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Abstract

A wireless sensor network consists of a large number of smedburce-constrained devices and
usually operates in hostile environments that are pronmkoand node failures. Computing aggregates
such as average, minimum, maximum and sum is fundamentahrious primitive functions of a
sensor network like system monitoring, data querying, asilhlsorative information processing. In this
paper we present and analyze a suite of randomized digdmitjorithms to efficiently and robustly
compute aggregates. ODistributed Random Grouping (DRG) algorithm is simple and natural and uses
probabilistic grouping to progressively converge to thgragate value. DRG is local and randomized and
is naturally robust against dynamic topology changes frimk/iode failures. Although our algorithm
is natural and simple, it is nontrivial to show that it conyes to the correct aggregate value and to
bound the time needed for convergence. Our analysis usesigan-structure of the underlying graph
in a novel way to show convergence and to bound the running tifrour algorithms. We also present
simulation results of our algorithm and compare its perfamge to various other known distributed
algorithms. Simulations show that DRG needs much lessrresfons than other distributed localized

schemes.
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I. INTRODUCTION

Sensor nodes are usually deployed in hostile environmasta.result, nodes and communica-
tion links are prone to failure. This makes centralized atgms undesirable in sensor networks
using resource-limited sensor nodes [6], [4], [18], [2]cbntrast, localized distributed algorithms
are simple, scalable, and robust to network topology chaiagenodes only communicate with
their neighbors [6], [10], [4], [18].

For cooperative processing in a sensor network, the infoomaf interest is not the data at
an individual sensor node, but the aggregate statisagmy€gates) amid a group of sensor nodes
[19], [15]. Possible applications using aggregates areattezage temperature, the average gas
concentration of a hazardous gas in an area, the averagenonum remaining battery life of
sensor nodes, the count of some endangered animal in anaackdhe maximal noise level in
a group of acoustic sensors, to name a few. The operatiorfoputing basic aggregates like
average, max/min, sum, and count could be further adaptedore sophisticated data query
or information processing operations [3], [13], [21], [2Hor instance, the functiorf(v) =
> ¢ fi(v;) is thesum aggregate of values f;(v;) which are pre-processed from on all nodes.

In this paper, we present and analyze a simple, distribldedlized, and randomized algorithm
calledDistributed Random Grouping (DRG) to computeaggregate information in wireless sensor
networks. DRG is more efficient than gossip-based algosthike Uniform Gossip [18] or fastest
gossip[4] because DRG takes advantage of the broadcase raftwireless transmissions: all
nodes within the radio coverage can hear and receive a ss&rél@nsmission. Although broadcast-
based Flooding [18] also exploits the broadcast nature @l@ss transmissions, on some network
topologies like Grid (a common and useful topology), Flemdmaynot converge to the correct
global average (cf. Fig.8). In contrast, DRG works corgeathd efficiently on all topologies. We
suggest a modified broadcast-based Flooding, Floodinggmmitigate this pitfall and compare
it with DRG by simulations.

Deterministic tree-based in-network approaches have beeressfully developed to compute
aggregates [19], [21], [22]. In [4], [18], [25], it is showhat tree based algorithms face challenges

in efficiently maintaining resilience to topology changé€ke authors of [19] have addressed the



importance and advantages of in-network aggregation. Boégl an optimal aggregation tree to
efficiently computed the aggregates. Thaantralized approaches are heuristic since building an
optimal aggregation tree in a network is the Minimum Steihexe problem, known to be NP-
Hard [19]. Although adistributed heuristic tree approach [1] could save the costamrdination

at the tree construction stage, the aggregation tree watirte be reconstructed whenever the
topology changes, before aggregate computation can resume-start. The more often the
topology changes, the more overhead that will be incurretthbyree reconstruction. On the other
hand, distributed localized algorithms such as our prop@¥eG, Gossip algorithm of Boyd et al.
[4] 1, Uniform Gossip [18], and Flooding [18] afeee from the global data structure maintenance.
Aggregate computation can continue without being intdedpby topology changes. Hence,
distributed localized algorithms are more robust to freqjuepology change in a wireless sensor
network. For more discussions on the advantages of distdblocalized algorithms, we refer
to [4], [18].

In contrast to tree-based approaches that obtain the ajgeegt a single (or a few) sink node,
these distributed localized algorithms converge wltmodes knowing the aggregate computation
results. In this way, the computed results become robusbde failures, especially the failure of
sink node or near-sink nodes. In tree based approachesntjle &ilure of sink node will cause
loss of all computed aggregates. Also, it is convenient tdene the aggregate results, since
all nodes have them. In mobile-agent-based sensor net@8ksthis can be especially helpful
when the mobile agents need to stroll about the hostile enwient to collect aggregates.

Although our algorithm is natural and simple, it is nontaivio show that it converges to
the correct aggregate value and to bound the time neededfwergence. Our analysis uses
the eigen-structure of the underlying graph in a novel waghow convergence and to bound
the running time of our algorithms. We use thkgebraic connectivity [11] of the underlying
graph (the second smallest eigenvalue of the Laplacianxadtthe graph) to tightly bound the
running time and the total number of transmissions, thutofaxy the topology of underlying
graph into our analysis. The performance analysis of theageeaggregate computation ByRG

Ave algorithm is our main analysis result. We also extend it ® d@halysis of globamaximum

1The authors of [4] name their gossip algorithm for computingrage as “averaging algorithm”. To avoid confusion with
other algorithms in this paper that also compute the averagerefer to their “averaging algorithm” as “gossip algonit’

throughout this paper.



or minimum computation. We also provide analytical bounds for conseeog assuming wireless
link failures. Other aggregates such as sum and count caorbputed by running an adapted
version of DRG Ave [5].

II. RELATED WORK AND COMPARISON

The problem of computing the average or sum is closely rélt¢he load balancing problem
studied in [12]. The load balancing problem is given an aidlistribution of tasks to processors,
the goal is to reallocate the tasks so that each processandzaly the same amount of load.
Our analysis builds on the technique of [12] which uses a knm@andomized algorithm to
distributively form random matchings with the idea of balegy the load among the matched
edges.

The Uniform Gossip algorithm [18], Push-Sum, is a distrslialgorithm to compute the
average on sensor and P2P networks. Under the assumptiocooiptete graph, their analysis
shows that with high probability the values at all nodes eoges exponentially fast to the true
(global) averagé.The authors of [18] point out that the point-to-point UnifoiGossip protocol
is not suitable for wireless sensor or P2P networks. Theypgse an alternative distributed
broadcast-based algorithm, Flooding, and analyze itsergewice by using the mixing time of
the random walk on the underlying graph. Their analysis mgsuthat the underlying graph is
ergodic® and reversible (and hence their algorithms may not convangeany natural topologies
such as Grid, a bipartitegraph associated with the periodic Markov Chain (not a emgdidain),
— see Fig.8 for a simple example). However, the algorithrmsruery fast (logarithmic in the
size) in certain graphs, e.g., on an expander, which is hexvewt a suitable graph to model
sensor networks. (More details on Uniform Gossip and Flogdire given in Section VII-C.)

