
An Architectural Approach to
Preventing Code Injection Attacks

Ryan Riley, Member, IEEE, Xuxian Jiang, Member, IEEE, and Dongyan Xu, Member, IEEE

Abstract—Code injection attacks, despite being well researched, continue to be a problem today. Modern architectural solutions such

as the execute-disable bit and PaX have been useful in limiting the attacks; however, they enforce program layout restrictions and can

oftentimes still be circumvented by a determined attacker. We propose a change to the memory architecture of modern processors that

addresses the code injection problem at its very root by virtually splitting memory into code memory and data memory such that a

processor will never be able to fetch injected code for execution. This virtual split memory system can be implemented as a software-

only patch to an operating system and can be used to supplement existing schemes for improved protection. Furthermore, our system

is able to accommodate a number of response modes when a code injection attack occurs. Our experiments with both benchmarks

and real-world attacks show the system is effective in preventing a wide range of code injection attacks while incurring reasonable

overhead.

Index Terms—Code injection, secure memory architecture.

Ç

1 INTRODUCTION

DESPITE years of research, code injection attacks continue
to be a problem today. Systems continue to be vulner-

able to the traditional attacks, and attackers continue to find
new ways around existing protection mechanisms in order to
execute their injected code. Code injection attacks and their
prevention has become an arms race with no obvious end
in sight.

A code injection attack is a method whereby an attacker
inserts malicious code into a running process and transfers
execution to his malicious code. In this way, he can gain
control of a running process, causing it to spawn other
processes, modify system files, etc. If the program runs at a
privilege level higher than that of the attacker, he has
essentially escalated his access level. (Or, if he has no
privileges on a system, then he has gained some.)

A number of solutions exist that handle the code injection
problem on some level or another. Architectural approaches
[1], [2], [3] attempt to prevent malicious code execution by
making certain pages of memory non-executable. This
protection methodology is effective for many of the tradi-
tional attacks; however, attackers still manage to circumvent
them [4]. In addition, these schemes enforce specific rules for
program layout with regard to separating code and data, and
as such are unable to protect memory pages that contain both.

Compiler-based protection mechanisms [5], [6], [7] are
designed to protect crucial memory locations such as
function pointers or return addresses and detect when they
have been modified. These methods, while effective for a
variety of attacks, do not provide broad-enough coverage to
handle a great many modern vulnerabilities [8]. Both of these
techniques, architectural and compiler-based, focus on
preventing an attacker from executing his injected code,
but do nothing to prevent him from injecting and fetching it in the
first place.

The core of the code injection problem is that modern
computers implement a von Neumann memory architec-
ture [9]; that is, they use a memory architecture wherein
code and data are both accessible within the same address
space. This property of modern computers is what allows
an attacker to inject his attack code into a program as data
and then later execute it as code. Van Oorschot et al. [10]
proposed a technique to defeat software self-checksumming
by changing this property of modern computers (and hence
producing a Harvard architecture [11], [12]), and inspired
us to consider the implications such a change would have
on code injection.

In this paper, we propose virtualizing a Harvard
architecture on top of the existing memory architecture of
modern computers, including those without non-executable
memory page support, so as to prevent the injection of
malicious code entirely. A Harvard architecture is simply
one wherein code and data are stored separately. Data cannot
be loaded as code and vice-versa. In essence, we create an
environment wherein any code injected by an attacker into a
process’ address space cannot even be addressed by the
processor for execution. In this way, we are attacking the
code injection problem at its root by regarding the injected
malicious code as data and making it unaddressable to the
processor during an instruction fetch.

Based on the availability of hardware support for the
execute-disable bit, our technique can be used as either a

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010 351

. R. Riley is with the Department of Computer Science and Engineering,
Qatar University, PO Box 2713, Doha, Qatar.
E-mail: ryan.riley@qu.edu.qa.

. X. Jiang is with the Department of Computer Science, North Carolina State
University, 890 Oval Drive, Campus Box 8206, Raleigh, NC 27695.
E-mail: jiang@cs.ncsu.edu.

. D. Xu is with the Department of Computer Science and CERIAS, Purdue
University, 305 N. University Street, West Lafayette, IN 47907.
E-mail: dxu@cs.purdue.edu.

Manuscript received 20 Feb. 2008; revised 1 May 2009; accepted 30 Nov.
2009; published online 18 Jan. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2008-02-0040.
Digital Object Identifier no. 10.1109/TDSC.2009.1.

1545-5971/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

stand-alone code injection prevention and response me-
chanism or in conjunction with the hardware support for
improved performance. Our current prototype is imple-
mented as a software-only patch for the Linux operating
system and incurs a reasonable performance penalty, on
average, between 10 and 20 percent, when used in stand-
alone mode. Such a software-only technique is possible
through careful exploitation of the two translation lookaside
buffers (TLBs) on the x86 architecture in order to split
memory in such a way that it enforces a strict separation of
code and data memory.

In addition, our technique detects a code injection attack
at a unique moment when the injected attack code is ready
to run but not executed yet. This unique timing provides the
opportunity to accommodate a number of flexible response
modes. For example, instead of just letting the system crash
when a code injection attack occurs, we can choose to let it
“proceed” properly in a monitored environment to gather
information about the attacker’s intention and tactics. In our
current prototype, three response modes, i.e., break, observe,
and forensics, have been implemented. The experiments
with a buffer overflow benchmark suite as well as five
attacks on real-world software vulnerabilities successfully
demonstrate the effectiveness of our technique.

2 RELATED WORK AND MOTIVATION

Research on code injection attacks has been ongoing for a
number of years now, and a large number of protection
methods have been researched and tested. There are two
classes of techniques that have become widely supported in
modern hardware and operating systems; one is concerned
with preventing the execution of malicious code after
control flow hijacking, while the other is concerned with
preventing an attacker from hijacking control flow.

The first class of technique is concerned with preventing
an attacker from executing injected code using non-
executable memory pages, but does not prevent the attacker
from impacting program control flow. This protection
comes in the form of hardware support or a software-only
patch. Hardware support has been put forth by both Intel
and AMD that extends the page-level protections of the
virtual memory subsystem to allow for non-executable
pages. (Intel refers to this as the “execute-disable bit” [3].)
The usage of this technique is fairly simple: Program
information is separated into code pages and data pages.
The data pages (stack, heap, bss, etc.) are all marked non-
executable. At the same time, code pages are all marked
read-only. In the event an attacker exploits a vulnerability
to inject code, it is guaranteed to be injected on a page that
is non-executable, and therefore, the injected code is never
run. Microsoft makes use of this protection mechanism in
its current operating systems, calling the feature Data
Execution Protection (DEP) [1]. This method is effective for
traditional code injection attacks in many scenarios; how-
ever, it requires hardware support in order to be of use.
Legacy x86 hardware does not support this feature. It is
also unable to protect memory pages containing both code
and data. This technique is also available as a software-only
patch to the operating system that allows it to simulate the
execute-disable bit through careful mediation of certain
memory accesses. PaX PAGEEXEC [2] is an open source

implementation of this technique that is applied to the
Linux kernel. It functions identically to the hardware-
supported version; however, it also supports legacy x86
hardware due to being a software-only patch.

