
BASS: Improving I/O Performance for Cloud
Block Storage via Byte-Addressable Storage Stack

Hui Lu†, Brendan Saltaformaggio†, Cong Xu‡ ∗, Umesh Bellur+ †, Dongyan Xu†

†Purdue University,‡IBM Research Austin,+IIT Bombay
†{lu220,bsaltafo,dxu}@cs.purdue.edu, ‡xucong@us.ibm.com, +umesh@cse.iitb.ac.in

Abstract
In an Infrastructure-as-a-Service cloud, cloud block storage
offers conventional, block-level storage resources via a stor-
age area network. However, compared to local storage, this
multilayered cloud storage model imposes considerable I/O
overheads due to much longer I/O path in the virtualized
cloud. In this paper, we propose a novel byte-addressable
storage stack, BASS, to bridge theaddressability gap be-
tween the storage and network stacksin cloud, and in return
boost I/O performance for cloud block storage. Equipped
with byte-addressability, BASS not only avails the benefits
of using variable-length I/O requests that avoid unnecessary
data transfer, but also enables a highly efficient non-blocking
approach that eliminates the blocking of write processes.
We have developed a generic prototype of BASS based on
Linux storage stack, which is applicable to traditional VMs,
lightweight containers and physical machines. Our exten-
sive evaluation with micro-benchmarks, I/O traces and real-
world applications demonstrates the effectiveness of BASS,
with significantly improved I/O performance and reduced
storage network usage.

Categories and Subject Descriptors D.4.4 [Operating Sys-
tems]: Communications Management—Input/Output

General Terms Design, Measurement, Performance

Keywords Virtualization, Cloud Computing, Cloud Block
Storage

∗ Contributed to the work while at Purdue University.
† Was a visiting faculty at Purdue University during 2015-2016.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC ’16, October 05-07, 2016, Santa Clara, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-4525-5/16/10. . . $15.00.

DOI: http://dx.doi.org/10.1145/2987550.2987557

1. Introduction
Cloud block storage (hereinafter referred to as block stor-
age), such as Amazon EBS, Google Persistent Disk and
Azure Premium Storage, offers reliable, high-performance
and on-demand block-level storage volumes for applications
hosted on virtual machines (VMs) or containers in today’s
cloud data centers. Block storage provides a powerful sepa-
ration of administrative domains – VMs/containers are free
to organize data on volumes with individual file systems
just like using local drives, while the underlying hypervisor
chooses suitable storage protocols to actually store the data
in remote physical media.

However, compared to local storage, this multilayered
model brings considerable I/O overheads and latency due to
much longer I/O path in the virtualized cloud environments
[10, 14]. To mitigate or hide such I/O overheads, block
storage systems rely heavily on the VM/container-side page
cache layer [17, 21, 27] to buffer volume data in memory
pages: I/O accesses to cached pages can be quickly returned,
while accesses to non-cached pages trigger a slow path – to
fetch data from the backing store. To avoid data loss, dirty
pages are periodically flushed to the backing store.

Unfortunately, we observe that two critical complications
arise from cloud block storage which make the traditional
caching mechanism less effective. First,partial writes (i.e.,
unaligned with the cache page size) tonon-cachedpages
cause VMs/containers to suffer extremely long I/O block-
ing time. This is because, theblock-levelread-modify-write
(RMW) restriction [20] requires a slow page read before
a partial write. Further, unlike local storage, this long I/O
latency cannot be offset by state-of-the-art fast storage tech-
nologies (e.g., PCM- or STTM-based devices [9, 13]), as
most I/O time in block storage is spent on data transmis-
sion within the multiple software layers (as we will see in
Section 2). Second,cachedpages, despite being onlypar-
tially dirtied, must be fully flushed to the remote backing
store via the network. Thisblock-level flush granularity
works well with local storage, as one data page – regard-
less of how partially dirtied – will trigger only one I/O ac-
cess with similar cost. However, it becomes sub-optimal for
block storage, because one partially dirtied page will require

169

far more network bandwidth than the dirtied data requires,
and thus longer data transfer and I/O completion time.

Recent studies have confirmed that there exists a signifi-
cant fraction of partial writes (>65%) in a variety of produc-
tion file system workloads [12, 18, 25, 33]. Our investigation
in Section 2 further demonstrates that the performance of
these workloads in block storage will be negatively impacted
due to the above-mentioned complications. For instance, the
performance of partial writes to non-cached pages can de-
crease by4 timesin block storage than that in local stor-
age. The total data transferred via the network for a 512-byte
write request can be18 timesthe size of the actually accessed
data.

To overcome these challenges, we presentBASS, aByte-
AddressableStorageStack with new designs and approaches
to accelerate I/O operations for cloud block storage. BASS
builds upon the often overlooked fact that: In block storage
the lower layer of the VM/container-side storage stack is ac-
tually thebyte-addressablenetwork stack, while theblock-
addressablestorage devices (e.g., HDD and SSD) are hosted
on a remote storage server.

This inherent layered design makes two ideas feasible
in BASS: First, unlike storage devices, the byte-addressable
network stack is able to takevariable-lengthI/O requests
from the VM/container file system, which eliminates the re-
strictions caused by block-granularity addressing, such as in
RMW. Instead, theoriginally synchronousblocking I/O can
be decomposed into afast-and-smallsynchronous portion
(putting only the dirtied bytes into the VM/container-side
cache) and aslow-and-largeasynchronous portion (fetch-
ing or flushing data from/to the backing store). This division
(detailed in Section 3.3) allows BASS to hide any latency
of the large portion from VMs/containers, which only wait
for the completion of the local caching. Second, leveraging
the byte-addressable network stack, the VM/container-side
file systems are free to flushonly the dirtied portionsof data
pages to the network layer, avoiding unnecessary data trans-
mission and thus accelerating data write-back speed and sav-
ing network bandwidth. Consequently, the block-level oper-
ations (e.g., data page alignment before a write) are taken
care of by the remote storage server, which interacts with
the block devices directly.

BASS realizes the above ideas by re-designing the block-
based storage stack, common to all block-based file systems,
to seamlessly expose the byte-addressability of the network
layer. Specifically, BASS enhances the storage I/O stacks
on both the hypervisor/container host and storage server, to
make the key data structures and functions aware of variable-
length I/O data rather than fixed block-based data. This en-
ables the lower-level driver layer to transfer only the needed
I/O data (of arbitrary length) between the VM/container
and storage server over the network. Meanwhile, BASS still
maintains block-level attributes for variable-length I/O re-
quests to allow existing block-layer optimizations (e.g., I/O

VMs

NIC

Ethernet

NIC

Net

Stack

Net

Stack

iSCSI Target

iSCSI Driver

Block I/O

Stack

PCIe Driver

PCIe Block

Devices

ext3

Block-based FS

ext4 xfs

btrfs gfs

Page

Cache

Containers

VMM (QEMU-KVM)

VFS

Block Layer
I/O

Scheduler
I/O request Queue

Driver Layer

Userspace

Kernel

Hardware

Apps

Figure 1. Cloud block storage architecture using iSCSI.
merging, scheduling and DMA) to interoperate seamlessly
with BASS. Further, with the help of byte-addressability,
BASS invents a newnon-blockingapproach for non-cached
writes by decoupling original blocking (synchronous) opera-
tions into fast caching and fetch/flush portions (as mentioned
above).

To the best of our knowledge, BASS is among the first
to explicitly consider theaddressability gapbetween the
storage stack and the network stack. We have implemented
BASS within the Linux storage stack, which works seam-
lessly with existing block-based file systems and is appli-
cable to traditional VMs, lightweight containers and phys-
ical machines. Our evaluation with a wide range of real-
world workloads shows that BASS both shortens applica-
tions’ I/O latency (e.g., up to 50% for Facebook and Twitter
I/O traces), and saves network bandwidth (e.g., up to 60%
for YCSB workloads).