A thorough investigation on gossip algorithms for averagmputation can be found in the
recent paper by Boyd et al. [4]. The authors bound the negessaning time of gossip
algorithms for nodes to converge to the global average witm accuracy requirement. The

gossip algorithm of [4] is more general than Uniform Gossigl®] and is characterized by a

2The unit of running time is the synchronous round among alribdes.
3Any finite, irreducible, and aperiodic Markov Chain is anaig chain with an unique stationary distribution (e.ge §4]).

4A bipartite graph contains no odd cycles. It follows thatrgvstate is periodic. Periodic Markov chains do not conveme

a unique stationary distribution.



stochastic matrix° = [F;;], where P;; > 0 is the probability for a nodeé to communicate with
its neighborj. Also P’s largest eigenvalue is equal to 1 and all the remainingl eigenvalues
are strictly less than 1 in magnitude. They assume the undgrgraph is connected ambn-
bipartite®> so that a feasible® can always be found. Their averaging procedure is different
from Uniform Gossip, and is similar to running the random chatd® algorithm of [12] in
an asynchronous way. Hence, in their analysis, in each ti@e, ©nly a pair of nodes is
considered. One nodg of the pair chooses a neighbgraccording toF;;. Then these two
nodes will exchange their values and update their valueseio local) average. They show that
the running time bounds of their gossip algorithm to compgh&global average depend on the
second largest eigenvalue of a doubly stochastic méltrigonstructed fromP. We note that the
eigenvalues of [4] are on a matrix characterizing their goakyjorithm whereas the eigenvalues
used in our analysis are on the Laplacian matrix ofuhderlying graph’. They also propose a
distributed approximate sub-gradient method to optiniizend find the optimaP* to construct
the associated fastest gossip algorithm. From their analytesults (Theorem 7 of subsection
IV.A), the authors point out that on a random geometric gr@pbommonly used graph topology
for a wireless sensor network), a natural gossip algoritleniopms in the same order of running
time as the fastest gossip algorithm. They both convergelgl@, page 11]. Thus, they state
that it may be not necessary to optimize for the fastest gasigjorithm in such a model of
wireless sensor network. Our simulation results show thatRG algorithm converges to the
global average much faster than natural gossip on both GritlRoisson random geometric
graph. This result essentially follows from the fact that®Rxploits the broadcast nature of a
wireless transmission to include more nodes in its dataaxging (averaging) process.

The authors of [29] discuss distributed algorithms for catagons in ad-hoc networks. They
have a deterministic and distributadiform diffusion algorithm for computing the average. They

set up the convergence condition for their uniform diffusalgorithm. However, they do not

*However, as mentioned earlier, a useful topology such ad iGrbipartite.

®In fact, our algorithm is inspired by the random matchingosilthm [12]. However, we use the idea that grouping will
be more efficient than matching in wireless settings sin@aging includes more nodes in the local averaging procebyre
exploiting the broadcast nature of a wireless transmission

"Using the maximum degree and the second smallest eigenvhlLaplacian matrix, i.e., the algebraic connectivity [1dje

explicitly factor the underlying graph’s topology into obounds.



give a bound on running time. They also find the optimal diinsparameter for each node.
However, the execution of their algorithm needs global rimfation such as maximum degree
or the eigenvalue of a topology matrix. Our DRG algorithms purely local and do not need
any global information, although some global informatisrused (only) in our analysis.
Randomized gossiping in [20] can be used to compute the aggregates in arbitragyhgsance
at the end of gossiping, all the nodes will know all otherstiah values. Every node can post-
process all the information it received to get the aggregaide bound of running time is
O(nlog®n) in arbitrary directed graphs. However, this approach is swtable for resource-
constrained sensor networks, since the number of tranemigssessages growexponentially.
Finally, we mention that there have been some works on flgcttirory (e.g., [26]) in control
systems literature; however, the assumptions, detaits r@gthodologies are very different from

the problem we address here.

Il. OVERVIEW

A sensor network is abstracted as a connected undirect@th gft@v, £) with all the sensor
nodes as the set of verticds and all the bi-directional wireless communication linksthe
set of edge<. This underlying graph can be arbitrary depending on thdogepent of sensor
nodes.

Let each sensor nodébe associated with an initial observation or measuremduaé@enoted
" (" € R). The assigned values over all vertices is a vestor. Let v

value of nodei after running our algorithms fok rounds. For simplicity of notation, we omit

aswv ) represent the
the superscript when the specific round numbetoesn't matter.

The goal is to compute (aggregate) functions such as avesage, max, min etc. on the
vector of valuesv'”. In this paper, we present and analyze simple and efficiebyst, local,
distributed algorithms for the computation of these aggtes

The main idea in our algorithrmandom grouping is as follows. In each “round” of the
algorithm, every node independently becomes a group lesitleprobability p, and then invites
its neighbors to join the group. Then all members in a grougatg their values with the locally
derived aggregate (average, maximum, minimum, etc) of the group. Through thisdomized
process, we show that all values will progressively conwdaythe correct aggregate value (the

average, maximum, minimum, etc.). Our algorithm is dist@al, randomized, and only uses local



communication. Each node makes decisions independentile ath the nodes in the network
progressively move toward a consensus.

To measure the performance, we assume that nodes run DR@adhreyous time slots, i.e.,
rounds, so that we can quantify the running time. The synmthation among sensor nodes can
be achieved by applying the method in [8], for example. H@vewe note that synchronization
is not crucial to our approach and our algorithms will stilbrk in an asynchronous setting,
although the analysis will be somewhat more involved.

Our main technical result gives an upper bound on the exgetimber of rounds needed for
all nodes running DRG Ave to converge to thebal average. The upper bound is

O log( %)

where the parameterdirectly relates to the properties of the graph, and thegjrauprobability
used by our randomized algorithm; amdis the desired accuracy (all nodes’ values need to
be within £ from the global average). The parametgr represents the grand variance of the
initial value distribution. Briefly, the upper bound of rung time is decided by graph topology,
grouping probability of our algorithm, accuracy requiremeand initial value distribution of
sensor nodes.