The second class of technique has a goal of preventing
the attacker from hijacking program flow, but does not
concern itself with the injected code. Works such as
StackGuard [5] accomplish this goal by emitting a “canary”
value onto the stack that can help detect a buffer overflow.
ProPolice [6] (currently included in gcc) builds on this idea
by also rearranging variables to prevent overflowed arrays
from accessing critical items such as function pointers or the
return address. Stack Shield [7] uses a separate stack for
return addresses as well as adding sanity checking to ret

and call targets. Due to the fact that these techniques only
make it their goal to prevent control flow hijacking, they
tend to only work against known hijacking techniques. That
means that while they are effective in some cases, they may
miss many of the more complicated attacks. Wilander and
Kamkar [8], for example, found that these techniques
missed a fairly large percentage (45 percent in the best
case) of attacks that they implemented in their buffer
overflow benchmark.

Due to the fact that the stack-based approaches above do
not account for a variety of attacks, in this work, we are
primarily concerned with addressing limitations in the
architectural support of the execute-disable bit. While this
technique is widely deployed and has proven to be effective,
it has limitations. First, programs must adhere to the “code
and data are always separated” model. See Fig. 1a for an
example of this memory layout. In the event a program has
pages containing both code and data (see Fig. 1b), the page-
level protection scheme cannot be used. Unfortunately, these
“mixed pages” do exist in real-world software systems. Sun’s
JavaVM loads some system library pages as both writable
and executable. The Linux kernel uses mixed pages for both
signal handling [13] as well as loadable kernel modules.
Under Windows, applications protected by the SafeDisc
DRM mechanism cannot make use of the execute-disable bit
either [14]. Additionally, as operating systems begin to make
use of larger page sizes [15], it becomes increasingly wasteful
to strictly separate code and date onto different pages.
Finally, mixed pages are easy to create. For example, the
mmap system call in Linux allows programmers to set read,
write, execute, or some combination of them for a memory
object. The combination of write and execute accesses leads
to mixed pages.

352 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

Fig. 1. (a) Separate code and data pages. (b) Mixed code and data
pages in real-world software.

A second problem with these schemes is that an advanced
attacker can disable or bypass the protection bit using library
code already in the process’ address space and from there
execute the injected code. Such an attack has been demon-
strated for the Windows platform by injecting code into non-
executable space and then using a well-crafted stack
containing a series of system calls and library functions to
cause the system to create a new, executable memory space,
copy the injected code into it, and then transfer control to it.
One such example has been shown in [4].

It is these two limitations in existing page-level protec-
tion schemes (the forced code and data separation and the
above bypass methodology) that provide the main motiva-
tion for our work, which architecturally addresses the code
injection problem at its core. Depending on whether certain
hardware support is available, our system is designed to be
run as either a stand-alone code injection prevention and
response mechanism or in conjunction with a hardware-
enforced execute-disable bit for improved performance.

Note that our architectural approach is orthogonal to
research efforts on system randomization, such as Address
Space Layout Randomization (ASLR) [16], [17], [18], [19] and
Instruction Set Randomization (ISR) [20], [21], [22]. We are
also distinct from other work that focuses specifically on
preventing array overflow using a compiler or hardware,
such as [23]. We point out that these alternate systems all
work on a single memory architecture wherein code and data
are accessible within the same address space. Our approach,
to be described in the next section, instead creates a different
memory architecture where code and data are separated.

3 AN ARCHITECTURAL APPROACH

At its root, code injection is a problem because processors
permit code and data to share the same memory address
space. As a result, an attacker can inject his payload as data
and later execute it as code. The underlying assumption
relied on by attackers is that the line between code and data
is blurred and not enforced. For this reason, we turn to an
alternative memory architecture that does not permit code
and data to be interchanged at runtime.

3.1 The Harvard and von Neumann Memory
Architectures

Modern computers and operating systems tend to use what is
known as a von Neumann memory architecture [9]. Under a
von Neumann system, there is one physical memory which is
shared by both code and data. As a consequence of this, code
can be read and written like data and data can be executed

like code. Many systems will use segmentation or paging to
help separate code and data from each other or from other
processes, but code and data end up sharing the same address
space. Fig. 2a illustrates a von Neumann architecture.

An architecture not found in most modern computers
(but found in some embedded devices or operating
systems, such as VxWorks [24]) is known as a Harvard
architecture [11], [12]. Under the Harvard architecture, code
and data each have their own physical address space. One
can think of a Harvard architecture as being a machine with
two different physical memories, one for code and another
for data. Fig. 2b shows a Harvard architecture.

3.2 Code Injection on Harvard Architecture

A code injection attack can be thought of as being carried
out in four distinct, but related, stages:

1. The attacker injects code into a process’ address space.
2. The attacker determines the address of the injected

code.
3. The attacker somehow hijacks the program counter

to point to the injected code.
4. The injected code is executed.

The mediation methods mentioned in Section 2 are
designed to handle the problem by preventing either step 3
or 4. Non-executable pages are designed to prevent step 4,
while compiler-based approaches are meant to prevent step
3. In both cases, however, the malicious code is injected, but
execution is somehow prevented. Our solution, on the other
hand, effectively stops the attack at step 1 by preventing the
successful injection of the malicious code into a process’
code space. (The purist will note that, in the implementation
method described in Section 4, the attack is not technically
stopped until step 4; however, the general approach
described here handles it at step 1.)

The Harvard architecture’s split memory model makes it
suitable for the prevention of code injection attacks due to
the fact that a strict separation between code and data is
enforced at the hardware level. Any and all data, regardless
of the source, are stored in a different physical memory
from instructions. Instructions cannot be addressed as data,
and data cannot be addressed as instructions. This means
that in a Harvard-architecture-based computer, a traditional
code injection attack is not possible because the architecture
is not capable of supporting it after a process is initially
setup. The attacker is simply unable to inject any informa-
tion whatsoever into the instruction memory’s address
space, and at the same time, is unable to execute any code
placed in the data memory. The architecture simply does

RILEY ET AL.: AN ARCHITECTURAL APPROACH TO PREVENTING CODE INJECTION ATTACKS 353

Fig. 2. (a) von Neumann architecture. (b) Harvard architecture.

not have the “features” required for a successful code
injection attack. However, we point out that this does not
prevent an attacker from mounting non-control attacks (e.g.,
non-control-data attack [25]) on a Harvard architecture. We
touch on these attacks in Section 7.