2. Motivation
2.1 Block Storage Overview

Cloud block storage is typically built upon SAN architec-
tures. Existing SAN systems use either software-based (e.g.,
iSCSI), hardware-based (e.g., Fiber Channel) or hybrid (e.g.,
FCoE) protocol solutions. They have similar stack-based or-
ganizations to orchestrate multiple software and hardware
layers and provide the block device interfaces. In this pa-
per, we mainly focus on software-based solutions, however,
BASS’s design is equally applicable to other similar archi-
tectures.

Figure 1 shows a software-based implementation using
the iSCSI protocol to provide block transport. The storage
server (i.e., iSCSI target) turns its local block storage devices
into virtual volumes. An initiator (i.e., iSCSI drivers), which
serves the same purpose as a conventional SCSI bus adapter
(but replying on IP network instead of physical cables),
accesses these virtual volumes with TCP/IP encapsulated
SCSI commands. Conventional block-based storage stacks
run above the driver layer. The networked virtual block vol-
umes can be freely configured with various block-based file
systems by VMs/containers and native applications.

170

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

512 1024 2048 4096

IO
P

S

I/O Size (bytes)

Ext3
Ext4
XFS
NTFS

(a) Throughput.

0

2

4

6

8

10

12

14

16

512 1024 2048 4096

B
an

d
w

id
th

 U
sa

g
e

p
er

I/
O

 (
K

B
)

I/O Size (bytes)

Ext3 Ext4
XFS NTFS
Dirty Bytes

(b) Bandwidth.

Figure 2. IOPS and network bandwidth usage over sized
write requests on different block-based file systems.

2.2 I/O Overhead Illustration

To illustrate the I/O overhead of block storage incurred
in a multilayered architecture (Figure 1), we compare the
throughput (in terms of IOPS) and network bandwidth us-
age (consumed per I/O request) using various sized write re-
quests issued by applications running inside VMs/containers.
Specifically, on the host machine we run a Linux container
1, which attaches an SSD device (in the form of a virtual
volume) from a remote storage server. On top of the SSD
device, various popular block-based file systems are inves-
tigated, including Ext3/4 (the Linux file systems), XFS (a
journaling file system), and NTFS (an open source imple-
mentation of the Windows NTFS).

Fio [1] is used as the workload to generate random writes
to a large file (e.g., 50 GB) created in advance on the con-
tainer’s file system. The I/O request size ranges from 512
bytes to 4 KB. Note that, except for the I/O requests which
happen to be 4 KB, all others areunalignedwith the cache
page size of the investigated file systems (i.e., 4 KB). We run
one thread in Fio to generate I/O requests with an I/O depth
of one – the next I/O request is issued only after the cur-
rent one completes – to measure the worst case I/O latency.
The page caches on both the container and storage sides are
cleared before each run to simulate the non-cached case.

Figure 2(a) shows that the throughput ofunalignedI/O
requests (i.e., partial writes of 512, 1024 or 2048 bytes) is
much lower (e.g.,10 timesfor Ext3) than that ofwell-aligned
I/O requests (i.e., 4 KB in size). This indicates that the file
systems running on block storage are unfavorable to partial,
non-cached writes. Though the local case (i.e., using direct
attached storage) can also suffer from this issue, these results
show that this condition becomes much more severe in cloud
block storage (e.g.,4 timesworse). Further, unlike in the
local case, the long I/O latency of block storage cannot be
offset by state-of-the-art fast storage technologies2. We term
this problempartial-write blocking.

1 Weinvestigated both VMs and containers, which yielded similar results.
2 For example, the storage-side cache could load the data in advance (to
simulate a fast storage device with DRAM-like speed), but the throughput of
unaligned I/O requests in the block storage case remains 6 times lower than
that of the well-aligned I/O requests, despite there being no performance
gap between these two types of I/O requests in the local case.

VMs or

Containers

Page

Cache

File System &

Block Layer

Transport

Driver

VM

Remote

Storage

Cache Miss

Cache Hit

t1

t2

VM

VM

VM

Partial Writes
Read

Requests

Data

Transfer
ACK

Partial Writes

ACK

VM
Cache Flush Write

Requests
Data

Transfer

ACKTime Time Time Time Time

Data

Read

Data

Write

Figure 3. I/O bottleneck root cause analysis.

Using the same setup as above, Figure 2(b) depicts the
average network bandwidth usage of one I/O request in each
case. For instance, one 512-byte modification on Ext3 needs
more than 9-KB of network traffic (packets) to complete,
while a 4-KB modification only consumes∼4.5 KB of net-
work traffic. This indicates that block storage network us-
age is quite inefficient for partial I/O requests. Note that the
TCP/IP and iSCSI headers only contribute∼7% of the data
in one iSCSI network packet, while the actual network band-
width used for one 512-byte write I/O can be up to18 times
the size of the actual data modification. We term this thedata
transmission amplification problem.

2.3 Problem Root Cause Analysis

Let us take a deeper look into the causes of the problems
presented in Section 2.2. Figure 3 shows the I/O flow of
control from the application layer to the backing store. We
assume one application (running in the VM/container) issues
I/O requests to the file systems, and the operating system
caches file data in the page cache layer3.

Once a partial write is issued to a page that is not in
the cache (i.e., the partial, non-cached write case), the page
cache layer will trigger an atomic RMW operation, which
fetches the original data copy from the backing store at the
granularity of one page. During this page fetch, the applica-
tion’s I/O thread is blocked to wait for the acknowledgement
of the write completion. Because the I/O path of block stor-
age consists of multiple layers, the blocking time,t1, could
be significant. In contrast, once a partial write is issued to a
page that is in the cache (or a full-page write4), the cache
layer simply puts the dirty data into the cache page, and the
application’s I/O thread returns. As this process mainly in-
volves the virtual file system layer and the cache layer, which
are fast, the blocking time,t2, will be much smaller thant1
(several orders of magnitude). This explains the cause of the
partial-write blockingproblem.

Further, the page cache layer needs to periodically (e.g.,
5 seconds) flush dirty pages to the backing store to avoid

3 We assume a write-back cache – the best performance cache solution.
BASS is compatible with other cache policies, like write-through.
4 A full-page write does not require RMW.

171

0%

20%

40%

60%

80%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

A
v
er

ag
e

D
ir

ti
ed

 B
y

te
s

o
f

a

P
ar

ti
al

 P
ag

e
(%

)

Dirty Page Flushing Interval (seconds)

usr2 usr1 twitter
facebook gsf moodle
Finance-1 Finance-2 ug

Figure 4. The average number of dirty bytes as a percentage
of the 4-KB page size with varying cache flush interval.

I/O traces Partial Partial, non-cached Description
Writes(%) Writes(%)

usr1 52.77 5.69 Desktop1
usr2 72.21 22.02 Desktop2

moodle 55.89 40.92 Web & Database
gsf-filesrv 32.72 6.81 CIFS server1
ug-filesrv 31.38 7.49 CIFS server2
facebook 87.81 9.64 Facebook app
twitter 85.93 9.66 Twitter app

Finance-1 53.86 23.96 OLTP app1
Finance-1 65.67 7.18 OLTP app2

Table 1. Partial write percentage of the total writes.

data loss due to system crashes. Conventionally, a dirty page
is written back in terms of a whole page, regardless of how
many bytes on the page have been modified. For file systems
running over local storage, this block-based treatment is
reasonable, as one page access will only trigger one I/O
request – the page data is usually placed in an allocation
unit on disks consisting of contiguous groups of physical
sectors. However, for file systems over networked storage,
this mechanism causes the network layer to transfer both
modified and unmodified content of a dirty page, resulting in
the data transmission amplificationproblem. This problem
becomes particularly severe for partial, non-cached writes –
for one such write, the network layer needs to transfer a read
page and a write page due to RMW.

