

(e.g., new/old data) are matched to a state interleaving
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finite automata (Figure 3), where each state transition de-

fines which runtime environment the IRE should present

to that instruction.

In RetroScope, state interleaving begins at the invoca-

tion of one of the marked top-level draw functions within

the target app. As a running example, Figure 4 shows

a snippet of a draw function’s code along with the live

memory space (containing both the symbiont app and the

target app’s execution environment).

IRE State Tracking. For each byte code instruction,
the IRE tracks two pieces of information: (1) if the code
being executed is from the memory image (old code) or
from the symbiont app (new code) and (2) if the current
runtime information (i.e., loaded classes, object layouts,
etc.) originates from the memory image (old runtime) or
the symbiont app (new runtime). Based on that, the exe-
cution context may be in any of four possible states:

(new code,new runtime) = α

(new code,old runtime) = β

(old code,new runtime) = γ

(old code,old runtime) = δ

(1)

In Figure 4, we have denoted which state the IRE is in

before and after executing each line of code. For ease

of explanation, Figure 4 presents source code, but Retro-

Scope operates on byte-code instructions only. For ex-

ample, before executing Line 1, the IRE is in α because

no old code or data has been introduced yet. Likewise,

after Line 1, the IRE is in δ as the IRE is then execut-

ing the target app’s draw function (old code) within the

target app’s top-level View object (old runtime). How-

ever, note that the context of runtime data may not (and

often does not) match the context of the code: For exam-

ple, in Line 4, fetching the mDensity field from the new

Canvas requires using the new runtime data but is being

performed by old code (resulting in state γ ).

Modeling State-Transitions. In Figure 3, we gener-

alize the state-transition rule matching to two primitive

operations: Given an object o, state transitions may oc-

cur when accessing a field f within o (o. f ) or when in-

voking a method m defined by o (o.m()). Further, o may

be an object loaded from the target app’s memory im-

age or allocated by the target app’s code (i.e., interacting

with this object requires the old runtime data), thus we

denote such old objects as o′ in Figure 3. Note that our

discussion will follow Java’s object-oriented design, but

the transitions in Figure 3 are equally applicable to static

(i.e., o == NULL) execution.

The state transitions in Figure 3 are modeled as
a Mealy machine [29] with the input of each state-
transition being a matched operation and the output being
the corresponding state correction performed by the IRE.
These state corrections (i.e., transition outputs) fall into

three categories: (1) a transition from the new runtime
data to the old runtime data (the function θ ), (2) a tran-
sition from old to new runtime data (the function λ ), and
(3) no change in runtime data (“Pass”). For example, the

transition from α to δ is represented as:

α → δ : o′.m() | o′.θ(m)() (2)

where the input to this transition is a match on o′.m()
(invoking an old object’s method) and the output state
correction is to switch to the old runtime prior to invok-
ing the method (o′.θ(m)()). This is exactly the IRE’s
transition before executing Line 1 in Figure 4 as the IRE
must switch to the old runtime prior to invoking the old
View object’s draw function to look up the method’s im-
plementation. Conversely, the transition from γ to α

is represented as:

γ → α : o.m() | Pass (3)

because this transition occurs when a new object’s

method is invoked (o.m) but the IRE is already using

the new runtime data, thus no runtime data correction is

needed (i.e., “Pass”). This case is observed in Line 11 of

Figure 4. At the beginning of Line 11, the IRE is in state

γ due to the lookup of the new Canvas’s mDensity

field on Line 4. Thus, the invocation of getClipBounds

on Line 11 does not require the runtime to change (a

“Pass” transition), but does change from old code to new.

Another important corrective action in Figure 3 is

whether or not a transition crosses the code context bar-

rier (i.e., a horizontal transition). Crossing the code con-

text barrier signifies a switch between fetching new code

(from the symbiont app) to old code (from the memory

image) or vice versa. Although crossing the context bar-

rier alone does not require active correction by the IRE

(e.g., the old runtime’s method definitions will naturally

direct the execution to the old code), the IRE must note

that the change occurred.