The upper bound on the expected number of rounds for congptiie global maximum or
minimum is

oglog(“‘Tp)")),

wherep is the accuracy requirement for Max/Min problemi$ the ratio of nodes which diot
have the global Max/Min value to all nodes in the network).@ubd for the expected number of
necessary transmissions can be derived by using the réghk bound on the expected running
time.

The rest of this paper is organized as follows. In section W& detail our distributed
random grouping algorithm. In section V we analyze the perénce of the algorithm while
computing various aggregates such as average, max, andihnsiection VI, we discuss practical
issues in implementing the algorithm. The extensive sitiararesults of our algorithm and the
comparison to other distributed approaches of aggregategutation in sensor network are
presented in section VII. Finally, we conclude in sectionl VA table for all the figures and

tables is provided in the appendix.



Alg: DRG Ave: Distributed Random Grouping for Average

1.1 Each node in ¢dle mode independently originates to form a group and
become the group leader with probability p,.

1.2 A node ¢ which decides to be the group leader enters the leader mode
and broadcasts a group call message, GCM = (group;q = i), to all its
neighbors.

1.3 The group leader ¢ waits for responses message, JACK from its
neighbors.

2.1 A neighboring node j, at the idle mode that successfully received the
GCM, responds to the group leader ¢ an joining acknowledgement,
JACK = (group;q = i,v;, join(j) = 1), with its value v;.

2.2 The node j enters member mode and waits for the group assignment
message GAM from its leader.

3.1 The group leader, node 7, gathers the received JACKs from its
neighbors to compute the number of group members,
J= Zjé_th join(j), and the average value of the group,

Ave(i) = Zeu™
3.2 The group leader, node 7, broadcasts the group assignment message

GAM = (group;q = i, Ave(i)) to its group members and then returns
to idle mode.

3.3 A neighboring node j, at member mode of the group ¢ which receives
GAM, updates its value v; = Ave(i) and then returns to idle mode.

Fig. 1. DRG Ave algorithm

V. ALGORITHMS

Fig. 1 is a high-level description ®RG Ave for global average computation. The description
in Fig. 1 does not assume the synchronization among nodeseaséor analysis we assume
nodes work in synchronous rounds. A round contains all tepssin Fig. 1.

Each sensor node can work in three different modes, nantfy,mode, leader mode, and
member mode. A node in idle mode becomes a group leader artsehe leader mode with
probability p,. (Choosing a propep, will be discussed in Section V.)

A group leader announces the Group Call Message (GCM) by eless broadcast transmis-
sion. The Group Call Message includes the leader’s ideatifin as the group’s identification.
An idle neighboring node which successfully receives a G@khtresponds to the leader with
a Joining Acknowledgement (JACK) and becomes a member ofjithigép. The JACK contains

the sender’s value for computing aggregates. After sendh@@K, a node enters member mode



and will not response to any other GCMs until it returns teidiode again. A member node
waits for the local aggregate from the leader to update itgeval he leader gathers the group
members’ values from JACKs, computes the local aggregatergge of its group) and then
broadcasts it in the Group Assignment Message (GAM) by alessetransmission. Member
nodes then update their values by the assigned value in tee&veel GAM. Member nodes can
tell if the GAM is their desired one by the group identification GAM.

The DRG Max/Min algorithms to compute the maximum or minimum value of thevoek is
only a slight modification of the DRG Ave algorithm. Insteadbooadcasting the local average
of the group, in the step 3, the group leader broadcasts tt& toaximum or minimum of the
group.

Note that only nodes in the idle mode will receive GCM and lbee@ member of a group. A
node has received a GCM and entered the member mode willagherlatter GCMs announced
by some other neighbors until it returns to the idle moderag&inode in leader node, of course,

will ignore the GCMs from its neighbors.

V. ANALYSIS

In this section we analyze the DRG algorithms by two perforogameasurement metrics:
expected running time and expected total number of trarssoms. The number of total trans-
missions is a measurement of the energy cost of the algaritherunning time will be measured
in the unit of a “round” which contains the three main step&ig. 1.

Our analysis builds on the technique of [12] which analyzegr@blem of dynamic load
balancing by random matchings. In the load balancing propthey deal with discrete values
(v € I"), but we deal with continuous values € R") which makes our analysis different. Our
algorithm uses random groupings instead of random matshiflgis has two advantages. The
first we show that the convergence is faster and hence fastaimg time and more importantly,
it is well-suited to the ad hoc wireless network setting lisesit is able to exploit the broadcast
nature of wireless communication.

To analyze our algorithm we need the concept gotential function as defined below.

Definition 1: Consider an undirected connected graptV, £) with |V| = n nodes. Given

a value distributionv = [vy, ..., v,]7, v; is the value of node, the potential of the graph is
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defined as

o=Iv—oulf = (v;i—0)*= (D v}) —no? (1)

i€V i€V
wherev is the mean (global average) value over the network.
Thus, ¢ is a measurement of the grand variance of the value disoibuNote that¢ = 0 if
and only ifv = tu, whereu = [1, 1,..., 1]7 is the unit vector. We will use the notatie#, to
denote the potential in roundand usep in general when specific round number doesn’t matter.
Let the potential decrement from a groygpled by node: after one round of the algorithm
be d¢

5 = 0pi,

mzzv?—@ﬁ%“j)% > (v —u), ?)

JEYi Jkegi
where J = |g;| is the number of members joining grougincluding the leader nodé. Since
each node joins at most one group in any round, throughoualtp@ithm, the sum of all the
nodes’ values is maintained constant (equal to the initied sf all nodes’ values). The property
dp; > 0 along with the fact that the total sum is invariant indicatest the value distributior
will eventually converge to the average vectar by invoking our algorithm repeatedly.

For analysis, we assume that every node independently amdtaneously decides whether
to be a group leader or not at the beginning of a round. Those ddtided to be leaders
will then send out their GCMs at the same time. Leaders’ rmgh who successfully receive
GCM will join their respective groups. We obtain our main lgiia result, Theorem 2 — the
upper bound of running time — by bounding the expected deentraf the potentiaF'[0¢] of
each round. Wéower bound E[d¢] by the sum ofE[dp;] from all complete groups. A group
is a complete group if and only if the leader has all of its neighbors joining iteogp. In a

wireless setting, it is possible that a collisibhappen%between two GCMs so that some nodes

8 It is also possible that a lower-level (MAC) layer protocancresolve collisions amid GCMs so that a node in GCMs’
overlapping (collision) area can randomly choose one gtoupin. (For correctness of the DRG Ave algorithm it is nezey
that a node joins at most one group in one round.) To analyealgarithm in a general way (independent of the underlying
lower-level protocol), we consider onigomplete groups (whose GCMs will have no collisions) to obtain an upper boond
the convergence time. Our algorithm will work correctly wHer there are collisions or not and makes no assumptionfien t
lower-level protocol.