Essentially, the above mechanisms are based on the
“block” attribute of the storage stack – most modern file
systems are built on blocks, and data is organized and ac-
cessed at block granularity (e.g., 4 KB). However, in cloud
block storage, the lower layer of the VM/container-side file
systems becomes the byte-addressable network stack, while
the block-based storage devices move to the remote stor-
age server. This new layer orchestration breaks down the
“block” restrictions, and provides opportunities to address
the two problems above (detailed in Section 3).

2.4 Prevalence of I/O Bottlenecks

Section 2.2 indicates that the performance of applications
with partial and/or non-cachedwrites could be negatively
impacted. To quantitatively investigate this problem in a re-
alistic environment, we analyzed several I/O traces from the
user desktop, web and database servers, CIFS file server [5],

Facebook and twitter applications [3], and OLTP applica-
tions [7] as listed in Table 1. We analyzed the last 2-hours of
write operations from each trace, except for Facebook and
Twitter’s traces which only contain 120-second’s worth of
I/O operations.

First, we analyzed the percentage of the total pages that
are partially dirtied (i.e., partial writes). Table 1 shows that
theses traces have a significant number of partial writes,
ranging from 30% to 90% of the total writes. Moreover, 5%
to 40% of thetotal writes 5 will encounter cache misses
(i.e., the partial, non-cached writes) and suffer from the
partial-write blockingissue. Further, our evaluation in Sec-
tion 5.2 shows that, for example, the∼10% partial, non-
cached writes of Facebook’s trace lead to∼50% of the over-
all I/O latency.

Next, to investigate thedata transmission amplification
problem, we analyzed the dirty-byte percentage of a 4-KB
page size – the actual bytes that need to be transferred be-
tween VMs/containers and storage servers. Note that, the
degree to which a page has been dirtied depends on the
cache flush interval– the longer the interval, the more the
dirty bytes aggregate during the interval. To account for
such influence, we use a simple cache simulator: We assume
the cache size is unlimited (i.e., no pages will be evicted);
the flush interval is configured from 0 (i.e., dirty pages are
flushed immediately once dirtied) to more than 60 seconds.
Figure 4 shows the average number of dirty bytes as a per-
centage of the 4-KB page size. These results show that most
page dirtying happens early – the number of dirty bytes does
not change much as the cache flush interval increases. Fur-
ther, when we keep the flush interval sufficiently long (e.g.,
60 seconds), the dirty-byte percentages of three traces are
still very low – less than 40%. Five others vary between
60% and 80%. Only one I/O trace’s dirty-byte percentage
is∼100%.

To summarize, on average∼60% of the total writes in-
volve partial writes.∼20% of the total writes are partial,
non-cached writes. Besides, a significant number of bytes
(>40%) in a partial write page arenotdirtied. In light of this,
such workloads on block storage will be negatively impacted
due to partial-write blocking and data transfer amplification
– which BASS aims to overcome.

3. Design
To overcome the problems illustrated in Section 2, BASS
adapts the existing block-based cloud storage stack to make
it byte-addressable. First, BASS enables the generation of
variable-length, instead of blockwise, I/O requests within
the existing storage stack (Section 3.1). Meanwhile, BASS
carefully maintains the block-level attributes to allow block-
layer optimizations to work for the variable-length I/O

5 We consider writes which access pages that have not been accessed for
more than one hour to be non-cached writes. For the Facebook and Twitter
traces, we only assume that no data is cachedbeforethe traces begins.

172

Network Stack

Backend

(BASS_Backend)

Generic Block

Layer

Device Driver

Applications

Virtual File System

File Systems

Page Cache

(BASS_Cache)

Generic Block Layer (BASS_Block)

Device Driver

VM/Container Side Storage Side

(a) Architecture.

1 2

1 2H

BASS_Cache

Page_write

Track

BASS_Block

Reorganization

BASS_Backend

Original Copy Reconstruction

DMA

Variable-length I/O Requests

Network

1 2 1 2H 1 2

(b) Workflow.

Figure 5. BASS architecture overview and workflow.

requests as well (in Section 3.2). Last, with the help of
byte-addressability, BASS involves a highly efficient non-
blocking approach for partial, non-cached writes by decou-
pling the synchronous blocking operation into two (perfor-
mance optimized) halves (in Section 3.3).

3.1 Byte-addressable Storage Stack

While many different block-based file systems are designed
with various ways of organizing stored files, they all share
a generic block-based storage interface (e.g., the Linux stor-
age stack), where the fundamental (low-level) data read and
write operations are provided. To enable byte-addressability
for this storage stack (and thus for file systems implemented
upon it), BASS incorporates new components into the en-
tire storage I/O stacks of both the VM/container and stor-
age server: including a BASSCache in the cache layer,
BASS Block in the generic block layer, and BASSBackend
in the storage backend. Figure 5 shows these components
alongside the original storage stack and their workflow.

BASS Cache While applications can issue arbitrary length
I/O requests to file systems, this “length” information is ig-
nored by the cache layer, and resolves into a page-level oper-
ation – to fetch afull non-cached page or flush anentiredirty
page. However, to realize byte-addressability, such length in-
formation must be recorded.

BASS Cache is designed to keep track of application-
level accesses at a byte granularity in the page cache layer.
These byte-grained accesses will be used for the gen-
eration of variable-length I/O requests to achieve byte-
addressability. Although it is possible for BASS to support
variable-length read requests, a full-page fetch for a partial
read will benefit subsequent accesses to the same page (anal-
ogous to the “readahead” feature commonly used by the
Linux kernel). To keep this optimization, BASS performs

reads at the block level – to read a full page regardless of the
I/O request length – with one exception (detailed in Section
3.3). On the contrary, it is imperative that partial writes be
byte-addressable, since a full-page flush of a partially dirt-
ied page will result indata transmission amplification(as
stated in Section 2.2). To this end, BASSCache maintains
a linked list for each data page to store the non-overlapped
dirty segments. This linked list will be updated by every
write operation and used for constructingvariable-length
write I/O requestswhen the page is flushed.

BASS Block Periodically or based on trigger events, file
systems transform dirty pages into block I/O requests and
then deliver such I/O requests to the generic block layer –
an abstraction for block devices. Because the block layer
processes I/O requests at the granularity of the physical
sector size (e.g., 512 bytes or 4 KB), conventionally, I/O
requests must be generated with the length being an integer
multiple of the physical sector size. However, this limits the
realization of variable-length I/O requests, desired by byte-
addressability. To overcome this, BASSBlock provides a
new I/O generation function,submit io .

A straightforward way forsubmit io to create variable-
length I/O requests from a dirty page may be to transform
each dirty segment into a single I/O request. However, this
method tends to produce many I/O requests, because multi-
ple dirty segments may exist in a dirty page. Excessive I/O
requests would increase the overhead of the storage system.
Instead,submit io chooses to pack multiple dirty seg-
ments and generates one I/O request for each dirty page.
Specifically,submit io reorganizes the data layout of a
dirty page by placing all dirty segments into one contigu-
ous segment. An I/O header (i.e., metadata) is then created
to store the pairs of position and length of dirty segments.
The I/O header and the contiguous merged dirty segments
construct theeffective data chunk, used as the I/O request
content. Note that, a temporary page is used to store the
effective data chunk, as the original page will be accessed
by subsequent requests. The temporary page will be shortly
released after the I/O request completes.

Yet, an issue arises during I/O request generation: the size
of the effective data chunk may be larger than the page size,
such as thefull-page (well-aligned) writes – each has one
dirty segment with the length being the page size6. Simply
using the above generation method will lead to the trans-
fer of more thanone-page-sizeof data, which is inefficient.
In ordernot to bring additional overhead to these full-page
writes,submit io selectively falls back on the original I/O
request generation scheme (i.e., without data layout reorga-
nization). Consequently, two types of I/O requests will coex-
ist in the storage system – ones with I/O headers (i.e., partial
I/O requests), and ones without (i.e., full-page I/O requests).
To distinguish between these two types of I/O requests, an

6 BASS treats any highly-dirtied page writes, whose effective data chunk
size is larger than one page size, as full-page writes.