Monitoring which context the code is fetched from

is essential for a number of runtime checks and correc-

tions that the IRE must perform. Firstly, objects allo-

cated while executing old code should use the class def-

initions from the target app (as the Android framework

classes may be vendor-customized or the class may be

defined by the target app itself). Secondly, type compar-

isons (e.g., the Java instanceof operator) executed by

old code must consider both new and old classes but pre-

fer old classes. This is because new objects (which are

instances of classes loaded by the symbiont app’s run-

time) will be passed into old code functions — which

use the target app’s loaded classes that contain “old du-

plicates” of classes common to both executions (e.g., sys-

tem classes). The reverse is true for new code type com-

parisons. Lastly, exceptions thrown during interleaved

execution should be catchable by both old and new code.
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1.  public void draw(Canvas canvas)
2.  {

…
4. int density = canvas.mDensity;

8.     if (density != Bitmap.DENSITY_NONE)
9.     {
10.       Rect bounds;

11.       canvas.getClipBounds(bounds);

12.       Bounds.right = this.mSlideable.getRight();

13.       canvas.clipRect(bounds);
…

1. public boolean getClipBounds(Rect bounds)
2. {
3.    …
4. }

Target App State
Target App CodeSymbiont App Code

α
IRE State

α

δ

γ
δ
α

Popped From IRE State Stack

Code Context Barrier Crosses

γ
View this:

mSliderColor 255
mSlideable
mCanSlide 1

mSlideable:
mTag 0x0
mViewFlags 64
mParent

Symbiont App State

canvas:
mDensity 0
mWidth 1080
mHeight 1920
mBitmap

o.f data access

Figure 4: Example of Interleaved Re-Execution.

Interestingly, we find a number of test cases in Section 4

purposely throw exceptions inside their inner drawing

functions, and allowing new code to catch old code ex-

ceptions (or vice versa) requires patching type lookups

(as before) and stack walking.

Return Transitions. Although Figure 3 does not il-

lustrate state transitions for return instructions, the IRE

does perform state correction for them. Unlike the tran-

sitions in Figure 3 (which rely on the current IRE state

to determine a new state), method returns simply re-

store the IRE state from before the matching invocation.

This is tracked by a stack implemented in the IRE which

pushes the current IRE state before invoking a method

and pops/restores that IRE state upon the method’s re-

turn. This behavior is seen in Line 12 in Figure 4. Before

the invocation of getClipBounds (Line 11), the IRE is

in state γ . Function getClipBounds executes in state

α , and upon its return the IRE pops state γ from the

stack and restores that state prior to executing Line 12.

Another notable simplification of the IRE’s design is

that it is sufficient to only perform state correction at

function invocations, returns, and field accesses. Intu-

itively, this is because other “self-contained” instructions

(e.g., mathematical operations) do not require support

from the runtime. But another advantage is that state-

interleaving tends to occur after bunches of instructions.

Our evaluation shows that on average 10.24 instructions

in a row will cause loop-back transitions before a state

correction is needed. Further, many functions execute

entirely in state α or δ because no data from the other

environment enter those functions.

Native Execution. The IRE operates on the Java byte-

code instructions of the functions marked for selective

reanimation. However, it is possible that app develop-

ers utilize the Java Native Interface (JNI) to implement

some of their app’s functionality in native C/C++ code.

Further, the Android framework heavily uses JNI func-

tions. When the IRE observes an invocation of a C/C++

function, it follows the same state transitions defined in

Figure 3 (i.e., new code only invokes new C/C++ func-

tions and vice versa).

Luckily, due to the tightly controlled interaction be-

tween C/C++ functions and the Java runtime data, the

IRE’s state correction can be further simplified. To

access data or invoke methods from the Java runtime,

C/C++ functions must use a set of helper functions de-

fined by the Java runtime. The IRE hooks these func-

tions and checks if the data or method being requested

is in the old or new context. The IRE can then prop-

erly patch the helper function’s return value and allow

the C/C++ function to execute as intended. Note that, be-

cause all the target app’s native code and data segments

have been mapped back to their original addresses, all

pointers (code and data) in those segments remain valid.

Lastly, although the IRE executes app-specific code,

it does so on a syntactic basis without understanding the

code’s semantics, hence maintaining RetroScope’s app-

agnostic property.

3.3 Escaping Execution and Data Accesses

To monitor and interleave the target app’s reanimation,

the IRE must accurately track the current state of the ex-

ecution environment. However, due to the relative com-

plexity of Android apps, it is possible that the target app’s

control flow causes the IRE to miss a state transition, po-

tentially failing to correct the execution environment de-

spite the actual execution being in a different state. We

call such missed state transitions escaping execution or

escaping data accesses.