3.3 Challenges in Using a Harvard Architecture

While a Harvard architecture may be effective at mitigating
code injection, the truth of the matter is that for any new code
injection prevention technique to be practical, it must be
usable on modern commodity hardware. As such, the
challenge is to construct a Harvard architecture on top of a
widely deployed processor such as the x86, without assum-
ing hardware support for non-executable memory pages
(Section 2).

In the following, we present a few possible methods for
creating this Harvard architecture on top of the x86
architecture.

3.3.1 Modifying x86

One technique for creating such an architecture is to make
changes to the existing architecture and use hardware
emulation [26] to make them a reality. The changes required
in the x86 architecture to produce a Harvard architecture are
fairly straight forward modifications to the paging system.

Currently, x86 implements paging by having a separate
pagetable for each process and having the operating system
maintain a register (CR3) that points to the pagetable for the
currently running process. One pagetable is used for the
process’ entire address space, both code and data. In order
to construct a Harvard architecture, one would need to
maintain two different pagetables, one for code and one for
data. As such, our proposed change to the x86 architecture
to allow it to create a Harvard architecture is to create an
additional pagetable register in order that one can be used
for code (CR3-C) and the other for data (CR3-D). Whenever
an instruction fetch occurs, the processor uses CR3-C to
translate the virtual address, while for data reads and writes,
CR3-D is used. An operating system, therefore, would
simply need to maintain two separate pagetables for each
process. This capability would also offer backwards com-
patibility at the process level, as the operating system could
simply maintain one pagetable and point both registers to it
if a process requires a von Neumann architecture. We note
that no changes would need to be made to the processor’s
translation lookaside buffer (TLB) as modern x86 processors
already have a separate TLB for code and data.

While this approach to the problem may be effective, the
requirement that the protected system be run on top of
hardware emulation inhibits its immediate deployment. As
such, a more practical approach is needed.

3.3.2 Exploiting x86

Another technique for creating this Harvard architecture is to
make unconventional use of some of the architecture’s
features in order to create the appearance of a memory that
is split between code and data. Through careful use of the
pagetable and the TLBs on x86, it is possible to construct a
Harvard memory architecture at the process level using only
operating-system-level modifications. No modifications
need to be made to the underlying x86 architecture, and

the system can be run on conventional x86 hardware without
the need for hardware emulation as in the previous method.

In following sections, we will further describe this
technique as well as its unique advantages.

4 SPLIT MEMORY: A VIRTUAL HARVARD

ARCHITECTURE

Now that we have established that it is our intention to
exploit, not change, the x86 architecture in order to create a
virtual Harvard architecture, we will now describe the
technique in greater detail. The realization of the virtual
Harvard architecture on other architectures (e.g., SPARC)
will be discussed in Section 4.7.

4.1 Virtual Memory and the TLB

We first present a brief overview of paging on the x86 with
an emphasis on the features we intend to leverage. The
details are available in the Intel manual [3].

4.1.1 Pagetables and the TLB

Virtual memory on the x86 is implemented using operating-
system-managed pagetables that are stored in memory.
When the hardware needs to translate a virtual address to a
physical address, it accesses the table (the address of which
is stored in a register) to find the correct mapping. This
procedure, while effective, can be very slow due to the fact
that each memory access now requires three total accesses
into memory, two into the pagetable and one into the data
requested. To combat this slowdown, a small hardware
cache called the translation lookaside buffer (TLB) is used to
store recently accessed pagetable entries. As such, many
pagetable lookups never actually need to go all the way to
the pagetable, but instead can be served by the TLB. On the
x86, the loading of the TLB is managed automatically by the
hardware, but removing entries from it can be handled by
either software or hardware. The hardware, for example,
will automatically flush the TLB when the OS changes the
address of the currently mapped pagetable (such as during
a context switch) while software can use the invlpg

instruction to invalidate specific TLB entries when making
modifications to individual pagetable entries in order to
ensure that the TLB and pagetables remain synchronized.

While the TLB is able to quite effectively speedup virtual
memory on the x86, one problem is that due to the fact that it
is limited in size, old entries are automatically removed
when new ones come in. As a consequence of this, a program
that has lots of random data access could end up removing
the entries for its code, causing those code accesses to
reference the pagetable once again. To help prevent this
problem, the TLB is split into two TLBs on modern
x86 processors, one for code and one for data. During
normal operation one would want to ensure that the two
TLBs do not contain conflicting entries (where one address
could be mapped to different physical pages, depending on
which TLB services the request).

4.2 Virtualizing Split Memory on x86

The key idea in our split memory virtualization technique is
to exploit the dual-TLB feature of the x86 architecture. More
specifically, via the two TLBs, the operating system is able
to route data accesses for a given virtual address to one

354 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

physical page while routing instruction fetches to another.
By desynchronizing the TLBs and having each contain a
different mapping for the same virtual page, every virtual
page may have two corresponding physical pages: One for
code fetch and one for data access. In essence, a system is
produced where any given virtual memory address could
be routed to two possible physical memory locations. This
creates a split memory architecture, as illustrated in Fig. 3.

This virtual split memory architecture is an environment
wherein an attacker can exploit a vulnerable program and
inject code into its memory space, but never be able to
actually fetch it for execution. This is because the physical
page that contains the data the attacker managed to write into
the program is not accessible during an instruction fetch, as
instruction fetches will be routed to an uncompromised code
page. This also creates the unique opportunity to support and
protect pages that contain both code and data by keeping the
two physically separated but logically combined.

4.2.1 What to Split

Before we discuss the technical details behind successfully
splitting a given page, it is important to note that different
pages in a process’ address space may be chosen to split
based on how our system will be used.

In systems where the execute-disable bit is available, our
technique can be used to complement it by extending
protection to mixed code and data pages. Under this usage
scenario, the majority of pages (i.e., the “nonmixed” pages) in
a process would be protected using the execute-disable bit,
while the mixed pages would be protected using our
technique. In this scenario, chances are high that only a few
of the process’ pages are mixed and need to be protected
using our technique. This should result in a very low
performance overhead. However, we point out that only
protecting the mixed pages using our technique may limit the
use of the various response modes described in Section 4.5.

When the execute-disable bit is not available, our
technique is used to protect every page in a process’ memory
space. In this usage scenario, all relevant pages are split and
protected.

4.2.2 How to Split

Once it is determined which pages will be split, the
technique for splitting a given page is as follows:

1. On program startup, the page that needs to be split
is duplicated. This produces two copies of the page
in physical memory. We choose one page to be the

target of instruction fetches, and the other to be the
target of data accesses.

2. The pagetable entry (PTE) corresponding to the page
we are splitting is set to ensure a page fault will
occur on a TLB miss. In this case, the page is
considered restricted, meaning it is only accessible
when the processor is in supervisor mode. We
accomplish it by setting or enabling the supervisor
bit [3] in the PTE for that page. If supervisor is
marked in a PTE and a user-level process attempts to
access that page for any reason, a page fault will be
generated and the corresponding page fault handler
will be automatically invoked.