173

Page1 Page2 Page3 Page4

Req1

Page1 Page2 Page3 Page4

H H H

H H H

H H H

BASS_Cache

BASS_Block
(No Merging)

BASS_Block
(With Merging)

VM/

Container

Storage

BASS_Backend

Req1*

Req3Req2

Figure 6. BASS supports I/O merging for partial writes.
identifier field(with a distinctive unique value) is added to
the header of partial I/O requests7.

Last, new data structures are required for variable-length
I/O requests (similar to the Linux bio structure) to keep
track of the position/length information for the effective
data chunk as well as the data pointer to the temporary
page. Further, the functions in the block layer (that were
only aware of sector-level information) should be enhanced
to account for variable-length I/O requests. By doing so,
the effective data chunk will be correctly encapsulated into
I/O data packets by the low-level device drivers and direct
memory mapping (DMA).
BASS Backend The storage backend decomposes received
I/O requests and performs the actual storage operations. As
BASS Block changes the format of a partial-page write into
packed dirty segments, the storage backend also needs new
processing logic to unpack the I/O operations.

BASS Backend first checks whether theidentifier field
exists or not in the header of the received I/O data (we
will discuss merging requests in Section 3.2). If the iden-
tifier does not exist, a full-page write is indicated and
BASS Backend processes it along the original I/O path –
data is written to either the storage-side cache or the storage
devices. Otherwise, BASSBacked switches to the partial-
page write path. The I/O header is used to locate the position
and length of dirty segments, and BASSBackend locates
the original data page that the dirty segments belong to. If
this page is cached, the page will be updated to include the
dirty segments directly; otherwise, the data page needs to be
fetched from the backing store and then updated.

This allows BASS to move the block-level processing
logic from the VMs/containers to storage servers, while re-
maining fully compatible with the layered setup of cloud-
based block storage. Further, this design not only avails the
benefits of using variable-length I/O requests (avoiding un-
necessary data transfer), but also enables our non-blocking
optimization detailed in Section 3.3.
3.2 BASS Support for I/O Merging

Residing in the generic block layer, I/O merging functions
and schedulers play an important role in maximizing block

7 To avoid collisions with our unique identifier, the BASSBackend also
performs sanity checks on the header’s dirty segment layout data structure
and payload size (i.e., variable-length requests are not page aligned). We
ensure the probability of a collision is greatly less than an undetectable data
corruption event.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

256 512 1024 2048

IO
P

S

Operation size (bytes)

No Merging

 Merging

(a) Performance.

0

10

20

30

40

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

server_%system
server_%user
container_%system
container_%user

(b) CPU breakdown.

Figure 7. Performance comparison with and without I/O
merging support.
device performance. However, the involvement of BASS
may change the default behaviors of these functions, which
BASS must proactively account for.

Let us consider the example in Figure 6. Four pages,
Page1 to Page4, contain data of contiguous groups of physi-
cal sectors. By default, these four pages will first convert to
four block-based write I/O requests (if dirtied). Later, they
would merge into one single I/O request at one of several
merging points along the I/O path. These merging functions
decide to merge I/O requests based on their physical loca-
tions (i.e., sector location) and the length of the I/O requests
(i.e., total sector number). However, with BASS some orig-
inally mergeableI/O requests becomeunmergeable. For in-
stance, the write I/O requests of Page2 and Page3 in Figure 6
will not merge anymore, because the merging functions con-
sider these two I/O requests to bephysically inconsecutive,
according to their location and (unaligned) length informa-
tion. Further, the four pages will in total produce three I/O
requests, incurring high overheads.

To allow variable-length I/O requests to benefit from
these optimizations, BASS carefully maintains the block
attributes for these requests as well. First, BASS keeps the
sector related information (i.e., sector position and total sec-
tor number), when generating I/O requests. This information
will be exposed to the merging functions and I/O schedulers
for merging and sorting purposes. Additionally, the actual
I/O length information is kept and will be exposed to the data
encapsulation related functions, such as the scatter/gather
processes, which perform DMA operations on pages that
are scattered throughout physical memory. Based on this,
the I/O requests can be merged and sorted in the same way
as before; meanwhile, only theeffective data chunkwill be
put into the I/O request data packets.

On the storage side, BASSBackend must be aware that
one “large” I/O request may contain several small (merged)
I/O requests – probably a mixture of full-page and partial
I/O requests. To distinguish each separate request (per page),
BASS Backend first screens out the partial I/O requests by
locating theiridentifier fields, and separates them from the
full-page I/O requests. After this step, BASSBackend pro-

174

Thread Page Cache Update Page

Grab a PageFetch page data from backing store

Overwrite Cache Hit

Cache Miss

Data flush

(a) The VM/container-side function.

Page Cache
Receive an I/O request

Update Page
Cache Hit

Backing Storage

Cache Miss &

fetch the data page

Data flush

(b) The storage-side function.

Figure 8. The non-blocking write approach.
cesses these requests separately by applying the appropriate
logic described in Section 3.1.

To demonstrate the benefits of I/O merging, we compare
the performance of BASS with and without the merging sup-
port using a representative example: We run one Fio thread
in a container to generate the sequential write I/O requests
but with “holes”. For example, when the I/O request size is
1 KB, we skip 3 KB after each write request. With this con-
figuration, the Fio thread accesses contiguous blocks in the
backing store. But for each 4 KB block, the thread only mod-
ifies the leading portion of the block data with a certain size
(256 bytes to 2 KB). Without the merging approach, BASS
simply generates one I/O request for each 4 KB block write,
while with the merging approach, BASS enables the I/O
schedulers to merge as many requests as possible to create
a large I/O request. To ensure no performance bottlenecks
are due to disks, we cache data in the cache of the storage
server, while data is not cached on the container side.

Figure 7(a) shows that, compared to the non-merging
case, BASS with merging improves the performance of se-
quential writes by up to 30% (at 256 bytes). Further, BASS
with merging reduces the overall CPU utilization (includ-
ing both the container and storage server) by up to 40%
(at 256 bytes) as shown in Figure 7(b). Most of the reduc-
tion is contributed by the decreased CPU utilization of the
container-side system (kernel), indicating merging makes
the container-side storage system more efficient. In the re-
mainder of this paper, we will only consider BASS with
merging support.

3.3 Non-blocking Approach

Prior to BASS, all partial, non-cached writes followed the
RMW convention, which blocks the write thread and thus
impacts application-level performance greatly. With byte-
addressability however, BASS is able to break the origi-
nally synchronous, blocking write process into two opti-
mized halves: the fast first half on the VM/container side
and the slower second half on the storage side.
Non-blocking Writes Figure 8 shows the workflow of
the non-blocking write approach. Once a partial, non-cached
write encounters a cache miss, instead of fetching the page
from the remote backing store, BASS allows the write to
occur directly by grabbing a free page from the page cache

layer, storing the write in this page, and then allowing the
writing thread to return. This makes the first half of the
non-blocking write extremely fast, because all operations
occur in main memory. Later, during the period of dirty page
flushing, the written portion of a dirty page is flushed to
the storage side via variable-length I/O requests. The actual
RMW operation is then performed by the storage server,
which aligns the partial writes to the underlying physical
blocks. Specifically, the original page is fetched from the
backing store (or memory if buffered) and updated to include
the dirty portion. Notice that, this effectively hides the RMW
processing latency from the applications, which only wait
for the in-memory caching to complete.