Escaping Execution. This occurs when the target app’s

reanimation invokes a function but the IRE is unable to

determine which context to transition to. This is primar-

ily due to the invocation of a static method which exists

in both the old and new environments — leading to an

ambiguous state-transition, where the IRE does not have
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sufficient information at the function invocation site to

determine which state ( α or δ ) to transition to. Sim-

ply put, the IRE must discover if the execution intended

to invoke the old or new method. To decide that, the IRE

performs a simple data flow analysis on each version. If

the method writes data to a static variable, then the IRE

always invokes the method in state α , otherwise the IRE

keeps the same state that the method was invoked by (to

avoid an unnecessary transition). This ensures that any

accesses to static values which exist in both old and new

environments are always directed to the new one. Note

that app-defined static variables will only exist in the old

environment, and thus their accesses do not lead to am-

biguous transitions.

Escaping Data Accesses. This occurs when an app im-

plements a non-standard means of accessing an object’s

fields. For example, the two most common causes of es-

caping data accesses we observed are: (1) C/C++ code

using a hard-coded Java object layout to access an ob-

ject’s fields and (2) old Java code which has cached an

old version of an object which RetroScope is trying to re-

place with a new version (e.g., some Views will save and

reuse a reference to the previously drawn on Canvas).

Although escaping data accesses are caused by app im-

plementation differences, they can be handled uniformly

by the IRE.

Escaping data accesses caused by Java code can be

identified automatically when the fields of the object are

accessed incorrectly. For example, there should not exist

any old Canvas objects during selective reanimation and

thus the IRE will identify its field accesses and replace

the object with the new instance. Escaping data accesses

caused by C/C++ code are handled by preventing C/C++

code from directly accessing Java objects. Instead, the

IRE requires all pointers to Java objects to be encoded

before they are given to C/C++ code. These pointers can

be decoded when they are used in the standard JNI field

access helper functions, but will cause a segmentation

fault when dereferenced erroneously. This segmentation

fault can then be handled by RetroScope to patch the field

access with the appropriate JNI helper function. In fact,

support for encoded/decoded JNI pointers already exists

but may be avoided in Android, so the IRE only needs

to require that all JNI pointers are encoded/decoded and

handle the segmentation fault for those that previously

avoided this functionality.

4 Evaluation

Evaluation Setup. Our evaluation of RetroScope in-

volved three Android phones (a Samsung Galaxy S4,

HTC One, and LG G3)3 as evidentiary devices. On each

phone, we installed and interacted with 15 different apps

to cause the generation, modification, and deletion of as

many screens as possible. The interactions took an av-

erage of 16 minutes per app, and we installed and in-

teracted with the apps on each phone at random times

over a 4-day period. Then, for each phone, we waited

60 minutes for any background activity of the 15 apps to

complete, after which we took a memory image from the

phone (as described in Appendix A).

The set of 15 apps was chosen to represent both typ-

ical app categories (to highlight RetroScope’s generic

applicability) and diverse app implementation (to eval-

uate the robustness of RetroScope’s selective reanima-

tion). Based on the importance of personal commu-

nication in criminal investigations, we included Gmail,

Skype, WeChat, WhatsApp, TextSecure (also known as

Signal, notable for its privacy-oriented design which lim-

its evidence recovery [4]), Telegram (whose encrypted

broadcast channels are popular with terrorist organiza-

tions [3]), and each device’s default MMS app (imple-

mented by the device vendor). We also included the two

most popular social networking apps: Facebook (known

for its highly complex/obfuscated implementation) and

Instagram. Finally we consider several apps which, by

nature, display sensitive personal information: Chase

Banking, IRS2Go (the official IRS mobile app), My-

Chart (the most popular medical record portfolio app),

Microsoft Word for Android, and the vendor-specific

Calendar and Contacts/Recent Calls apps.

We then used RetroScope to recreate as many pre-

vious app screens as still exist in the memory images

of the 45 (15 × 3) apps. The recovery results are re-

ported in Table 1. Table 1 presents the device and app

name in Columns 1 and 2, respectively. Column 3

shows the ground-truth number of screens that Retro-

Scope should recover, and Column 4 reports the number

of screens recovered. Columns 5 through 9 present sev-

eral metrics recorded over the selective reanimation of

all screen redrawing functions for each app: Column 5

shows the number of reanimated Java byte-code instruc-

tions, Column 6 reports the number of JNI invocations

(i.e., C/C++ functions invoked from Java code) observed,

and Columns 7 and 8 report the total number of newly al-

located Java objects and C/C++ structures that made up

the new screens. Column 9 shows RetroScope’s runtime

for each case.