3. Depending on the reasons for the page fault, i.e.,
either this page fault is caused by a data TLB miss or
it is caused by an instruction TLB miss, the page
fault handler behaves differently. Note that for an
instruction-TLB miss, the faulting address (saved in
the CR2 register [3]) is equal to the program counter
(contained in the EIP register); while for a data-TLB
miss, the page fault address is different from the
program counter. In the following, we describe how
different TLB misses are handled. The algorithm is
outlined in Algorithm 1.

Algorithm 1. Split memory page fault handler

Input: Faulting Address (addr), CPU instruction pointer

(EIP), Pagetable Entry for addr (pte)

1 if addr == EIP then /* Code Access */

2 pte = the_code_page;

3 unrestrict(pte);
4 enable_single_step();

5 return;

6 else /* Data Access */

7 pte = the_date_page;

8 unrestrict(pte);

9 read_byte(addr);

10 restrict(pte);

11 return;
12 end;

4.2.3 Loading the Data-TLB

The data-TLB is loaded using a technique called a pagetable

walk, which is a procedure for loading the TLB from within

the page fault handler. The pagetable entry (PTE) in question

is set to point to the data page for that address, the entry is

unrestricted (we unset the supervisor bit in the PTE), and a

read off of that page is performed. As soon as the read

occurs, the memory management unit in the hardware reads

the newly modified PTE, loads it into the data-TLB, and

returns the content. At this point, the data-TLB contains the

entry to the data page for that particular address while the

instruction-TLB remains untouched. Finally, the PTE is

restricted again to prevent a later instruction access from

improperly filling the instruction-TLB. Note that even

though the PTE is restricted, later data accesses to that page

can occur unhindered because the data-TLB contains a valid

mapping. This loading method is also used in the PaX [2]

protection model and is known to bring the overhead for a

RILEY ET AL.: AN ARCHITECTURAL APPROACH TO PREVENTING CODE INJECTION ATTACKS 355

Fig. 3. Split memory architecture.

data-TLB load down to reasonable levels (e.g., less than
2.7 percent in benchmarks on a Pentium III [27]).

The procedure above can be seen in lines 7-11 of
Algorithm 1. First, the pagetable entry is set to point to
the data page and unrestricted by setting the entry to be
user-accessible instead of supervisor-accessible. Next, a
byte on the page is touched, causing the hardware to load
the data-TLB with a pagetable entry corresponding to the
data page. Finally, the pagetable entry is reprotected by
setting it into supervisor mode once again.

4.2.4 Loading the Instruction-TLB

The loading of the instruction-TLB has additional complica-
tions compared to that of the data-TLB, namely, because
there does not appear to be a simple procedure such as a
pagetable walk that can accomplish the same task. Despite
these complications, however, a technique introduced in
[10] can be used to load the instruction-TLB on the x86.

Once it is determined that the instruction-TLB needs to
be loaded, the PTE is unrestricted, the processor is placed
into single-step mode, and the faulting instruction is
restarted. When the instruction runs this time, the PTE is
read out of the pagetable and stored in the instruction-TLB.
After the instruction finishes, then the single-step mode of
the processor generates an interrupt, which is used as an
opportunity to restrict the PTE.

This functionality can be seen in Algorithm 1 lines 2-5 as
well as in Algorithm 2. First, the PTE is set to point to the
corresponding code page and is unprotected. Next, the
processor is placed into single-step mode and the page fault
handler returns, resulting in the faulting instruction being
restarted. Once the single-step interrupt occurs, Algorithm 2
is run, effectively restricting the PTE and disabling the single-
step mode.

Algorithm 2. Debug interrupt handler

Input: Pagetable Entry for previously faulting address

(pte)

1 if processor is in single step mode then

2 restrict(pte)
3 disable_single_step();

4 end

As an interesting side note, we created another instruction-
TLB loading method that did not require the use of single-step
mode through carefully adding a ret instruction to the
page and then calling it from the page fault handler, but
surprisingly this actually decreased the system’s efficiency. It

is our understanding that the slowdown was caused by the
x86 maintaining cache coherency. In essence, when the write
to the code page occurs, the processor invalidates the memory
caches corresponding to that page, and also invalidates any
portions of the instruction pipeline currently containing
instructions fetched from that page. Unfortunately, this
causes undesirable performance degradation to the system.

4.3 Dynamic and Shared Libraries

Two important features of modern operating systems that
need to be discussed are dynamic and shared libraries. For
ease of presentation, we make the distinction between
dynamic and shared libraries as follows: A dynamic library
(sometimes called a plugin by applications) is a piece of
code and data that is loaded into an application on demand
at runtime while shared library is typically loaded into a
process’ memory space at load time. The split memory
system detects the loading of these libraries at either load
time or runtime and splits their pages appropriately.

It is important to note that in order for libraries to be
handled in a secure way, they must be validated when
being loaded. As a solution to this problem, we look to
existing work [28], [29] that uses cryptographic primitives
to verify binaries and libraries. Using one of these systems,
memory splitting could simply validate the signature of the
loaded library prior to loading and splitting it. This would
prevent an attacker from loading a new or modified module
into a running program’s address space, while still
permitting valid modules to be loaded and used unhin-
dered. Given that this technique has already been imple-
mented for both Linux [28] and NetBSD [29], we do not
repeat this part in our implementation.

4.4 Effects on Code Injection

A split memory architecture produces an address space
where data cannot be fetched by the processor for execution.
For an attacker attempting a code injection, this will prevent
him from fetching and executing any injected code. A
sample code injection attack attempt on a split memory
architecture can be seen in Fig. 4 and described as follows:

1. The attacker injects his code into a string buffer
starting at address 0xbf000000. The memory writes
are routed to physical pages corresponding to data.

2. At the same time as the injection, the attacker
overflows the buffer and changes the return address
of the function to point to 0xbf000000, the expected
location of his malicious code.

356 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

Fig. 4. (a) Before the attacker injects code. (b) The injection to the data page. (c) The execution attempt that gets routed to the instruction page.

3. The function returns and control is transferred to
address 0xbf000000. The processor’s instruction
fetch is routed to the physical pages corresponding
to instructions.

4. The attacker’s malicious code is not on the instruc-
tion page (the code was injected as data and
therefore routed to a different physical page) and
is not run. In all likelihood, the code page is empty
(containing zeros) and the program simply crashes.

4.5 Attack Response Modes

As described, the virtual split memory system provides
effective protection against the execution of injected code.
Taking a step further, we can also take advantage of the
provided protection as an effective means of detecting the
injected code execution attempt and responding accord-
ingly. More specifically, since the attack can be detected
right before executing the first instruction injected by the
attacker, we can develop a number of options to respond,
including terminating the execution of the exploited process
or permitting the attack to proceed while allowing its
subsequent behavior to be closely monitored, similar to the
way a honeypot is monitored. In the following, we describe
three response modes.