The reasons that the two halves can be separated are that:
(1) Like well-aligned writes, the dirty pages of partial writes
do not need to flush to the backing store immediately. (2)
With byte-addressability, it is possible to only deliver the
dirty portion of a page to the storage side (i.e., without the
need to fetch the original data page).

Handling Read “Holes” Because of the non-blocking
write approach, the dirty pages on the VM/container side
may contain some “holes” – regions that are neither written
by applications nor fetched from the backing store. If the
data being read is completely contained in the page (by
examing the linked list), then the page can be served and
the read can return immediately, namelynon-blocking reads.
However, future reads may be blocked, if any part of the data
being requested is not contained in the page (i.e., it falls in
a hole). For such blocking reads, ideally, only the missing
data needs to be fetched from the storage side. However, the
missing data could be spread across noncontiguous regions
and thus require multiple separate read requests. To avoid
such overhead, BASS divides a page into small sub-blocks
– if the missing data covers part of any sub-block, that sub-
block will be fetched8. In this way, BASS limits the request
number of fetching one partially dirtied page.

On the surface, BASS appears to transfer the blocking
time from writes to reads – the reads after writes may be
blocked due to holes. However, the amortized blocking time
of BASS is much smaller than the conventional approach
(e.g., RMW) because: (1) There is a high possibility that
future reads can be served by existing pages. (2) A signif-
icant number of partial writes are not followed by any future
reads of the same page, indicating the page fetch operation
can be completely eliminated – recall that 62%∼ 98% of
the writes are not followed by any future reads of the same
pages (obtained from the traces in Section 2). (3) Even in
the worst case – each partial write is followed by a read that
cannot be served by the current page – our evaluation shows
the non-blocking approach of BASS leads to better overall
performance compared to RMW, as BASS fetches less data.

8 In practice, a 512-byte sub-block (i.e., aligned with the size of a physical
sector) works well. To support “readahead”, all sub-blocks with holes will
be fetched, once the fetching condition is triggered.

175

4. Implementation
Wehave implemented BASSCache and BASSBlock in the
Linux kernel 3.2.10 (∼400 LOC), and leveraged Linux’s
SCSI target framework [2] to realize BASSBackend as a
loadable module (∼600 LOC).
File System Integration Integrating a file system into
BASS is relatively easy: To enable byte-addressability,
BASS provides a newsubmit io function for file systems
to call when page reads or writes are issued. To enable non-
blocking writes, BASS replaces the file systems’ handling of
partial writes with thefirst partof BASS’s non-blocking ap-
proach. Lastly, BASS adds an additional branch to read pro-
cessing to check whether pages are partially dirtied or not.
We have integrated and tested Linux Ext2/3/4 with BASS.
Consistency BASS supports all existing file system jour-
naling modes (e.g., write-back, ordered and full data journal-
ing). In fact, BASS is only involved in the processes of data
caching and I/O request generation. It does not alter any se-
mantic level activities, allowing such file system operations
to remain unchanged. Our implementation follows the Linux
page locking protocol to return onlyup-to-datedata to ap-
plications: A page is locked once updated (e.g., during data
layout reorganization and fetching).
Error Handling Traditionally, I/O errors (e.g., due to the
disks) will be reported directly to the application processes.
With BASS, application processes receive reports from the
first part of the non-blocking writes. Instead, like existing
well-aligned writes, any I/O errors of partial writes dur-
ing page flushing will be reported to and handled by the
VM/container-side iSCSI initiator.
Cache Policy There are three main cache policies: write-
back, write-through and write-around (i.e., no cache). The
write-back policy exposes BASS’s full potential, includ-
ing both byte-addressability and the non-blocking write
approach. To ensure strong durability, write-through cache
strictly directs writes into both cache and underlying perma-
nent storage before confirming I/O completion. Therefore,
a write-through cache can take advantage of BASS’s byte-
addressability when flushing partial writes. BASS does not
impact the write-around policy – the direct I/O requests fol-
low the original I/O path.

5. Evaluation
This section presents our comprehensive evaluation of the
benefits and costs of BASS using micro-benchmarks, practi-
cal I/O traces, and real world applications.
Evaluation Setup: Our testbed consisted of six physical
machines hosting VMs/containers and a storage server, con-
nected via a 10 Gigabit Ethernet switch. Each host machine
was equipped with a quad-core 3.2 GHz Intel Xeon CPU
and 16 GB of RAM. The storage server was equipped with
an 8-core 2.5 GHz Intel Xeon CPU and 32 GB of RAM. A
Linux SCSI target (“tgt”) ran inside the storage server with
BASS Backend support. One 500G solid-state drive (SSD)
was installed in the storage server as the backing store.

We evaluated BASS with two virtualization techniques:
containers and virtual machines. Specifically, we ran micro-
benchmarks and replayed I/O traces using containers and
ran application workloads inside VMs. To enable BASS for
containers, we installed BASSCache and BASSBlock in
the host machine’s Linux 3.2 kernel, while to enable BASS
for VMs, we installed these two components inside the VM’s
Linux 3.2 kernel. Both containers and VMs were assigned
sufficient resources to ensure that neither CPU nor memory
was a bottleneck. All experiments were performed with the
Linux Ext4 file system (with thewriteback journal, i.e.,
only the metadata is journaled) installed in the containers
or VMs. Each data-point in the experiments was calculated
using the average of three executions. The standard error of
measurement was less than 5% of the average for more than
90% of the results, and was less than 10% for the rest.

5.1 Micro-benchmark

In this section, we evaluate the effectiveness of BASS, using
the micro-benchmark tool Fio. We focus on three aspects,
impacts on writes, impacts on reads, and benefits of using
high speed storage devices.

5.1.1 Impacts on Writes

We evaluated two representative write scenarios:random-
write andsequential-write(with “holes” as that in Figure 7).
On a host machine, we ran a Linuxcontainerthat attached
a virtual storage volume from the remote storage server. A
50 GB file was created and stored in the container’s Ext4 file
system. One thread of Fio generated write requests to this
large file, with the I/O depth being one and the sizes ranging
from 512 bytes to 4 KB. The cache of the container and
storage server were cleared before each experiment, which
lasted 60 seconds. All data was collected until all dirty pages
were flushed to the backing store.
Performance Benefits To evaluate how BASS’s non-
blocking approach improves overall I/O performance, we
compared the throughput (i.e., IOPS) with BASS and with-
out (which we term “Legacy”).

In Figure 9(a), we observe that the average throughput
of partial random-writes (i.e., with the size being 512, 1024
and 2048 bytes) under BASS is∼8X higher than that under
Legacy. Specifically, under Legacy, the average throughput
is only∼3,000 IOPS, while with BASS it reaches∼27,000
IOPS. A similar trend is observed with sequential-write in
Figure 10(a): The average throughput of partial sequential-
write under Legacy is about 5,000 IOPS, while the through-
put using BASS reaches the same level as that in the random-
write case, 27,000 IOPS. Notice that, sequential writes tend
to produce higher performance than random ones because of
I/O merging. Further, we identified that the reason both write
cases under BASS achieve the same I/O throughput was be-
cause the storage device reached 100% utilization.

For well-aligned writes (i.e., 4 KB), thesamethroughput
is observed with and without BASS. Moreover, we find well-

176

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

512 1024 2048 4096

IO
P

S

Operation size (bytes)

Legacy BASS

(a) Performance.

0

1

2

3

4

5

6

7

8

9

10

N
et

w
o
rk

 B
an

d
w

id
th

 (
K

B
)

RX kB/IO
TX kB/IO
Dirty Bytes

(b) Network bandwidth.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

C
P

U
 C

y
cl

es
 p

er
 I

O
 R

eq
u

es
t

container_%user container_%system

server_%user server_%system

(c) CPU utilization.

Figure 9. Random write performance, network bandwith and CPU utilization with various I/O sizes.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

512 1024 2048 4096

IO
P

S

Operation size (bytes)

Legacy BASS

(a) Performance.