Selective Reanimation Metrics. Table 1 provides in-

teresting insights into the complexity and scale of screen

redrawing via selective reanimation. From Table 1, we

learn that an average of 231,867 byte-code instructions

3These devices all run vendor-customized versions of Android

Kitkat (the most widely used Android version [17]).
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Device App
Expected #

of Screens

RetroScope

Recovery

Metrics for Evaluating Selective Reanimation

Byte-Code JNI Allocated New C/C++ Runtime

Instructions Invocations Java Objects Structures (seconds)

Samsung S4

Calendar 8 8 259196 4699 930 79119 502

Chase Banking 9 9 424336 9318 1905 106168 1610

Contacts 5 5 199755 4606 928 49322 369

Facebook 6 6 338195 7928 1432 45420 1059

Gmail 5 5 188463 4185 826 80808 487

Instagram 7 7 240139 5191 482 86319 672

IRS2Go 5 5 195413 4450 790 21027 674

MMS 3 3 96856 2004 333 25311 276

Microsoft Word 3 3 211762 4273 460 58291 637

MyChart 4 4 74213 1632 367 18902 259

Skype 6 6 236213 5256 1072 30753 486

Telegram 6 7 177973 3488 314 41815 664

TextSecure 4 4 145436 3461 763 27450 450

WeChat 3 3 121630 2823 638 24730 831

WhatsApp 7 8 402536 8186 1373 65818 1390

LG G3

Calendar 7 7 199290 4193 665 72944 478

Chase Banking 8 8 360607 8436 1843 127337 1731

Contacts 5 5 313068 6289 1184 105004 430

Facebook 7 7 448535 10038 1892 88949 1413

Gmail 6 6 263850 6148 1353 239711 1248

Instagram 5 5 245094 5097 489 104391 446

IRS2Go 6 6 335323 7599 1458 82077 709

MMS 6 6 147428 3077 422 61210 303

Microsoft Word 4 4 175394 4189 652 51769 375

MyChart 3 3 59284 1291 202 24995 335

Skype 6 5 238227 4914 914 63007 382

Telegram 6 6 125085 2452 183 48496 297

TextSecure 6 6 206146 4388 860 80672 381

WeChat 4 5 225245 5296 1293 72310 632

WhatsApp 7 8 205661 4548 884 67789 466

HTC One

Calendar 6 6 197316 3675 732 102642 749

Chase Banking 11 11 584587 12591 2091 266965 850

Contacts 3 3 190847 4023 723 71578 380

Facebook 6 5 382522 8629 1451 95516 1128

Gmail 6 6 235973 5366 929 129804 1128

Instagram 3 3 86829 2078 433 42037 399

IRS2Go 5 5 200196 4510 832 52097 547

MMS 4 4 93971 1950 287 45085 493

Microsoft Word 3 3 137978 3249 562 43209 456

MyChart 6 6 131876 2599 353 65377 403

Skype 9 9 468258 9817 1232 149372 890

Telegram 4 4 98662 1989 185 49902 291

TextSecure 7 8 231891 5268 924 98571 488

WeChat 5 5 211518 4836 901 69587 723

WhatsApp 6 6 321229 7075 1571 104216 573

Table 1: Overall Results of RetroScope Evaluation.

and 5,047 JNI function invocations are required to re-

draw all of the screens for a single app. This yields an

average of 41,078 byte-code instructions and 894 JNI

function invocations per screen. Higher than our ini-

tial expectations, these numbers attest to the complexity

of the screen drawing implementation and robustness of

RetroScope’s IRE.

Another metric above our expectation was the number

of data structures that had to be newly allocated to re-

draw each screen. While redrawing all previous screens

of each app, the reanimated code allocated an average of

891 Java objects and 76,397 C/C++ structures per app,

and an average of 158 Java objects and 13,535 C/C++

structures per screen. These numbers confirm the claim

in GUITAR [35] that each screen is made of “thousands

of GUI data structures.” Most importantly, as also shown

in [35], only the structures for Screen 0 may still exist in

a memory image, whereas RetroScope actively triggers

the rebuilding of the lost data for Screens 0, -1, -2, ... -N.

4.1 Spatial-Temporal Evidence Recovery

Ground Truth. We now evaluate how accurately Ret-

roScope recreates the screens displayed during our last



1146  25th USENIX Security Symposium	 USENIX Association

(a) Screen -6. (b) Screen -5. (c) Screen -4. (d) Screen -3. (e) Screen -2. (f) Screen -1. (g) Screen 0.