°For each node announcing GCM, a collision happens at prilyabi— p,; Herep is the probability that a GCM encounter

no collision.
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Fig. 2. The node and nodej announce to be leaders simultaneously; nbdegill join i's group; nodek keeps idle.

within an overlap area of the two GCMs will not respond andh jany groups. For example, as
shown in Fig.2, nodé:, which is in the overlap area of GCMs from leader nodesd 7, will
not join any group'®. Thus, there may beartial groups, i.e., groups containing only partial
neighbors of their leaders (e.g., noflgoining i's group in Fig.2). Besidesomplete groups,
partial groups (e.g., the group led by noden Fig.2) will also contribute to the convergence, i.e.,
in decrementingt[d¢]. Our analysis of lower-bounding the potential decrement¢axth round
by the contributions only froncomplete groups gives an upper bound. The algorithm itself will
converge potentially faster than the derived upper bourpdifial groups are considered.
The main result of this section is the following theorem.
Theorem2: Given a connected undirected graptV,£), |V| = n and an arbitrary initial
value distributionv” with the initial potentiaky,, then with high probability (at leagt— (;—Z)“—l
; k > 2), the average problem can be solved by the DRG Ave algoritithan s > 0 accuracy,

i.e.,

Ui—@|§€, Vi in

ﬁdlog(%)

O( )
peps(1 + a)a(G)

rounds, wherei(G) is the algebraic connectivity (second smallest eigenvafuthe Laplacian

Matrix of graphG [11], [7]) anda > 1 is a parameter depending only on the topologyGof
k > 2 is a constant (we elaborate anand« later); d = max (d;) +1 ~ max (d;) (the maximum
degree);p, is the grouping probability; ang, is the probability of no collision to a leader’s

group call message, GCM.

10since nodek of Fig.2 keeps idle and doesn't join any group it will not rieeeany GAM to update its value. Hence the

collisions amid GCMs (and GAMs) will not affect the correess of our algorithm.
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TABLE |

THE ALGEBRAIC CONNECTIVITY a(G) AND d/a(G), [12]

Graph a(G) d/a(G)

Clique n o(1)

Grid o) o)

linear array o(%) 0n?)

We note that, whery, > £ (which is typically the case), say, = ©(n) ande = O(1),

then DRG Ave converges to the global average with probgbdit leastl — 1/n in time
dlog(%)
<:vgps(1+a)a(G) )-

Table | shows the algebraic connectivityG) and d/a(G) on several typical graphs. The
connectivity status of a graph is well characterized by ladgie connectivitya(G). For the two
extreme examples given in the Table, the algebraic convitgctf a cligue (complete graph)
which is fully connected is much larger than that of a lineaay which is least connected.

The parametep,, the probability that a GCM encounters no collision, is t@detop, and the
graph’s topology. Given a graph, increasimgresults in decreasing,, and vice versa. However,
there does exist a maximum value Bf= p, - p,, the probability for a node to form eomplete
group, so that we could have the best performance of DRG by a wiseelud p,. We will
discuss how to appropriately chooggto maximizep,p, later in subsection V-B after proving
the theorem.

For a pre-engineered deterministic graph (topology), sisgnid, we can compute each node’s
ps according to the topology and therefore find the minimal The minimalp, then is used
in Theorem 2. For aandom geometric graph, we can compute, according to its stochastic
node-distribution model. An example of derivipg on a Poisson random geometric graph is
shown in appendix .

The proof and the discussions of Theorem 2 are presentect ifollowing paragraphs.



13

k
QG (2 H (3) Ch
[ je----eh ) ‘I
'/\ \/. J : he—-e|
je--->h k K
(4) Ci (5) Ck (6) Cj (NG

Fig. 3. graphG, the group Cliques of each node and the auxiliary graph

A. Proof of Theorem 2

The main thrust of the proof is to suitably bound the expecatite of decrement of the
potential functiony. To support the formal proof of Theorem 2, we state some Lesnamal
Propositions.

First, we need a few definitions. We define theXg((i), including all members of aomplete
group, asNe (i) = Ng (i) U {i} where theNg (i) = {j|(i,5) € &(G)} is the set of neighboring
nodes of leadei. Since we considecomplete groups only, the set of nodes joining a group
g; = Ng(i) is with |g;| = J = d; + 1, whered; is the degree of leader Let C; = G(Ng(i)) =
K41, be the|N(i)|-clique on the set of nodes &¥(i).

Define an auxiliary graplt! = (J,.ys, Ci and the set of all auxiliary edgés= E(H)—E&(Q).
The Figure 3 shows a connected graghthe groups led by each node @f as well as their
associated cliques, and the auxiliary grafgh A real edge(z,y) of solid line in these graphs
indicates that two end nodes,andy can communicate with each other by the wireless link.
The auxiliary edges are shown in dashed lines. These ayxé@dges are not real wireless links
in the sensor network but will be helpful in the following dysas.

Lemma3: The convergence rate

o s
2212 (14 a)a(@) P2, ©
¢ d
wherea(G) is the algebraic connectivity af anda = ff(g)’ > 1 is a constant.

Proof: Letx; = (v; — 9), x = (71,...7,)7, ¢ = x'x, and Laplacian MatrixC. =D — A

whereD is the diagonal matrix witlD(v, v) = d,,, the degree of node, andA is the adjacency
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matrix of the graphL; and Ly are the Laplacian Matrices of gragh and H respectively.

Let A, = (v; — vp)? = (x; — x1)? ps be the probability for a node to announce the GCM
without collision, andd = max (d;)+1, whered; is the degree of node The expected decrement
of the potential in the whole network is

El69] = E| Zégoz- | > pgps 25%
1€V 1€V
1
= DgDs d +1 Z A]kz

eV ! (4,k)EE(C)

PgPs— Z Z Agk

ZEV (j,k)EE(CH)

= DPgDsT Z Z _xk

zev (J,k)EE(Cy)

D ppen( Y 2w+ Y (- o)

(4,k)EE(G) (j,k)e€

= pgpsé( Z (z; — ar)* + Z (zj — 1))

(k)€E(G) (J,k)E€E(H)

A%

1
= pgpsg(XTLGx + xLx). (4)

Here (a) follows from the fact that for each edgej) € &, A;; appears at least twice in the

sum E[§¢]. Also each auxiliary edgéj, k) € € contributes at least once.