0

1

2

3

4

5

6

7

8

9

10

N
et

w
o
rk

 B
an

d
w

id
th

 (
K

B
)

RX kB/IO

TX kB/IO

Dirty Bytes

(b) Network bandwidth.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

C
P

U
 C

y
cl

es
 p

er
 I

O
 R

eq
u

es
t container_%user container_%system

server_%user server_%system

(c) CPU utilization.

Figure 10. Sequential write performance, network bandwith and CPU utilization with various I/O sizes.

0

20,000

40,000

60,000

80,000

100,000

120,000

256 512 1024 2048

IO
P

S

Operation size (bytes)

Legacy

BASS

(a) Performance.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

C
P

U
 C

y
cl

es
 p

er
 I

O
 R

eq
u

es
t server_%system

server_%user
container_%system
container_%user

(b) CPU utilization.

Figure 11. The scenario of cached random writes.
aligned writes achieve higher throughput,∼40,000 IOPS,
compared with the partial ones. This is because, as explained
in Section 2, one partial write triggers two data accesses
to the disk (i.e.,fetch-before-writedue to RMW), while
one well-aligned write only involves one access (i.e., write-
back). Note that, the slow I/O path of partial writes on the
storage side has been hidden from applications by BASS’s
non-blocking approach. When the storage device is not fully
utilized, BASS can bring more performance improvement on
partial writes than Legacy (in Section 5.1.3).

These results indicate that, compared with Legacy, BASS
significantly improves the throughput of both partial random-
write and sequential-write. In addition, BASS does not im-
pose any overheads on well-aligned writes.

Bandwidth Saving Recall that the byte-addressability of
BASS not only enables the non-blocking approach, but also
reduces the amount of data to be transferred via the net-
work. To measure the bandwidth saving, Figure 9(b) and
Figure 10(b) show the average network bandwidth usage –

including both ingress (i.e., RX) and egress (i.e., TX) on the
host machine – by one I/O request. The solid line depicts the
number of bytes dirtied per I/O request.

As these two figures show, without BASS each partial
write requires almost 9 KB of network bandwidth, while
with BASS the bandwidth is only slightly larger than the
size of the bytes being written. This is because (1) with the
non-blocking approach, BASS avoids the page fetching of
a partial write, and (2) with byte-addressability, BASS only
transfers the dirty bytes of a partial write via the network.
The slight overhead with BASS is caused by TCP and iSCSI
headers. Moreover, the network bandwidth usage of one
partial sequential-write is slightly smaller than that of one
random-write. This is because, multiple sequential writes
were merged into one large I/O request, resulting in fewer
numbers of network packets and thus reduced overheads.

The I/O performance benefits from the bandwidth sav-
ing are not obviously demonstrated in Figure 9(a) and
Figure 10(a) because, as mentioned above, the storage de-
vice is 100% utilized. To demonstrate such benefits, we
used both container- and storage-side cache to buffer the
accessed data, which released the storage device’s load. In
such a condition, Figure 11(a) shows that BASS improves
the throughput of random-write by up to 57% (at 256 bytes),
indicating that the saved network bandwidth further acceler-
ates I/O performance.

Overhead As presented in Section 3, BASS introduces
slight CPU and memory utilization overheads. To assess
the time cost, we compare the CPU utilization with BASS
and without. As BASS improves I/O performance, the over-
all CPU utilization also increases. For ease of comparison,

177

0

20

40

60

80

100

120

C
o

m
p

le
ti

o
n

 T
im

e

(s
ec

o
n

d
s)

Write Read

Figure 12. A worst-case scenario: each read after a partially
dirtied page.
we convert CPU utilization to cycles per I/O request (CPI).
First, when writes are partial and non-cached as shown
in Figure 9(c) and Figure 10(c), BASS reduces the CPI of
random-write and sequential-write by∼70% and∼55% re-
spectively. This is because BASS optimizes the I/O path for
these writes: (1) BASS eliminates page fetching, and (2)
BASS avoids container-side I/O thread blocking (thus, no
overheads on thread suspending/resuming). Second, when
writes are partial and cached, Figure 11(b) shows that BASS
yields lower or similar CPI when I/O sizes are small (from
256 bytes to 1 KB), but slightly higher CPI when I/O sizes
become large (e.g., 2 KB). This indicates that as the number
of dirty bytes increases, the CPU cost for data reorganization
increases. However, this cost is relatively small – less than
5%. Last, when writes are well-aligned, from Figure 9(c)
and Figure 10(c), we observe that BASS results in the simi-
lar cost as Legacy.

In addition to the CPU cost, BASS needs some memory
space for storing the linked list data structure and reorga-
nized I/O data. Such memory space will be released and
become reusable once an I/O request completes. Our ex-
periments show that BASS consumed at most 28 MB (i.e.,
0.17% of total memory) more container-side kernel space
(excluding the cached data) compared with Legacy.

5.1.2 Impact on Reads

As stated in Section 3, BASS may change the behavior of
the reads that access the pages with “holes”, as a result of the
non-blocking approach. To measure the impact of BASS on
such reads, we performed aworst-casescenario evaluation:
We used one thread Fio to first write a non-cached file (2 GB)
with various I/O sizes, leaving holes in the partially accessed
pages. Afterwards, each of these same pages is read. Note
that, from the I/O traces (in Section 2.4), an average of
15% of the partially dirtied pages will be accessed by the
following reads, meaning most page fetches can be avoided
by BASS.

Figure 12 shows the completion time for writes and reads,
separately. As expected, under Legacy, writes require much
longer time than reads because of RWM, while reads com-
plete quickly because all data are cached after writes. In
contrast, with BASS, writes complete fast due to the non-
blocking approach, while reads take more time to finish
because of fetching themissing partof partially dirtied
pages (as presented in Section 3.3). However, as BASS only

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

512 1024 2048 4096

IO
P

S

Operation size (bytes)

Legacy BASS

(a) Random-write.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

512 1024 2048 4096

IO
P

S

Operation size (bytes)

Legacy BASS

(b) Sequential-write.

Figure 13. Performance of random and sequential writes
with storage-side cache loaded.
fetches the missing part of a page from the remote storage,
the total completion time (i.e., the wholeread-after-write
process) with BASS is faster than Legacy – 30% shorter
time is observed in the 2 KB case. Thus, from the perspec-
tive of applications, the overall I/O performance improves
with BASS. Besides, BASS does not incur any cost to the
well-aligned reads and writes as shown in the 4 KB case –
both BASS and Legacy lead to the same completion time.

This experiment shows that, even in the worst case, BASS
can improve the overall I/O performance by only fetching
the necessary read data with byte-addressability.

5.1.3 Benefits of Fast Storage Devices

As shown in Section 5.1.1, the maximal performance of
BASS is limited by the capacity of the storage device. To
simulate a fast-device scenario, we loaded accessed data in
the server-side cache in advance. Note that, this configura-
tion removes the loads of fetching data from the storage de-
vice, but dirty pages are still periodically flushed to the stor-
age device. We kept other experimental configurations the
same as that in Section 5.1.1.

Under such circumstance, further throughput improve-
ment for both random-write (Figure 13(a)) and sequential-
write (Figure 13(b)) are observed with BASS. Specifically,
with BASS, the throughput of both partial random-write and
sequential-write jump from∼27,000 IOPS to more than
60,000 IOPS. In contrast, with Legacy, the throughput of
random-write increases from 3,000 to 5,500 IOPS, while the
throughput of sequential-write slightly increases from 5,000
to 6,000 IOPS. We also notice that, the throughput of partial
writes is equal to or even much higher than that of well-
aligned writes. The reason is that, for partial writes, less data
is transferred because of BASS’s byte-addressability.