Figure 5: LG G3 Facebook Recovery.

interaction session with each app. However, obtain-

ing the ground truth (how many previous screens Retro-

Scope should recover) is not straightforward because the

screens’ recoverability is decided by the availability of

the app’s internal data in the memory image. Therefore,

to identify the recoverable previous screens, we instru-

mented each app to log any non-GUI-related data allo-

cations and accesses performed by each screen-drawing

function. We then compared this log to the content of

the final memory image to identify which screens’ en-

tire app-internal data still existed4. This gives us a strict

lower bound on the number of screens that RetroScope

should recover (i.e., all the internal data for those screens

exist in the memory image). Without app-specific reverse

engineering efforts, it is impossible to know the upper

bound that the app’s internal data could support. But as

we discuss later, screen redrawing is often “all or noth-

ing” and adheres closely to this lower bound.

Highlights of Results. RetroScope recovered a total of

254 screens for the 45 apps, from a low of 3 to a high of

11 screens — ironically for the privacy sensitive Chase

Banking app on the HTC One phone (Figure 6). Overall,

Table 1 shows that RetroScope recovers an average of

5.64 screens per app, with the majority of the test cases

(33 out of 45) having 5 or more screens.

Table 1 highlights the depth of temporal evidence that

RetroScope makes available to forensic investigators, but

even more intriguing is the clear progression of user-app

interaction portrayed by the recovered screens. Figure 5

shows the 7 screens recovered for the Facebook app on

the LG G3 phone. From these screens we can infer the

“suspect’s” progression: from his own profile (Screen

-6), to search results for “hitman” (Screen -5), to the

Facebook profile (Screen -4), Photos screen (Screen -3),

a photo album (Screen -2) of the Hitman movie, to a

single photo (Screen -1), and lastly to that photo’s com-

ments (Screen 0). Such powerful spatial-temporal recov-

4Note that RetroScope did not have access to nor could benefit from

this ground truth information. Further, we utilized in-place binary in-

strumentation (which does not interact nor interfere with the app’s ex-

ecution or memory management) to ensure the accuracy of our experi-

ments.

ery — from a single memory image — is not possible via

any existing memory forensics technique.

Another interesting observation from Table 1 is that,

although RetroScope’s recovery is app-agnostic, the

apps’ diverse implementations lead to very different re-

drawing procedures. For example, for both Skype and

Facebook apps on the Samsung S4, RetroScope repro-

duced all 6 screens from each app. However, Facebook’s

redrawing implementation appears much more complex,

requiring 338,195 byte-code instructions and 7,928 JNI

invocations, compared to Skype’s 236,213 byte-code in-

structions and 5,256 JNI invocations. This also leads to

varied RetroScope run times: from the shortest, Samsung

S4’s MyChart, at 259 seconds to the longest, LG G3’s

Chase Banking, at 1731 seconds. The average runtime

across all apps is 655 seconds (10 minutes, 55 seconds).

Lastly, Table 1 shows that in two cases (Rows 26 and

34), RetroScope missed a single screen. Manual investi-

gation of these cases revealed that the app-specific draw-

ing functions for the missed screens had thrown unhan-

dled Java exceptions. For the HTC One device’s Face-

book case, we found that the app had stored a pointer

to the Thread object which handled its user interface

and during redrawing the app failed on a check that the

current Thread (handled by RetroScope during reanima-

tion) is the same as the previously stored Thread (from

the memory image). For the LG G3 Skype case, when

drawing the “video call” screen, a saved timer value

(in the memory image) was compared against the sys-

tem’s current time, which also failed during reanimation.

These were addressed by reverse engineering to deter-

mine which field/condition in the app caused the fault,

and RetroScope can be instructed to set/avoid them dur-

ing interleaved execution. Also of note, several cases re-

quired recovering on-screen elements (e.g., user avatars)

which were cached on persistent storage until they are

loaded on the screen. Currently, RetroScope attempts to

detect (e.g., via the unhandled exception) but can not au-

tomatically correct such implementation-specific seman-

tic constraints. We leave this as future work.
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(a) Screen -10. (b) Screen -9. (c) Screen -8. (d) Screen -7. (e) Screen -6. (f) Screen -5. (g) Screen -4.

(h) Screen -3. (i) Screen -2. (j) Screen -1. (k) Screen 0.

Figure 6: HTC One Chase Banking Recovery.