4.5.1 Break Mode

This response mode will take no action and still route the
instruction fetch to the uncompromised code page, which
likely contains null content (a string of zeros). As a result,
the operating system will typically terminate the offending
application. Notice that this option, or the one that achieves
the same results, is the defacto standard for most code
injection prevention systems.

4.5.2 Observe Mode

This mode will log the code injection attempt and then
somehow still permit the attack to continue. This can be
applied to honeypot-style systems wherein notification of a
previously unknown attack would be helpful while still
allowing the attack to continue. The system could even be
tightly integrated with honeypot monitoring tools (such as
Sebek [30] and VMscope [31]) to allow features such as an
incoming attack being seamlessly transferred to a sandbox
system and allowed to continue.

The idea of accomplishing an observe mode is intuitive,
but the devil is in the details. Particularly, to intervene prior
to the execution of injected code, some sort of trap will need
to be generated by the hardware. This challenge arises from
the fact that the operating system does not normally
intercede before every instruction fetch, and doing so would
cause undue performance penalties. In our system, we take
the following approach to cause a trap that will be handled
by the operating system: Fill the previously empty code
pages with invalid opcodes so that an invalid instruction
fault will be generated when an execution attempt occurs.

Upon the detection of an invalid instruction fault, our
response will be activated and Algorithm 3 will be executed.
In essence, it works as follows: Once the trap is intercepted,
log the attack attempt and record the timestamp when the
injected attack code is executed. Next, the pagetable entry is
updated to point to the data page (remember that the data

page contains the actual attack code), memory splitting is

turned off for the page, the TLB entry is invalidated, and the

program is resumed. The net result is that the PTE has been

updated to point to the page containing the attack code and

the attack is able to continue unhindered by the intercession.

Algorithm 3. Observe Algorithm.

Input: CPU instruction pointer (EIP), Pagetable entry for

EIP (pte)

1 if Invalid Instruction Fault then

2 log();

3 pte = the data_page;

4 disable splitting(pte);
5 invalidate tlb(pte);

6 continue execution;

7 end

4.5.3 Forensic Mode

In this mode, we aim at performing in-depth forensic

analysis on the detected attack. Since the attack is detected

right before the first injected attack code is executed, we

consider it an opportune time to start forensic analysis. Given

that the OS has access to the process’ entire address space as

well as the current instruction pointer before malicious code

is executed, forensic investigation of the attack is quite

feasible. Operations such as shellcode analysis (the instruc-

tion pointer points to shellcode in the data pages) or attack

fingerprinting based on memory contents are fully realizable

and can be initiated live during a previously unseen attack. A

related project—Argos [32]—has offered the ability to

replace injected code with its own, “forensic” shellcode. This

same technique could easily be accommodated by this

system by simply injecting the code into the process’ address

space, changing the EIP to point to it, and resuming program

execution. In our current implementation, we dump the

corresponding EIP content and the related injected attack

code. An example will be presented in Section 5.
We point out that, in addition to the above modes, more

customized response modes can be developed based on our

system. For example, a unique potential is to develop a

recovery mode in response to an attack. One common

problem with interceding during an attack is that while the

attacker has not successfully executed his malicious code,

he has probably corrupted various parts of a program’s

memory space. Due to the fact that the operating system

doesn’t understand the intricacies of the running program,

it would be infeasible for it to attempt any sort of recovery

that would permit the application to continue running. It

may be much more feasible, however, for the application

itself to register a call-back function or a special signal

handler that the operating system could transfer execution

to in the event an attack is detected. The application writer

would then be able to better attempt recovery by checking

data integrity, restarting an earlier checkpoint, or terminat-

ing gracefully. This would, of course, require changes to the

existing applications and would be interesting to investigate

in future work [33].

RILEY ET AL.: AN ARCHITECTURAL APPROACH TO PREVENTING CODE INJECTION ATTACKS 357

4.6 Overhead

This technique of splitting memory does not come without a
cost, there is some overhead associated with the methodol-
ogies described above.

One potential problem is the use of the processor’s
single-step mode for the instruction-TLB load. This loading
process has a fairly significant overhead due to the fact that
two interrupts (the page fault and the debug interrupt) are
required in order to complete it. This overhead ends up
being minimal overall for many applications due to the fact
that instruction-TLB loads are fairly infrequent, as it only
needs to be done once per page of instructions.

Another problem is that of context switches in the
operating system. Whenever a context switch (meaning the
OS changes running processes) occurs, the TLB is flushed.
This means that every time a protected process is switched
out and then back in, any memory accesses it makes will
trigger a pagefault and subsequent TLB load. The overhead
of these TLB loads is significantly higher than a traditional
pagefault, and hence, causes the majority of our slowdown.
The problem of context switches is, in fact, the greatest cause
of overhead in the implemented system. The experimental
details of the overhead can be seen in Section 6.2.

4.7 Portability to Other Architectures

We have reason to believe that x86 could be one of the most
difficult architecture platforms to support virtual split
memory. In some other architecture platforms, such as
SPARC, the TLB is actually managed by software instead of
by hardware. Given this, the split memory scheme should
be much easier to build. More specifically, on an architec-
ture with software-loaded TLBs, there would be no need for
complex data or instruction TLB loading techniques.
Instead, the processor’s TLBs could be loaded directly.
The basic procedure would be as follows: 1) Split and mark
pages and pagetable entries just like the x86 implementa-
tion. 2) When a “memory splitting” pagefault occurs, use
the architecture’s TLB loading instructions to load the
correct TLB with the proper physical page number.

Given that no complex loading procedures would be
required, we believe that the code base required to
construct virtual split memory on such an architecture
would be smaller and that the performance overhead
imposed on such a system would be noticeably lower.

5 IMPLEMENTATION

An x86 prototype of our design running in stand-alone
mode has been created by modifying version 2.6.13 of the
Linux kernel. In this section, we present a detailed
description of the modifications to create the virtual split
memory architecture.

5.1 Modifications to the ELF Loader

ELF is a format that defines the layout of an executable
file stored on disk. The ELF loader is used to load those
files into memory and begin executing them. This work
includes setting up all of the code, data, bss, stack, and
heap pages as well as bringing in the shared libraries used
by a given program.

The modifications to the loader are as follows: After the
ELF loader maps the code and data pages from the ELF file,

for each one of those pages two new, side-by-side, physical
pages are created and the original page is copied into both
of them. This effectively creates two copies of the program’s
memory space in physical memory. The pagetable entries
corresponding to the code and data pages are changed to
map to one of those copies of the memory space, leaving the
other copy unused for the moment. In addition, the
pagetable entries for those pages get the supervisor bit
cleared, placing that page in supervisor mode in order to be
sure a page fault will occur when that entry is needed. A
previously unused bit in the pagetable entry is used to
signify that the page is being split. In total, about 90 lines of
code are added to the ELF loader.