These results clearly demonstrate that the blocking issue
of Legacy cannot be mitigated by fast devices, as most I/O
time is spent on block storage’s software layers and data
transmission. On the contrary, BASS can benefit from the
fast devices with both the non-blocking approach and byte-
addressability.

5.2 I/O Trace Replay

We tested BASS with MobiBench’s two traces, the Facebook
and Twitter I/O traces, obtained from an Android device

178

0

200

400

600

800

Write Read

L
at

en
cy

 (
m

s) Legacy

BASS

(a) Facebook-sync.

0

200

400

600

800

Write Read

L
at

en
cy

 (
m

s) Legacy

BASS

(b) Facebook-nonsync.

0

200

400

600

800

1000

Write Read

L
at

en
cy

 (
m

s) Legacy

BASS

(c) Twitter-sync.

0

200

400

600

800

1000

Write Read

L
at

en
cy

 (
m

s) Legacy
BASS

(d) Twitter-nonsync.

Figure 14. I/O latency breakdown for write and read when replaying the Facebook and Twitter I/O traces.

when using the Facebook and Twitter applications [3]. We
enabled MobiBench’s replay tool to work under Linux. We
replayed each trace in a container. Before replaying the I/O
traces, all files to be accessed were generated in advance
to make sure all I/O operations can be correctly performed
during replaying. Before each run, we cleared the page cache
of the container and the storage server. The I/O operation
latency was reported as the performance metric.

In comparison with Legacy, BASS leads to a reduction
in overall latency of writes by 33% for the Facebook trace
(Figure 14(a)) and 40% for the Twitter trace (Figure 14(c)).
Both BASS and Legacy lead to the same overall latency of
reads, indicating BASS brings no overheads to the read oper-
ations. In addition, both traces involved a significant number
of “sync” operations, which required data synchronization
between the container and storage sides and thus incurred
relatively long I/O latency. To demonstrate the maximal ben-
efits of BASS, we further removed all “sync” operations
from the traces (we simulate the scenario of using persis-
tent, durable memories) and replayed the traces again. Under
this condition, BASS reduces the overall latency of writes by
47% for the Facebook trace (Figure 14(b)) and 77% for the
Twitter trace (Figure 14(d)).

5.3 Application Workloads

We evaluated BASS with realistic application workloads,
including Sysbench [6], YCSB [16], and PostMark [4].

For each workload, we evaluated the write-dominant op-
erations in a KVM-based VM, with 4 vCPUs and 4 GB
memory. One remote virtual volume was attached to the
VM directly (i.e., we bypassed the hypervisor’s storage I/O
stack). BASSCache and BASSBlock were installed in the
VM’s kernel. To emulate a consolidation cloud environment,
we ran four additional VMs with each running oneiperf
thread connecting to the storage server. The four traffic-
generator VMs and the workload VM equally shared the 10
Gigabit storage network. Before each run, we cleared the
page cache of the workload VM and the storage server.

Sysbench (MySQL) Sysbench is an OLTP application
benchmark running on top of a transactional database. We
chose MySQL (version 5.5.47) with its default storage en-
gine, MyISAM. This storage engine uses a self-managed key
buffer to cacheindex data, while leveraging the operating

system’s page cache to cacherow data. We ran 20 Sysbench
threads remotely in a client, which generated “INSERT” re-
quests to MySQL (200,000 requests per run).

As Figure 15(a) shows, the “INSERT” throughput of
MySQL increases by 80% with BASS compared with Legacy.
The reason for this improvement is that, MyISAM man-
ages its data with a fixed block size (e.g., 1 KB by default)
that is smaller than the operating system’s page size (i.e.,
4 KB), thus resulting in thepartial write blocking prob-
lem under Legacy. The blocking issue becomes severe for
write-intensiveworkloads such as “INSERT”. In contrast,
equipped with the non-blocking approach, BASS avoids
such blocking and increases the throughput significantly.
With byte-addressability, BASS further reduces the network
bandwidth by 22% as shown in Table 2 Row 1.

Workloads Partial Write(%) Bandwidth Saving(%)
Sysbench 38 21

YCSB 59 59
PostMark 46 48

Table 2. Partial write percentage and bandwidth saving.

YCSB (MongoDB) Yahoo Cloud Serving Benchmark
(YCSB) is an industry-standard performance benchmark
for NoSQL databases. We ran YCSB against a popular
document-oriented NoSQL – MongoDB (version 3.0.10).
We simply deployed a single shared MongoDB with its de-
fault storage engine, MMAPV1. We selected “INSERT” of
YCSB as the core workload. For each run, the workload
inserted 750,000 1-KB records.

Figure 15(b) shows that BASS improves the “INSERT”
throughput of MongoDB by 34%. Different from Sysbench,
the performance improvement is mainly due to the re-
duced network bandwidth. We observe that, during each
run,∼60% of the total pages have a small number of bytes
that are modified (less than 10 bytes). This is probably due
to the metadata update in the page. Under Legacy, this small
modification incurs a whole page flush, while BASS only
flushes the dirty portion, resulting in reduced bandwidth (by
59% in Table 2 Row 2).

This is further confirmed in Figure 15(d), which displays
the throughput over time. Note that, MongoDB flushes in-
memory data to the backing store periodically (e.g., by de-
fault every 60 seconds). We observe that the flushing du-

179

0

1,000

2,000

3,000

4,000

5,000

Legacy BASS

T
ra

n
sa

ct
io

n
s

p
er

S
ec

o
n

d

(a) Sysbench.

0

500

1,000

1,500

2,000

2,500

Legacy BASS

T
ra

n
sa

ct
io

n
s

p
er

S
ec

o
n

d

(b) YCSB.

0

2,000

4,000

6,000

8,000

Append Read Delete

O
p

er
at

io
n

s
p

er
 S

ec
o

n
d

Legacy

BASS

(c) PostMark.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

0 100 200 300 400

T
ra

n
sa

ct
io

n
s

p
er

 S
ec

o
n

d

Timeline

BASS Legacy

(d) YCSB’s throughput over time.

Figure 15. Performance of (a) Sysbench, (b) YCSB and (c) PostMark, and (d) YCSB’s throughput over time.

ration under Legacy can be 100 seconds (e.g., the interval
between 250 and 350 depicted in Figure 15(d)), while the
flushing duration for BASS is only 50 seconds (e.g., the
interval between 200 and 250 in the same figure). During
data flushing, the performance of MongoDB can be greatly
impacted, meaning the shorter flushing period allowed by
BASS benefits performance.
PostMark PostMark emulates the real-world usage of a
file system using small file operations similar to busy mail
servers and news servers. We generated 100,000 small files
with sizes ranging from 1KB to 5KB. To evaluate the write-
intensive scenario, we set the operation ratio of “read” to
“append” to 1:9. The total transaction number of each run
was 400,000. As Figure 15(c) shows BASS improves the
performance (i.e., operations per second) of “append” op-
erations by 68%. As the workload follows a strict operation
ratio, the performance of “read” and “delete” operations also
improves with BASS. In Table 2 Row 3, we observe a large
fraction of partial writes for Postmark (i.e., 63%). Mean-
while, BASS reduces the network bandwidth usage of Post-
mark by 48%. Again, this experiment shows that BASS can
boost the performance of small writes and reduce the storage
network usage.
6. Related Work
For decades, file systems have been built on the assumption
that the lower layer is the slow, block-based persistent de-
vices, and provided the block-based interfaces. In response
to these slow devices, extensive caching and prefetching
techniques were studied [17, 21, 22, 26, 27]. This trend con-
tinued, even with the advent of non-volatile memory (NVM)
– the same block-based interfaces were exported via the
mapping layer, FTL [8, 11, 24]. Isotope [31] proposed an
abstraction of a transactional block store that provides iso-
lation in addition to atomicity and durability. To realize the
benefits of emerging byte-addressable storage technologies,
the authors of [15] proposed a byte-addressable file system
for phase change memory (PCM). Following the similar di-
rection, BASS bridges the addressability gap between the
storage and network stacks in cloud, and boosts I/O perfor-
mance for block storage.