o) 1 xTLex +xTLgx
E[—] > o
[ 5 [ T )
1, . xTLex  xToyx
> _
2 pgpsg(min(—z =[x Lu,x # 0) + min(—z-—[xLu,x # 0))
1 s
= pp.5(a(G) +a(H)) = (1+a)a(G)2E 5)
H
,where a = %.
In the above, we exploit the Courant-Fischer Minimax Thaofé]:
e
a(G) =Xy = min(XXT§X|XJ_u,X #0). (6)
Since H is always denser tha@, according to Courant-Weyl Inequalities,> 1 [7]. [ |
For convenience, we denote
= (1+a)a(G) 22 7)

d
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Lemmad4: Let the conditional expectation value ofp, computed over all possible group
distributions in roundr, given an group distribution with the potential_; in the previous
roundr — 1, is E5_[¢,]. Here we denote the,, 0., ..., 0, as the independent random variables
representing the possible group distributions happeringuadsl, 2, ..., 7, respectively. Then,

the E[¢,] = Es, ,....0.[0:] < (1 —7) .
Proof: From the Lemma 3, the

Eo[ox] < (1 —7)br

and by the definition,

Elor] = Eo o0, 0k

< (1) (8)

The next proposition relates the potential to the accuraitgrion.
Proposition5: Let ¢, be the potential right after the-th round of the DRG Ave algorithm,
if ¢, < &2, then the consensus has been reached at or beforettheound.
(the potential of ther-th round¢, < e2 = |v,” — 7| < &, Vi)
Proof: Thew; andv in the following are the value on nodeand the average value over
the network respectively, right after round

(v; —0)? >0, Vi € V(G) 9)

¢r= > (-0’ <= (v;—0)? <& (10)
i€V(G)

S v, — 7| < e, Vi e V(Q)). (11)

|

The proof of Theorem 2: Now we finish the proof of our main theorem.

Proof: By Lemma 4 and Proposition 5,

El¢:] < (1—7)7¢o < €. (12)
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Taking logarithm on the two right terms,

T log(ﬁ) > log ¢y — loge? (13)
log(%) 1 ®o
T 2> log(%) ;1 (5_2) (14)

Also, ¢y > &2 (in fact, ¢y > % since¢y = 6(n), > = O(1) and so;—z = O(2)), otherwise the
accuracy criterion is trivially satisfied. By Markov inedia

E[(bT] (1 - V)T%

Pr(¢.>&") < —5= < (15)
Chooser = £ log( )) where thex > 2. Then because—) < land(k—1)>1,
K ¢>
1— Zlog(23) .
PT(QbT > 52) < ( /7)62 ¢0 < 6—10g(%) %
52
= (D)"Y —0, (16)
bo
52
— < land (k—1)> 1.
bo

Thus, Pr(¢, <e?) >1-— (¢O) #=1)_ (Since typicallyp, > 2, taking s = 2 is sufficient to have
high probability at leasi — O(%); in caseg, > €2, then a largers is needed to have a high
probability). From (16), with high probability, < <2 whent = O(glog g), by proposition 5

the accuracy criterion must have been reached at or befere-tth round. [ |

B. Discussion of the upper bound in Theorem 2

As mentioned earliep; is related tg, and the topology of the underlying graph. For example,
in a Poisson random geometric graph [27], in which the lotawf each sensor node can
be modeled by a 2-D homogeneous Poisson point process wihsity \, p, = e *Podrr’
(please see the appendix | for the detail deriving procesisgrer is the transmission range.
We assume that sensor nodes are deployed umararea, so that) is equal ton. To maintain
the connectivity, we setrr? = @ 4% [14]. Let P = pyps. The maximum of

P = pyePo*™ denoted asp, happens ap, =

1 = _ E—
2(n) T 4(log(n)+1og(1og(n))) where 2 dpg = 0. The

maximum® ~ Ee—l.

Fig.4 shows the curves qf;p, on Poisson random geometric graphs withvarying from

100 to 900. It is easy to find a good value®fin these graphs. For instance, given a Poisson
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0.015

0.01f

Py,

0.005F

Fig. 4. The probability to form a&omplete group P = pyps VS grouping probabilityp, on instances of the Poisson random

geometric graph. Carefully setting, can achieve a maxim& and hence the best performance of DRG.

random geometric graph with= 500, we can choose thg, ~ 0.03 so that DRG will expectedly
converge fastest, for a given set of other parameters.
In general, for an arbitrary graph = p,(1 — p,)X; wherex = O(d?) is the expected number

of nodes within two hops of the group leader. Then dhe: y~'e~!, happens whep, = .

For instance, al-regular expander,p, = - and P~ e ' Fixing thep, = =, we get
nd:’log(f—g)
(+a)a(@)
choosingp, to maximize? = p,p,, we can get dighter bound for the graph than the bound

DRG for any connected graph: O( ). If we specify a graph and know itg, by carefully

above.

C. The upper bound of the expected number of total transmissions

Since the necessary transmissions for a grgut locally compute its aggregate i + 2
(which is bounded byl + 1 ~ d), the expected total number of transmissions in a roBhy, |
is O(pypsdn), wheren is the number of nodes in the network.

Theorem6: Given a connected undirected gra@h= (V, £), |V| = n, and the initial potential
¢o, With high probability (at IeasI—(;—z)*”v—1 ; k > 2) the total expected number of transmissions
needed for the value distribution to reach the consensus agturacy: is
rnd? log(%)

E[Nirans] = O( (1+ a)a(G)

) (17)
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Proof:
Kdlog(fg) Knd2log(§§)

Paps(1+ oz)a(G)) = Of 1+ a)a<G))

E[Nyans] = E[N,]O (18)

D. DRG Max/Min algorithms

Instead of announcing the local average of a group, the gleagber in the DRG Max/Min
algorithm announces the local Max/Min of a group. Then all thembers of a group update
their values to the local Max/Min. Since the global Max/Mm also the local Max/Min, the
global Max/Min value will progressively replace all the ethvalues in the network.

In this subsection, we analyze the running time of DRG Max/Migorithms by using the
analytical results of the DRG Ave algorithm. However, foe thlax/Min we need a different
accuracy criterionp = =, wheren, m is the total number of nodes and the number of nodes of
the global Max/Min, respectively: indicates the proportion of nodes that hanat yet changed
to the global Max/Min. When a small enoughis satisfied after running DRG Max/Min, with
high probability ( — p), a randomly chosen node is of the global Max/Min.

We only need to consider Max problem since Min problem is sytnimto the Max problem.
Moreover, we assume there is only one global Max vailuyg. in the network. This is the worst
situation. If there is more than one node with the same, in the network then the network
will reach consensus faster because there is more than difigsion” source.