In this particular implementation of split memory, the
memory usage of an application is effectively doubled;
however, this limitation is not one of the technique itself, but
instead of the prototype. A system can be envisioned based
on demand paging (only allocating a code or data page when
needed) instead of the current method of proactively
duplicating every virtual page. This would result in a lower
memory overhead because duplicate physical pages would
only be needed when both code and data are accessed from
the same virtual page. We would anticipate this optimization
to not have any noticeable impact on performance.

5.2 Modifications to the Page Fault Handler

Under Linux, the page fault (PF) handler is called in response
to a hardware-generated PF interrupt. The handler is
responsible for determining what caused the fault, correcting
the problem, and restarting the faulting instruction.

For our modifications to the PF handler, we simply
modify it to handle a new reason for a PF: There was a
permission problem caused by the supervisor bit in the
PTE. We must be careful here to remember that not every
PF on a split page is necessarily our fault, some PFs (such as
ones involving copy-on-write), despite being on split
memory pages, must be passed on to the rest of the
PF handler instead of being serviced in a split memory way.
If it is determined that the fault was caused by a split
memory page and that it does need to be serviced, then the
instruction pointer is compared to the faulting address to
decide whether the instruction-TLB or data-TLB needs to be
loaded. (Recall from Algorithm 1 that this is done by simply
checking if the two are the same.)

If the data-TLB needs to be loaded, then the PTE is set to
user mode, a byte on the page is touched, and the PTE is set
back to supervisor mode. This pagetable walk loads the data-
TLB.1 In the event the instruction-TLB needs to be loaded, the
PTE is set to user mode (to allow access to the page) and the
trap flag (single-step mode) bit in the EFLAGS register is set.
This will ensure that the debug interrupt handler gets
called after the instruction is restarted. Before the PF handler
returns and that interrupt occurs, however, a little bit of
bookkeeping is done by saving the faulting address into the
process’ entry in the OS process table in order to pass it to the
debug interrupt handler.

In total, there were about 110 lines of code added to the
PF handler to facilitate splitting memory.

358 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

1. Occasionally, the pagetable walk does not successfully load the data-
TLB. In this case, single stepping mode (like the instruction-TLB load) must
be used.

5.3 Modifications to the Debug Interrupt Handler

The debug interrupt handler is used by the kernel to handle
interrupts related to debugging. For example, using a
debugger to step through a running program or watch a
particular memory location makes use of this interrupt
handler. For the purposes of split memory, the handler is
modified to check the process table to see if a faulting address
has been given, indicating that this interrupt was generated
because the PF handler set the trap flag. If this is the case,
then it is safe to assume that the instruction which originally
caused the PF has been restarted and successfully executed
(meaning the instruction-TLB has been filled), and as such,
the PTE is set to supervisor mode once again and the trap flag
is cleared. In total, about 40 lines of code were added to the
debug interrupt handler to accommodate these changes.

5.4 Modifications to the Memory Management
System

There are a number of features related to memory manage-
ment that must be slightly modified to properly handle our
system. First, on program termination, any split pages must
be freed specially to ensure that both physical pages (the
code page and data page) get put back into the kernel’s pool
of free memory pages. This is accomplished by simply
looking for the split memory PTE bit that was set by the
ELF loader above, and if it is found then freeing two pages
instead of just one.

Another feature in the memory system that needs to be
updated is the copy-on-write (COW) mechanism. COW is
used by Linux to make forked processes run more
efficiently. The basic idea is that when a process makes a
copy of itself using fork, both processes get a copy of the
original pagetable, but with every entry set read-only. Then,
if either process writes to a given page, the kernel will give
that process its own copy. (This reduces memory usage in
the system because multiple processes can share the same
physical page.)

An update similar to the COW update is also made to the
demand paging system. Demand paging basically means
that a page is not allocated until it is required by a process.
In this way, a process can have a large amount of available
memory space (such as in the bss or heap) but only have
physical pages allocated for portions it actually uses. The
demand paging system was modified to allocate two pages
instead of just the one page it normally does. This required
modifications to the code that allocates empty pages on
demand as well as the code that allocates pages for memory-
mapped files. Proper support of memory-mapped files also
allows the system to protect dynamic and shared libraries
as well.

Overall, about 75 lines of code were added to handle
these various parts related to memory management.

5.5 Modifications to the Signal Handler

In order to accommodate the three response modes outlined
in Section 4.5, we extend the Linux signal handler to better
handle the SIGILL (illegal instruction) signal generated by
the corresponding processor exception. In the event an
attack is detected, the following three response modes have
been implemented to respond to the attack: break mode,
observe mode, and forensics mode.

The basic control flow in implementing the response
modes is as follows: Once the attack has been detected, a log
entry containing the EIP of the processor prior to malicious
code execution is added to the system. After that, different
modes lead to different responses:

. If the system is in observe mode, the corresponding
pagetable entry is modified to point to the data page,
split memory is disabled for that page, and the
program is allowed to continue. In other words, the
data page is locked in as the sole mapping and
program execution is resumed. Note that this means
that only the first unauthorized code execution on a
given page will be logged, as future execution will
occur unhindered from the data page.

. If the system is in forensics mode (a light version of
what is described in our design), we first dump
additional information about the attack. For example,
we record the injected attack code or shellcode. The
shellcode is considered the first payload executed
after compromising the vulnerable program. Thanks
to the unique timing of our system in detecting the
attack, we can easily identify the location of the
shellcode, namely, those bytes starting at the EIP in
the data page. We record them in the log for later
analysis. Moreover, we can also inject our own
“forensic” shellcode into the address space, update
the EIP to point to the new code, and resume normal
program execution. Currently, the implementation
copies the new code onto the empty code page being
executed from and changes the EIP to point to the
beginning of the page. The features of the forensic
shellcode can range from a basic program exit to more
advanced and customized code that collects runtime
application semantic information.

. If the system is in break mode, the application will
simply be terminated. This is what would occur if no
modifications were made to the signal handler, and
while it lacks elegance, it is effective at preventing
the attacker from executing his malicious code.

Overall, about 70 lines of code were added to handle
these various parts related to signal handling for response
mode implementation.

6 EVALUATION

Various experiments were run to test both the effectiveness
of the system at preventing code injection attacks as well as
the performance under a variety of workloads. Our testbed
was a modest system, consisting of a Pentium III 600 MHz
with 384 MB of RAM and a 100 MBit NIC.

6.1 Effectiveness

To evaluate the effectiveness, we used a buffer overflow
benchmark as well as five representative, real-world attacks
to see how our system performs.