Recently, researchers have identified challenges in stor-
age area network (SAN) environments caused by complex
hardware and software layers, which contributed the ma-

jor request time and obscured the performance of fast non-
volatile memory technologies [10, 14]. Further, value-added
services (e.g., security and reliability) running on top of the
block storage platforms compound such challenges [29]. By
merging layers and offloading software functions to hard-
ware, the optimized SAN architecture [14] greatly reduced
the software overhead. BASS, instead, demonstrates the pos-
sibility of improving I/O performance by removing address-
ability discrepancy between software layers.

I/O latency caused by virtualization has been well-studied,
and many optimization approaches have been proposed
[19, 23, 28, 32]. These approaches mainly focused on the
I/O stacks running in the local storage systems. vTurbo [32]
accelerated I/O processing for VMs by offloading I/O pro-
cessing to a designated core. Vanguard [30] tried to elim-
inate I/O performance interference by provisioning VMs
with dedicated I/O resources. In contrast, BASS optimizes
I/O performance in a cloud storage environment, and ad-
dresses the I/O performance problems by re-designing the
storage stack to be compatible with the new storage system
architecture.

For local block-based file systems, the partial write block-
ing issue can be mitigated by either using fast storage de-
vices, or the non-blocking approach [12]. However, the hard-
ware solutions do not work in cloud-based block storage,
as the main I/O bottleneck comes from the software layers
[14]. The non-blocking approach [12] eliminated the write
blocking by buffering multiple data updates. However, this
approach did not eliminate page fetching, and required con-
siderable memory space. With a different scope, BASS re-
solves the blocking issue by taking advantage of the byte-
addressable network layer. BASS not only avoids the com-
plexity of keeping multiple updates for one page, but also
eliminates unnecessary page fetching.
7. Conclusion
We have presented BASS, a byte-addressable storage stack
that avoids unnecessary data transfer between VMs/containers
and storage servers using variable-length I/O requests and
improves performance of partial writes with a new non-
blocking approach. Our evaluation with micro-benchmarks,
I/O traces and realistic applications indicates the effective-
ness and general applicability (to both VMs and containers)
of BASS.

180

References
[1] Fio - flexible I/O tester synthetic benchmark. http:

//www.storagereview.com/fio_flexible_i_o_
tester_synthetic_benchmark .

[2] Linux scsi target framework. http://stgt.
sourceforge.net/ .

[3] Mobibench traces. https://github.com/ESOSLab/
Mobibench/tree/master/MobiGen .

[4] Postmark. http://www.dartmouth.edu/ ˜ davidg/
postmark_instructions.html .

[5] Production file system syscall traces.http://sylab-
srv.cs.fiu.edu/dokuwiki/doku.php?id=
projects:nbw:traces:start .

[6] Sysbench OLTP benchmark. http://www.
storagereview.com/sysbench_oltp_
benchmark .

[7] Umass trace repository.http://traces.cs.umass.
edu/index.php/Storage/Storage/ .

[8] Understanding the flash translation layer (ftl) specification.
http://developer.intel.com/ .

[9] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang,
D. Lottis, K. Moon, X. Luo, E. Chen, A. Ong, A. Driskill-
Smith, and M. Krounbi. Spin-transfer torque magnetic ran-
dom access memory (stt-mram).J. Emerg. Technol. Comput.
Syst., 2013.

[10] J. Arredondo. Performance benchmark for cloud
block storage, 2013. http://c1776742.cdn.
cloudfiles.rackspacecloud.com/downloads/
pdfs/CloudBlockStorage_Benchmark.pdf .

[11] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design
for high-performance flash disks.ACM SIGOPS Operating
Systems Review, 2007.

[12] D. Campello, H. Lopez, R. Koller, R. Rangaswami, and
L. Useche. Non-blocking writes to files. In13th USENIX
Conference on File and Storage Technologies, 2015.

[13] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta,
and S. Swanson. Moneta: A high-performance storage ar-
ray architecture for next-generation, non-volatile memories.
In Proceedings of the 2010 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2010.

[14] A. M. Caulfield and S. Swanson. Quicksan: a storage area net-
work for fast, distributed, solid state disks. InACM SIGARCH
Computer Architecture News, 2013.

[15] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, D. Burger,
B. Lee, and D. Coetzee. Better i/o through byte-addressable,
persistent memory. InSymposium on Operating Systems Prin-
ciples, 2009.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing,
2010.

[17] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. Diskseen:
Exploiting disk layout and access history to enhance i/o
prefetch. InUSENIX Annual Technical Conference, 2007.

[18] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive nfs
tracing of email and research workloads. InProceedings of
USENIX Conference on File and Storage Technologies, 2003.

[19] S. Gamage, C. Xu, R. R. Kompella, and D. Xu. vpipe:
Piped i/o offloading for efficient data movement in virtualized
clouds. InProceedings of the ACM Symposium on Cloud
Computing, 2014.

[20] G. Gibson and G. Ganger. Principles of operation for shingled
disk devices.USENIX HotStorage, 2011.

[21] B. S. Gill and L. A. D. Bathen. Optimal multistream sequen-
tial prefetching in a shared cache.Trans. Storage, 2007.

[22] B. S. Gill and D. S. Modha. Sarc: sequential prefetching in
adaptive replacement cache. InProceedings of the annual
conference on USENIX Annual Technical Conference, 2005.

[23] A. Kangarlou, S. Gamage, R. R. Kompella, and D. Xu. vs-
noop: Improving tcp throughput in virtualized environments
via acknowledgement offload. InProceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, 2010.

[24] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-
J. Song. A log buffer-based flash translation layer using fully-
associative sector translation.ACM Trans. Embed. Comput.
Syst., 2007.

[25] A. W. Leung, S. Pasupathy, G. R. Goodson, and E. L. Miller.
Measurement and analysis of large-scale network file system
workloads. InUSENIX Annual Technical Conference, 2008.

[26] M. Li, E. Varki, S. Bhatia, and A. Merchant. Tap: Table-
based prefetching for storage caches. InFile and storage
technologies, 2008.

[27] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-miner: min-
ing block correlations in storage systems. InProceedings of
USENIX conference on File and storage technologies, 2004.

[28] H. Lu, B. Saltaformaggio, R. Kompella, and D. Xu. vfair:
Latency-aware fair storage scheduling via per-io cost-based
differentiation. InProceedings of the Sixth ACM Symposium
on Cloud Computing, 2015.

[29] H. Lu, A. Srivastava, B. Saltaformaggio, and D. Xu. Storm:
Enabling tenant-defined cloud storage middle-box services.
In Dependable Systems and Networks (DSN), 46th Annual
IEEE/IFIP International Conference on, 2016.

[30] Y. Sfakianakis, S. Mavridis, A. Papagiannis, S. Papageorgiou,
M. Fountoulakis, M. Marazakis, and A. Bilas. Vanguard: In-
creasing server efficiency via workload isolation in the stor-
age i/o path. InProceedings of the ACM Symposium on Cloud
Computing, 2014.

[31] J.-Y. Shin, M. Balakrishnan, T. Marian, and H. Weatherspoon.
Isotope: Transactional isolation for block storage. In14th
USENIX Conference on File and Storage Technologies, 2016.

[32] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu. vturbo:
Accelerating virtual machine i/o processing using designated
turbo-sliced core. USENIX Association, 2013.

[33] X. Zhang, J. Li, H. Wang, K. Zhao, and T. Zhang. Reducing
solid-state storage device write stress through opportunistic
in-place delta compression. In14th USENIX Conference on
File and Storage Technologies (FAST 16), 2016.

181