4.2 Case Study I: Behind the Logout

We now elaborate on the Chase Banking app case and

highlight RetroScope’s ability to recreate an app’s previ-

ous screens even after the user has logged out. Table 1

Row 32 shows that RetroScope recovered 11 out of 11

screens (the highest of all cases). Not surprisingly, the

recovery required the most reanimated byte-code instruc-

tions (584,587) and JNI function invocations (12,591),

as well as the most re-allocated Java objects (2,091) and

C/C++ structures (266,965).

The recovered screens are shown in Figure 6. Start-

ing from the Account screen (Screen -10), the “suspect”

looks up a nearby ATM (Screen -9). He then reviews

his recent money transfers (Screen -8) and begins a new

transfer to a friend via the app’s options menu (Screen

-7). Screens -6 to -4 fill in the transfer’s recipient and

amount. Screen -3 asks the user to confirm the trans-

fer. Screen -2 shows the app’s “Log Out” menu, Screen

-1 presents a loading screen while the app logs out, and

Screen 0 is (as expected) the app’s log in screen.

This case yields some interesting observations: First,

it highlights the robustness of RetroScope to recover a

large number of screens when an app’s internal data

continues to accumulate. More importantly, the case

shows that, after logging out, the Chase app (as well as

many others we have tested) does not clear its internal

data. This is not surprising because programmers usually

consider their app’s memory to be private (compared to

network communications or files on persistent storage).

This is further evidenced by the TextSecure app, which

also allows for a significant post-logout recovery (of pre-

logout screens), despite the app’s message database be-

ing locked in the device’s storage.

4.3 Case Study II: Background Updates

Another interesting case is WhatsApp Messenger on the

Samsung S4. Table 1 Row 15 shows that RetroScope re-

animated 402,536 byte-code instructions and 8,186 JNI

functions in 23 minutes, 10 seconds, yielding an aver-

age of 50,317 instructions and 1,023 JNI functions per

screen. What was unexpected however is that Retro-

Scope recovered an extra screen (8 out of the 7 expected

screens) from the memory image.

Our investigation into this extra screen found that it

was not a screen we had previously seen during our

phone usage. Instead, after we had finished interacting

with WhatsApp, the app received a new chat message

while it was in the background and, to our surprise, this

prompted the app to prepare a new chat screen that ap-

pended the newly received message to the chat. Figure 7

presents the screens recovered by RetroScope, and again

we see a clear temporal progression through the app by

the “suspect.” First, Screen -6 shows the call log screen.

The app’s Settings screen is seen in Screen -5 followed

by a screen that is only accessible through the Settings:

the device owner’s profile (our fictitious device owner is

Dr. King Schultz) in Screen -4. Screen -3 shows the

recent chats; Screen -2 shows the “suspect’s” chat with

a friend; then Dr. Schultz places a call to that friend
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(a) Screen -6. (b) Screen -5. (c) Screen -4. (d) Screen -3.

(e) Screen -2. (f) Screen -1. (g) Screen 0. (h) Screen +1.

Figure 7: Samsung S4 WhatsApp Recovery.

(a) Screen -4. (b) Screen -3. (c) Screen -2.

(d) Screen -1. (e) Screen 0.

Figure 8: LG G3 WeChat Recovery.

in Screen -1. Lastly, Screen 0 shows the friend’s pro-

file. Then, the extra Screen +1 shows the chat screen as

prepared by the app while in the background. Indeed it

shows the newly received message, even time-stamped

(“TODAY” and “4:51 AM” in Figure 7(h)) after the pre-

vious chat had taken place.

To ensure that this result was not an accident, we re-

peated the experiment (receiving chat messages while the

app was in the background) six more times (twice per de-

vice). In every test, we found that RetroScope recovered

the additional pre-built chat screen containing the new

message. Strangely, after testing the other apps which

can receive background updates, we found that What-

sApp is the only app, among our 15 apps, that exhib-

ited this behavior. We suspect that this is a WhatsApp-

specific implementation feature to speed up displaying

the chat screen (Screen +1) when the device user clicks

the “New Message” pop-up notification.

4.4 Case Study III: Deleted Messages

In addition to the WhatsApp case above, RetroScope re-

covered extra screens for four other cases in Table 1:

Telegram (Row 12), WeChat (Row 29), WhatsApp (Row

30), and TextSecure (Row 43). However, the extra

screens here are for a different reason: RetroScope can

recover explicitly deleted chat messages. In these tests,

we began a chat in each app and then explicitly deleted

one of the messages (as a suspect would do in an at-

tempt to hide evidence), and then used RetroScope to

recover the deleted message. Additionally, RetroScope

also recovered proof of the suspect’s intent to delete the

message: For WeChat and WhatsApp, RetroScope re-

covered the app’s pop-up menu (just prior to the deleted

message) which displays the “Delete Message” option.