Theorem7: Given a connected undirected graptV, ), |V| = n and an arbitrary initial
value distributionv'”, then with high probability (at least— (+2)*"! ; k > 2) the Max/Min

(1-p)n
problem can be solved under the desired accuracy critetiafter invoking the DRG Max/Min

Algorithm

0<§1og<@»

times, where they = Q((1 4+ o)a(G)2*).

Proof: The proof is based on two facts: (1) The expected running tifrtbe DRG Max/Min

algorithm on an arbitrary initial value distributior]” = [vy, ..., Vi1, Vi = Umag, Vie1 - - - Un]”

will be exactly the same as that on the binary initial disttionv,” = [0,...,0, v; = 1, 0,...0]"
©

a

under the same accuracy criteripn The v,,,, in v, will progressively replace all the other

values no matter what the replaced values are. We can map,theto “1” and all the others
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to “0”. Therefore, we only need to consider the special binaryaindistribution véo) in the

following analysis. (2) Suppose the DRG Ave and DRG Max athors are running on the
same binary initial distributiowéo) and going through the same grouping scenario which means
that the two algorithms encounter the same group distohuth every round. Under the same
grouping scenario, in each round, those nodes of non-zéue WraDRG Ave are of the maximum
valuev,,,, iIn DRG Max.

Based on these two facts, a relationship between two ahgositaccuracy criteriae? = ﬁ,
can be exploited to obtain the upper bound of expected rgntime of DRG Max algorithm
from that of DRG Ave algorithm. Now we present our analysigietail.

We run two algorithms on the same initial value distributicéﬁ and go through the same sce-
nario. To distinguish their value distributions after, gayppunds, we denote the value distribution
for DRG Ave asv” =v," | pre ave and that for DRG Max asv'’ = v, | pre aras-

Without loss of generality, suppose“) =[wi =1,..., 0 = L,wy,y =0,...,w, = 0]T.
There arem “1”s and(n —m) “0”s. Then the corresponding“) = [U1,09, ... Uy U1 =
0,...,v, = 0]T. Apparentlyw; = [v;]. Although the values from,,., to v, are still “0”s, the
values fromw; to v,, could be any value (0, 1). To bound the running time, we need to know
the potentiaky., which now is a random variable at tigeth round. We now calculate a bound
on the minimum value for the potential..

The minimum value of the potential. at the(- round with exactlyn non-zero values is a
simple optimization problem formulated as follows:

min > (v;—7)?

iEV(G)
subject to zm:vi —-1=0 (29
i:;vi>0; 1<1<m,
v, =0 m<i<n.
wheren = |V(G)| andv = <.
By the Lagrange Multiplier Theorem, the minimum happens at

L 1<i<m.
vy =¢ " (20)
0 otherwise.
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Fig. 5. The possible scenarios while running DRG Maxu;i(rjl) =10,...,0, v =1,0,...0T and the minimum potential

and theminimum potential is
or=———. (22)

m n
Each round is associated with a value distributiefi’ . We define a sek,,, as the set of rounds

“'is of m non-zero valug

which are ofm non-zero values in their value distributiot, = {¢| v'
and theminimum potential

@, = min(60) =~ V(€ Ry (22)
The possible scenarios A, B and C are shown in Fig.5. The y{axihe time episode in the
unit of a round, we group those rounds By, as defined earlier. The x-axis is the potential of
each round. Note that the value of each round are not contgude scenario curves A, B, and
C just show the decreasing trend of potentials. The scearneaches the minimum potential
of R,, at its last round inR,,. For scenario A, the diffusion process is slower, while th&g
distribution is more balanced over nodes.
Proposition8: A round ¢ of DRG Ave algorithm with distributionv' and potentialp, if
¢ < @, then there aret least m non-zero value within“.
(¢ < P — |S] = m, S = {v|v; > 0})
Proof: A round ¢ is with ¢, < ®,, but has less tham non-zero value tuples i, W.
I. g. n., suppose there are — 1 nonzero values i, then ¢c > Opq. But @, < @1 A
contradiction. [ |

(©

By the fact that there arex non-zero values irv " if and only if there aren “1"s in w'
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and by proposition 8, we can set

P (23)

11
m n (1-pn

For the distributionvéo) which we are dealing with, the initial potentia) = 1 — % ~ 1. Thus,

substitutingﬁ for £2 in Theorem 2, we get the upper bound of the expected running ti

of DRG Max algorithm to reach a desired accuracy critepoa ==, which is

n

mgma“;”%»

The ~ follows the rules mentioned before.

The upper bound of the expected number of the total necessarymissions for DRG Max
s 2 (1=p)n
rnd* log(=—=)

(1+ a)a(G)

E[Ntrans] = ) (24)

by the same deriving process of Theorem 6.

E. Random grouping with link failures

Wireless links may fail due to natural or adversarial ireezhces and obstacles. We obtain
upper bounds for the expected performance of DRG when liak$rém the following Lemma.

We assume that the failure of a wireless link , i.e., an eddkeargraph, happens only between
grouping time slots. Le€’ be a subgraph ofy, obtained by removing the failed edges frein
at the end of the algorithm andl be the auxiliary graph of!. We show that Lemma 3 can be
modified as:

Lemma9: Given a connected undirected gragh the potential convergence rate involving

edge failures is

EIE2) = P21+ d)a(C), @5)
where the(y is a subgraph of7, obtained by removing the failed edges fraihat the end of
the algorithm, andi = Z((g))

(w)

Proof: Let G“’ be the graph after running DRG far rounds.G"’ is a subgraph of3

excluding those failed edges fro6. Since,
1) the maximum degreé = d(G) > d(G“) > d(G),
2) a(@) > a(GY) > a(@) anda(H) > a(H") > a(H),



22

we have
5 ¢(k)
¢(k)

|2 i (@G + all™) 2 PR (6) + al) = PR (1 + d)a(G). (26)

£l
n
By Lemma 9, we obtain the modified convergence rate 22 (1 + &)a(G). Replacingy by

4 we have the upper bounds on the performance of DRG in casegef fadlures.

VI. PRACTICAL CONSIDERATIONS

A practical issue is deciding when nodes should stop the DR@tions of a particular
aggregate computation. An easy way to stop, as in [18], i®tdhle node which initiates the
aggregate query disseminate a stop message to cease thetatomp The querying node samples
and compares the values from different nodes located a&rdift locations. If the sampled values
are all the same or within some satisfiable accuracy rangeglerying node disseminates the
stop messages. This method incurs a delay overhead on gendisation.