6.1.1 Wilander Benchmark

The code injection benchmark used for evaluation was
originally put forth by Wilander and Kamkar [8]. The
benchmark was modified slightly in order to allow it to

RILEY ET AL.: AN ARCHITECTURAL APPROACH TO PREVENTING CODE INJECTION ATTACKS 359

handle having the code injected on the data, bss, heap,
and stack portions of the program’s address space. In
addition, four of the test cases did not successfully execute

an attack on our unprotected system, and so have been
labeled “N/A.” Table 1 shows the results of running the
benchmark. The checkmarks indicate that the system
successfully halted the attack. As can be seen, the system

was effective in preventing all types of code injection
attacks present in the benchmark. The effectiveness of the
system is due to the fact that no matter what method of
control flow hijacking the benchmark uses, the processor
is simply unable to fetch the injected code.

6.1.2 Real-World Attacks

Five representative software packages containing real-world
vulnerabilities that permit code injection and execution were
run under our implementation. Vulnerabilities in five major
Linux server packages from 2001 to 2003 were chosen and

exploited using exploits publicly released at the time. Our
software platform for the attacks was the RedHat 7.2
operating system (chosen due to its vulnerability to many
attacks from that time period) that had been manually
upgraded to use version 2.6.13 of the Linux kernel. Table 2

summarizes the results of the experiments, including the
versions of software installed on our testing platform. Some
software shipped with the default version of RedHat 7.2,
other software was “forward” ported from previous releases.

The results of the attacks when executed on an unpatched
kernel is reflected by the “Attack Result” column.

1. Apache 1.3.20 with OpenSSL 0.9.6d. A bug in
OpenSSL allows a buffer overflow to occur if an
attacker sends a very large client master key to the
server. The exploit we used, openssl-too-open by
Solar Eclipse, overflows a heap buffer and makes use
of an information leak in the SSL handshake to
determine the proper address for its shellcode. If the
attack successfully executes, a shell owned by no-

body (the uid of the apache process) is spawned over
the network to the attacker. When run under our
system, the heap buffer is overflowed, but execution
of the injected shell code is foiled because it is
unavailable to the processor when it attempts to fetch
instructions from the heap page.

2. Bind 8.2.2_P5. Bugs in the DNS server implementa-
tion allow either a stack or heap overflow to occur
(depending on which bug is exploited) while
handling transaction signatures. For our testing, we
used a publicly released lsd-pl.net exploit. (A
modified version of this same exploit code was used
by the Lion worm.) Much like the apache attack, this
exploit makes used of an information leak bug to
determine the shellcode jump address. Once that
occurs, a stack overflow is triggered and a shell is
spawned over the network. When run under our
system, the information leak bug still functions and
the stack overflow still occurs, but the shellcode is
unable to be fetched and the execution attempt fails.

3. ProFTPD 1.2.7. When transferring files in ASCII
mode, ProFTPD contains a bug which causes newline

360 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

TABLE 1
Benchmark Attacks Foiled when Code Is Injected onto the Data, Bss, Heap, and Stack Segments

TABLE 2
Five Real-World Vulnerabilities

characters to be translated incorrectly and permits an
attacker to execute arbitrary code. Our exploit of
choice was proftpd-not-pro-enough by Solar Eclipse.
In order to trigger the flaw, the exploit logs in to the
server and uploads a file containing a malicious
payload. Next, it puts the server in ASCII mode and
downloads that file. During the ASCII translation
process, the exploit code is executed off of the heap.
The malicious code then breaks out of any chroot

environments and spawns a root shell over the
network. Executing the server under our system
results in the instruction fetch from the heap failing,
and hence, the attack is foiled.

4. Samba 2.2.1a. Samba contains a bug in the call_

trans2open function that allows a stack buffer to be
overflowed. For our testing, we used an exploit put
out by eSDee. The exploit is a fairly simply stack-
based overflow with a brute-force mode to guess the
address of the shellcode on the stack based on a good
“first guess” obtained by manual analysis of a similar
vulnerable system. This bug was made a bit more
difficult to exploit due to the fact that version 2.6 of the
Linux kernel added slight randomization to the
placement of an application’s stack within memory.
This means that it can take a fairly long time for the
attack to properly guess the correct stack address. In
order to better facilitate testing, the exploit was
“helped” by providing a better first guess using

insider information about the stack location. (We
would like to note that an unmodified attack would
still function given enough time.) When run under our
system, the return address is still guessed properly,
but the shellcode is unavailable to the processor when
it attempts to transfer control to that location.

5. WU-FTPD 2.6.1. A bug in the WU-FTPD code
handling filename globbing combined with the
free’ing of attacker-controlled memory permits
arbitrary code execution. This bug is different from,
but related to, a traditional heap overflow. The
exploit code we used was 7350wurm published by
TESO Security. The exploit logs in to the server, adds
its own malicious code to the heap, triggers the
globbing flaw, and causes a root shell to be spawned.
Under our system, the heap is still filled with
malicious code and the globbing bug is still triggered,
but the injected code is not fetched by the processor.

Overall, even with a variety of bugs and exploitation
techniques, our system is able to defeat code injection in
these real-world scenarios due to the fact that it prevents
malicious code from ever being executed, even after
successful injection into the process’ data space.

6.1.3 Response Modes

In order to validate the attack response modes described in
Section 4.5, the WU-FTPD vulnerability and exploit were
executed under the various modes. Fig. 5 shows how the

RILEY ET AL.: AN ARCHITECTURAL APPROACH TO PREVENTING CODE INJECTION ATTACKS 361

Fig. 5. Demonstration of response modes against the WU-FTPD exploit. (a) Attack failure during break mode. (b) Attack success during observe
mode. (c) Output during forensics mode. (d) Sebek log during observe mode.

exploit code reacts when the WU-FTPD daemon is run under
break mode, observe mode, and forensics mode. First, the ftp
server is run under break mode. As can be seen in Fig. 5a, the
exploit fails to successfully launch a root shell. (This is due to
the process crashing when attempting to execute the
shellcode.) This is contrasted with our second test, executing
the server under observe mode, where the exploit is allowed
to continue unhindered and a rootshell is spawned (Fig. 5b).
More information about this particular attack can be
observed when running under forensics mode, which can
be seen in Fig. 5c. A closer examination of the screenshot will
find that the log entry contains the first 20 bytes of the
injected shellcode. This is fairly easy to recognize because of
the nop instructions (the 0x90 bytes).

A manual analysis of the exploit code reveals that these
20 bytes are indeed the first 20 bytes of injected code. The
exploit actually functions using two stages of injected code.
The initial stage (the first 20 bytes of which are in the figure)
is used to write 4 bytes back to the attacker over the network
in order to signal that the attack succeeded and then
immediately reads a second stage of shellcode from the
network and executes it. Currently, our system can success-
fully observe the execution of the initial stage of code, but
does not intercede before the second stage because the
memory page has been locked on to the data entry.