For TextSecure, RetroScope recovered both the pop-up

menu and a loading screen showing the text “Deleting

Messages.”

Figure 8 shows one example: RetroScope’s recovery

for the WeChat app on the LG G3. Screen -4 shows

the “suspect’s” recent chats followed by a chat conver-

sation with a friend in Screen -3. Screen -2 is the pop-

up menu displaying the “Delete” option. The deleted

message (now disconnected from the previous chat win-

dow) is displayed in Screen -1, and the friend’s profile

page (which the “suspect” navigated to last) is shown in

Screen 0.

This result, in particular, highlights one of the most

powerful features of RetroScope, given that it works for

many apps and even provides proof of the suspect’s in-

tent. Further, all four apps tout their encrypted communi-

cation and some (e.g., TextSecure) even encrypt the mes-

sage database in the device. In light of this, law enforce-

ment has routinely had trouble convincing developers of

such apps to backdoor their encryption in support of in-

vestigations [4, 5]. Despite the few hardening measures

discussed in Section 5, RetroScope can provide such al-

ternative evidence which would otherwise be unavailable

to investigators.
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5 Privacy Implications and Discussion

RetroScope provides a powerful new capability to foren-

sic investigators. But despite being developed to aid

criminal investigations, RetroScope also raises privacy

concerns. In digital forensics practice, the privacy of de-

vice users is protected by strict legal protocols and regu-

lations [9,21], the most important of which is the require-

ment to obtain a search warrant prior to performing “in-

vasive” digital forensics such as memory image analysis.

Outside the forensics context, even some of the authors

were surprised by the temporal depth of screens that Ret-

roScope recovered for many privacy-sensitive apps (e.g.,

banking, tax, and healthcare). In light of this, we discuss

possible mitigation techniques which, despite their sig-

nificant drawbacks, might be considered worthwhile by

privacy-conscientious users/developers.

RetroScope’s recovery is based on two fundamental

features of Android app design: (1) All apps which

present a GUI must draw that GUI through the provided

View class’s draw function and (2) The Android frame-

work calls drawing functions on-demand and prevents

those drawing functions from performing blocking oper-

ations (file/network reads/writes, etc.). As such, an app

that aims to disrupt RetroScope’s recovery would need to

hinder its own ability to draw screens.

Previous anti-memory-forensics schemes focused on

encrypting in-memory data after its immediate use. This

ensures that traditional memory scanning or data struc-

ture carving approaches (e.g., [25, 26, 37, 41]) would not

find any useful evidence beyond the few pieces of de-

crypted in-use data. However, these solutions cannot

hinder RetroScope’s recovery because RetroScope re-

covers evidence via the app’s existing draw functions,

which would have to include decryption routines as part

of building the app screen. App developers may add

state-dependent conditions to their draw functions which

would crash when executed by RetroScope, but as seen

in Section 4 these can still be handled via additional de-

bugging/reverse engineering efforts to skip/fix the condi-

tions.

One approach that may disable RetroScope’s recov-

ery is to overwrite (i.e., zero) all app-internal data im-

mediately after they are drawn on screen. By doing

so, RetroScope would find that the app’s internal state

could not support the execution of any of its draw

functions. Unfortunately, this approach would signif-

icantly degrade usability and increase implementation

complexity: First, frequently overwriting app-internal

data would incur execution overhead (especially during

screen changes which are expected to be fast and dy-

namic). More importantly, this would require the app

to download its internal data from a remote server ev-

ery time the app needs to draw a screen. An app may

attempt to amortize these overheads (e.g., only zeroing

a prior session’s memory upon logout) but this would

require: (1) tracking used/freed memory throughout the

session (to be zeroed later) and (2) users to regularly log

out, which is uncommon and inconvenient for frequently

used apps such as email, messengers, etc.

Current vs. Future Android Runtimes. It is worth

noting that Google has begun shifting the Android frame-

work’s runtime from the Dalvik JVM to a Java-to-native

compilation and native execution environment (named

ART). Our implementation of RetroScope was based on

the original (and still the most widely used by far [17])

Dalvik JVM runtime. However, during our development

of RetroScope, specific care was taken to design Retro-

Scope to utilize only features present in both runtimes.