A purely distributed local stop mechanism on each node  @sirable. The related distrib-
uted algorithms [4], [12], [18], [29] all fail to have suchackl stop mechanism. However, nodes
running our DRG algorithms can stop the computation locdlhe purely local stop mechanism
is to adapt the grouping probabilify, to the value change. If in consecutive rounds, the value
of a node remains the same or just changes within a very sm@uadjer the node reduces its
own grouping probability, accordingly. When a node meets the accuracy criterion nitstay
idle. However, in future, the node can still join a group edllby its neighbor. If the value
changes again by a GAM, Group Assignment Message, from oite n&ighbors, its grouping
probability increases accordingly to actively re-join #iggregate computation process. We leave
the detail of this implementation for future work.

Considering correlation among values of neighboring naddéke aggregate computation [9]
may be useful but there may be some overhead to obtain or dentpe “extra” correlation
information. In this paper, however, our goal was to studgfggenance without any assumption
on the input values (can be arbitrary). One can presumabletier by making use of correlation.

Including correlation will be an extension to our currentriwo
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degree: min=1, max=11, ave=6.34 degree: min=1, max=12, ave=6.22

(c) 150 nodes (d) 200 nodes

Fig. 6. The instances of Poisson random geometric graph fesesimulations

VIlI. SIMULATION RESULTS
A. Experiment setup

We performed simulations to investigate DRG’s performaand numerically compared it
with two other proposed distributed algorithms on Grids &mat instances of Poisson random
geometric graphs shown in Fig.6. Our simulations focus @ Aterage problem. We assume
that the valuey; on each node follows an uniform distribution in an inter¥at [0, 1]. (DRG’s
performance on a case 6f= [0,1],¢ = 0.01 is the same as on a case b= [0, 100],e =
1 and so on. Thus, we only need to consider an intefvat [0,1].) On each graph, each
algorithm is executed 50 times to obtain the average pedonom metrics. We run all simulation
algorithms until all the nodes meet tlabsolute accuracy criteriorjv; — 9| < ¢ in three cases:
€ =0.01,0.05,0.1.
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Fig. 7. The Performance of DRG Ave on Grid and Poisson randeamgtric graph.

B. Performance of DRG

For Grid, the topology is fixed and so the running time and thal number of transmissions
grow as the Grid size increases. Note that in Fig.7(a) and @y the axis of the Grid size is set
to n = k? since Grid is a& x k square. Also, a more stringent accuracy critedgaequires more
running time and transmissions. When the accuracy critéganore stringent, the performance
of DRG becomes more sensitive to the Grid size. With smalldyoth the number of rounds
and the number of transmissions increase more significaritlie the Grid size is raised up.

For Poisson random geometric graph, we observe that thdéompaignificantly affects the
performance. We have tried two different topologies eadh Wd0 nodes. The 100 node topology
| is less connected, implying that nodes in topology | hawwefe options to spread their
information. (The contour of the 100 node topology | look®la 1-dimension bent rope) Thus, it

is not surprising that both the total number of rounds anddted number of transmissions under
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topology | are much higher than those under topology Il. kt,féhe rounds and transmissions
needed on 100-node topology | are even higher than on thanices of 150 nodes and 200
nodes in Fig.6. The two instances of 150 and 200 nodes arecaetiected and similar to the
100 nodes topology Il. These results match our analysisentiner parameters in the upper bound
include not only the number of nodesand grouping probability,, but also the parameters

characterizing the topology — the maximum degtdeand the algebraic connectivit G).

C. Comparison with other distributed localized algorithms

We experimentally compare the performance of DRG with tweptdistributed localized
algorithms for computing aggregates, namely, Flooding dndorm Gossip [18]. As shown in
Fig.10, at round, each node (e.gi) maintains a vecto(s; ;, w; ;) wheres,;, andw,, are value
and weight of node respectively. Both entries are contributed from sharesooes’ values and
weights from the previous round. The initial valsg; is each node’s initial observatian, and

the initial weightwy; is 1. At round¢, 22 is the estimate of average of nodeln different

We,q

algorithms, a node shares its current values and weights itgitneighbors in different ways.
In Flooding, each node divides its value and weightdyits degree, and then broadcasts the
guotients to all its neighbors (see Fig.10(b)). In UniformasSip, each node randomly picks one
of its neighbors to send half of the value and weight and keakpsother half to itself (see
Fig.10(a)). We numerically compare these two algorithmgvidRG by simulations on Grid
and Poisson random geometric graphs.

We point out that the Flooding algorithm may never convergeectly to the desired aggregate
on some topologies, e.g., a Grid graph (since the graph @ity and hence the underlying
Markov chain is not ergodic). Fig.8 is a simple example tasiliate this pitfall. In Fig.8, one
node is of initial value 1 but the other 3 nodes are of initialue 0. The correct average is
1/4. However, running Flooding, the value of each node w&Ver converge to 1/4 but will
oscillate between 0 and 1/2. If we model the behavior of Filogpdy a random walk on a
Markov chain, as suggested by [18], the grid is a Markov chdth 4 states (nodes) and the
state probability is the value on each node. This random wallknever reach the stationary
state. The state probability of each node will alternatavbeh 0 and 1/2. Thus, the mixing
time technique suggested by [18] can not apply in this casesclve this pitfall we propose a

modified Flooding named Flooding-m (see Fig. 10(c)) in wheath node divides its value
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flanl values

initial values (approximated average)

1 0 1/2 1/2 0
» or

0 0 1/ 0 1/2

(a) The value of each node will oscillate between
0 and 1/2 rather than converge to 1/4.

initial final correct
weight weight value
1 1 1 1 o 1/4
1 1 1 1 1/ »1/4

(b) The weights on nodes (c) The correct

(global) average

Fig. 8. An example that Flooding [18] can never converge wdbrrect average.

and weight byd; + 1 and then sends the quotient to “itself” and all its neighbdoysa wireless
broadcast. This modification incurs a more thorough and even mixing aifigs and weights
on nodes, avoiding possible faulty convergence and expgdite running time.