Specifically, ART still provides the same Java runtime

tracking and support as Dalvik does (implemented now

via C/C++ libraries) and all apps’ implementations (e.g.,

their Views and draw functions) remain unchanged. Our

study of ART revealed that the only engineering effort

required to port RetroScope is the interception of state-

changing instructions in the compiled byte-code, rather

than the literal byte-code as it exists in Dalvik. We leave

this as future work.

6 Related Work

RetroScope is most related to GUITAR [35] which,

by recovering the remaining “puzzle pieces” (GUI data

structures) from a memory image, is able to piece to-

gether an app’s Screen 0. Motivated by GUITAR’s

“Screen 0-only” limitation (i.e., spatial recovery), Ret-

roScope enables the fundamentally more powerful capa-

bility of recovering Screens 0, -1, -2, ... -N (i.e., spatial-

temporal recovery). Technically, GUITAR is based on

geometric matching of GUI pieces; whereas RetroScope

is based on selective reanimation of GUI code and data.

A number of other (spatial) memory forensics tools

have also been developed recently for Android. Many of

these approaches recover raw instances of app-specific

data structures to reveal evidence: App-specific login

credentials were recovered by Apostolopoulos et al. [8].

Macht [28] followed by Dalvik Inspector [6] involved

techniques to recover Dalvik-JVM control structures and

raw Java object content. Earlier, Thing et al. [42] found

that text-based message contents could be recovered

from memory images. Most recently, our VCR [36] tech-

nique made it possible to recover images/video/preview

frames from a phone’s camera memory.

In a mobile device-agnostic effort, DEC0DE [44] in-

volved an effective technique to carve plain-text call logs

and address book entries from phone storage using prob-

abilistic finite state machines.
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RetroScope shares the philosophy of leveraging exist-

ing code for memory content rendering with our prior

memory forensics technique DSCRETE [37]. However,

DSCRETE renders a single application data structure,

whereas RetroScope renders full app display screens in

temporal order. More importantly, DSCRETE requires

application-specific (actually, data structure-specific)

identification and extraction of data rendering code,

while RetroScope is totally app-agnostic, requiring no

analysis of app-internal data or rendering logic. Fi-

nally, DSCRETE works on Linux/x86 whereas Retro-

Scope works on the Android/ARM platform.

Many prior memory forensics techniques leverage

memory image scanning and data structure signature

generation approaches [11,12,16,26,32,34,38,41]. Data

structure signatures can be content-based [16] or “points-

to” structure-based [13, 15, 25, 26, 30]. For binary pro-

grams without source code, a number of reverse en-

gineering techniques have been proposed to infer data

structure definitions [24, 27, 39]. As a fundamentally

new memory forensics technique, RetroScope requires

neither data structure signature generation nor memory

scanning.

7 Conclusion

We have presented RetroScope, a spatial-temporal mem-

ory forensics technique (and new paradigm) that recov-

ers multiple previous screens of an app from an Android

phone’s memory image. RetroScope is based on a novel

interleaved re-execution engine which selectively rean-

imates an app’s screen redrawing functionality without

requiring any app-specific knowledge. Our evaluation

results show that RetroScope can recover visually accu-

rate, temporally ordered screens (ranging from 3 to 11

screens) for a variety of apps on three different Android

phones.
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Appendix

A. Memory Image Acquisition

A prerequisite of memory forensics is the timely acquisi-

tion of a memory image from the subject device. Mem-

ory images typically contain a byte-for-byte copy of the

entire physical RAM of a device or the virtual memory

of an operating system or specific process(es). Tradi-

tionally, acquisition is performed by investigators, be-

fore the subject device is powered down, using mini-

mally invasive software (e.g., fmem [22], LiME [7]) or

hardware (e.g., Tibble [14], CoPilot [31]) tools. Other

notable techniques have used the DMA-capable Firewire

port [10] to acquire memory images, existing hibernation

or swap files [18, 23, 32, 33], or cold/warm booted de-

vices [19,20,43], but such approaches are only employed

for highly specialized investigations. A more compre-

hensive list of memory image acquisition tools can be

found in [2].

Android memory forensics was initially proposed dur-

ing the development of memory acquisition tools for the

devices. Most known among these are the software-

based LiME [7] and TrustDump [40] techniques. In an

alternative approach, Hilgers et al. [20] proposed cold-

booting Android phones to perform memory forensics.

Our evaluation of RetroScope used both LiME and a

ptrace-based tool we developed (also available with the

open source RetroScope code). Meanwhile, hardware-

based memory acquisition from a mobile device is often

performed via the ARM processor’s JTAG port [1, 45].