Since different algorithms have their own definitions ofunal”, comparing running times by
the number of rounds taken is not quite correct. In one rodri€lamding-m or Uniform Gossip,
there aren transmissions in which each node contributes one trangmisi® a round of DRG,
only those nodes in groups need to transmit data. The timatidarof a round of DRG could
be much shorter. Therefore, we compare DRG with Floodingach @niform Gossip in terms
of total number of transmissions. If three algorithms udszl game underlying communication
techniques (protocols), their expected energy and timésdos a transmission would be the

same. Thus the total number of transmissions can be a meaifstire actual running time and

n [18], Flooding doesn’t apply wireless broadcasting. Al general, a nodé can un-equally separate its value by
ajvi; 0 < a; <1, a5 # dii, ZjeN(i) a; = 1 (but not equally divided byi; or d; + 1 as we propose here) and then send
a;v; to its neighborj by an end-to-end transmission. Nevertheless, by usingteedd transmissions, the total number of
transmissions will be relatively large. (In each round, @eoin end-to-end-based Flooding needistransmissions whereas
the broadcast-based flooding needs only one transmisgionend-to-end type of Flooding which does not take advanti#ge
the broadcast nature of a wireless transmission, thereforet preferable in a wireless sensor network. Hence, wgest the
broadcast-based Flooding and Flooding-m. Both of theseatgarithms need to equally divide the value on each node lzenl t

broadcast the divided value to all neighbors by one broadcassmission.
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energy consumption.

Uniform Gossip needs a much larger number of transmissioais DRG or Flooding-m. In
Grid, the topology is fixed, so the number of nodes is the oabtdr in the performance. The
differences among the three algorithms increase while thé §&ze grows. On a Grid of 400
nodes and = 0.05, DRG can save up t25% of total number of transmissions than Flooding-m.
In a random geometric graph, DRG can save up# of total number of transmissions from
Flooding-m on 100 nodes topology | under= 0.01. The trend is the same in the case when
e =0.1.

4 4 4
50 Y A 12 25

R - Il DRG Il DRG
Il DRG Hl DRG n I Flooding-m [ Flooding-m
[ Flooding-m 3/l Flooding-m q [ Gossip i [ ] Gossip
[ Gossip [ Gossip 2
%) 25
s 10 0 £=0.01 ] £=0.05
: £=0.01 2l e=005 g 15
(%]
2 =
£ 15 2
F* E 1
5 5
1 #*
0.5
0.5
0 0 0 0
100 169 225 400 100 169 225 400 100(300(I1)150 200 100(300(I)150 200
Grid size # nodes and topology
() Grid (b) Poisson random geometric graph

Fig. 9. The comparison of the total number of transmissidr&distributed algorithms - DRG, Uniform Gossip, and Floggim

VIIl. CONCLUSION

In this paper, we have presented distributed algorithmsémnputing aggregates through a
novel technique ofandom grouping. Both the computation process and the computed results
of our algorithms are naturally robust to possible nodk/failures. The algorithms are simple
and efficient because of their local and randomized nature,tlaus can be potentially easy to
implement on resource constrained sensor nodes.

We analytically show that the upper bound on the expectedingntimes of our algorithms
is related to the grouping probability, the accuracy ciater and the underlying graph’s spectral
characteristics. Our simulation results show that DRG Autperforms two representative dis-

tributed algorithms, Uniform Gossip and Flooding, in teraigotal number of transmissions on
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Alg: Uniform Gossip

Initial: each node, e.g. node 4 sends (sg; = v;, wp; = 1) to itself.

Let {(8,, w,)} be all pairs sent to ¢ in round ¢ — 1.

Let sp5 =2, 8 w; =Y., W
i chooses one of its neighboring node j uniformly at random

Wt,i

i sends the pair (%, %) to j and itself.

%is the estimate of the average at node i of round ¢

(@) The Uniform Gossip algorithm
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Alg: Flooding

Initial: each node, e.g. node i sends (sg; = v;, wo; = 1) to itself.

Let {(8,, w,)} be all pairs sent to 7 in round ¢ — 1.
Let s15 =, 8 W =Y., Wr.
broadcast the pair (3—1 %) to all neighboring nodes.

S . . .
M'Tll" the estimate of the average at node ¢ of round ¢

(b) The broadcast-based Flooding algorithm

1

2
3
4

Alg: modified Flooding-m

Initial: each node, e.g. node 4 sends (sg; = v;, wo; = 1) to itself.

Let {(8,, w,)} be all pairs sent to ¢ in round ¢ — 1.

Let s15 =2, 8 Wy = >, W

broadcast the pair (;L—Jrll du—jrl

:L’le the estimate of the average at node ¢ of round ¢

L) to all neighboring nodes and node i itself.

(c) The modified broadcast-based Flooding-m algorithm

28

Fig. 10. The Uniform Gossip, Flooding and Flooding-m alguoris [18]. At round¢, each node (e.gi) maintains a vector

(st,i, we,s) Wheres, ; andw,; are value and weight respectively. Both entries are cangtbfrom shares of nodes’ values and

weights from previous round. The initial valug,; is just each node’s initial observatian, and the initial weightwy ; is 1.

both Grid and Poisson random geometric graphs. The totabeuwf transmission is a measure

of energy consumption and actual running time. With fewemhar of transmissions, DRG

algorithms are more resource efficient than Flooding andddmi Gossip.
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APPENDIX |

THE PROBABILITY TO FORM A COMPLETE GROUP ONPOISSON RANDOM GEOMETRIC GRAPH

Fig. 11. To form acomplete group of leaders, all the other leader nodes need to be outside the radi@s of node:

To form acomplete group by a node, first i needs to become a group leader (probability of this hapgenin
is denoted byp,), and then its group call message GCM should encounter risionl with other GCMs (which
occurs with probabilityp,). We denote the probability to form @mplete group as® = p, - p;. Herep; depends
on the graph topology ang,, i.e., p, is a function ofp,. If the graph topology is deterministic and pre-engineered
such as grid or circle, both the and theP = p, - p, can be easily pre-computed according to the graph topology.
Although ps may vary at nodes, we can take the minirpalover nodes in our analysis. Hence an approprigte
can be chosen to maximiZR= p, - p, to achieve the best performance of DRG as mentioned in stidseé¢B.

If the graph is a random geometric graph, bpthand? = p, - p, can be derived from the stochastic node-
distribution model. Here, we consider a Poisson random gérergraph, in which the location of each sensor node
is modeled by a 2-D homogeneous Poisson point process wehsity A\, andp, = e~ pa 4 \wherer is the
transmission range.

For a random geometric graph with intenskygiven an areal, the probability ofk nodes appearing within the
areaA ispa (k) = e—“‘%. Since every node independently decides whether to be arleadhot, the location
of each leader node will follow a 2-D homogeneous Poissomtpmiocess with intensity, - \. From Fig.11, a
leader node’s GCM encounters no collision if and only if no other leadedas are within a radius & of i.
Thus letA = 472, we have the probability a GCM encounters no collisign= Prob (no leader nodes inl) =
e‘*Pa"Wz(X”Oﬂ = e~*rs47” and the probability to form aomplete group P = p, - e~*?+*47*. Choosing
the grouping probability, wisely, we can have a maxim& and the best performance of DRG, i.e., fastest time

and smallest number of transmissions.
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