The last screenshot, Fig. 5d, demonstrates our system
used in conjunction with Sebek, a kernel-level logging
mechanism for honeypots. In our experiment, we integrate
Sebek as a part of observe response mode. By default, Sebek’s
logging mechanism always runs. To reduce log volume, we
modified Sebek to be activated by a buffer overflow event
(caused by code injection) detected by our system. By doing
so, log files can be significantly smaller, yet we can still
ensure that an attacker’s actions are captured thanks to our
system’s “right-before” detection of code injection attacks.
The screenshot shows Sebek logging the commands the
attacker types into his spawned shellcode.

We also tested the possibility of injecting custom
shellcode into the program’s address space. For demon-
stration purposes, we injected the code required to cause
the program to call the exit system call and terminate
gracefully. The injected shellcode (corresponding to
exit(0);) is as follows:

“\xbb\x00\x00\x00\x00” /* mov $0x0, % ebx */

“\xb8\x01\x00\x00\x00” /* mov $0x1, % eax */

“\xcd\x80”; /* int $0x80 */

The code loadspercentebxwith the program’s return value
(0), loads the system call number for exit() into percen-
teax, and finally generates the interrupt required for the
system call. By replacing the attacker’s injected code with this
code, the program terminates without a segmentation fault.
While this test shows the injection of fairly uninvolved code, it
can easily be replaced with more sophisticated forensic
shellcode to assist in attack investigation.

6.2 Performance

A number of benchmarks, both applications and microbe-
nchmarks, were used to test the performance of the system.
When applicable, benchmarks were run 10 times and the
results averaged. Details of the configuration for the tests

are available in Table 3. Each result has been normalized
with respect to the speed of the unprotected system. Unless
otherwise stated, the tests are run with the system running
in stand-alone mode, which is an indicator of the worst-
case performance.

Four benchmarks that we consider to be a reasonable
assessment of the system’s performance can be found in
Fig. 6. First, the Apache Webserver was run in a threading
mode to serve a 32 KB page (roughly the size of Purdue
University’s main index.html). The ApacheBench program
was then run on another machine connected via the NIC to
determine the request throughput of the system as a whole.
The protected system achieved a little over 89 percent of the
unprotected system’s throughput. Next, gzip was used to
compress a 256 MB file, and the operation was timed. The
protected system was found to run at 87 percent of full
speed. Third, the nbench [34] suite was used to show the
performance under a set of primarily computation-based
tests. The slowest test in the nbench system came in at just
under 97 percent. Finally, the Unixbench [35] Unix bench-
marking suite was used as a microbenchmark to test various
aspects of the system’s performance at tasks such as process
creation, pipe throughput, filesystem throughput, etc. Here,
the split memory system ran at 82 percent of normal speed.
This result is slightly disappointing; however, it can be
easily explained by looking at the specific test that
performed poorly, which we do below. As can be seen
from these four benchmarks, the system has very reasonable
performance under a variety of tasks.

If we simply left our description of the system’s
performance to these four tests, some readers may object
that given the description of the system so far and the
mention in Section 4.6 of the various sources of overhead,
something must be missing from our benchmarks. As such,
two benchmarks contrived to highlight the system’s
weakness can be found in Fig. 7. First, one of the Unixbench
testcases called “pipe-based context switching” is shown.

362 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

TABLE 3
Configuration Information Used for Performance Evaluation

Fig. 6. Normalized performance for applications and benchmarks.

This primarily tests how quickly a system can context
switch between two processes that are passing data
between each other. The next test is Apache used to serve
a 1 KB page. In this configuration, Apache will context
switch heavily while serving requests. In both of these tests,
context switching is taken to an extreme, and therefore, our
system’s performance degrades substantially due to the
constant flushing of the TLB. As can be seen in the graph,
both are at or below 50 percent. In addition, in Fig. 8, we
have a more thorough set of Apache benchmarks demon-
strating this same phenomena, namely, that for low page
sizes, the system context switches heavily and performance
suffers, whereas for larger page sizes that cause Apache to
spend more time on I/O as well as begin to saturate the
system’s network link, the results become significantly
better. These tests show very poor performance; however,
we would like to point out that they are shown here to be
indicative of the system’s worst-case performance under
highly stressful (rather than normal) conditions.

As discussed previously, the system can be used in
combination with the execute-disable bit. Under that
scenario, only an application’s mixed pages would be
duplicated and split. In order to demonstrate the perfor-
mance improvements that would come from not splitting
every page, the poor-performing Unixbench “pipe-based
context switching” benchmark was retested on recent
hardware that supports the execute-disable bit (a 2.4 GHz
Intel Quad-Core CPU) using a version of our system that
splits only a certain percentage of an application’s pages,
while the rest of the pages are untouched. Since there are no
real mixed pages in the benchmark tested, we chose the
pages to be split at random for the sake of performance

evaluation. Fig. 9 shows the results of this test. As can be
seen, performance increases dramatically when a small
percentage of an application’s pages are being split. When
only 10 percent of the pages are split, for example, even this
“worst case” test is able to execute at about 80 percent of full
speed. This means that memory splitting, when supple-
mented with hardware-based execute-disable bit, incurs a
very low overhead.

Overall, the system’s performance is reasonable; in most
cases being between 80 and 90 percent of an unprotected
system. Moreover, if split memory was supported at the
hardware level, as described in Section 3.3, or used to
supplement the protection of existing hardware-based
systems, the overhead would be significantly reduced.

7 LIMITATIONS

There are a few limitations to our approach. First, as
shown in other work [36], a split memory architecture does
not lend itself well to handling self-modifying code. As
such, self-modifying programs cannot be protected using
our technique.

Next, this protection scheme offers no protection against
attacks which do not rely on executing code injected by the
attacker. For example, modifying a function’s return address
to point to a different part of the original code pages will not
be stopped by this scheme. Fortunately, address space layout
randomization [17] could be combined with our technique to
help prevent this kind of attack. Along those same lines, non-
control-data attacks [25], wherein an attacker modifies a
program’s data in order to alter program flow, are also not
protected by this system.

RILEY ET AL.: AN ARCHITECTURAL APPROACH TO PREVENTING CODE INJECTION ATTACKS 363

Fig. 7. Stress testing the performance penalties due to context switching.

Fig. 8. Closer look into Apache performance.

Fig. 9. Unixbench pipe ctxsw with varying percentages of pages
being split.

8 CONCLUSIONS

In this paper, we present an architectural approach to
preventing code injection attacks. Instead of maintaining
the traditional single memory space containing both code
and data, which is often exploited by code injection attacks,
our approach creates a virtual split memory that separates
code and data into different memory spaces. Consequently,
in a system protected by our approach, code injection
attacks may result in the injection of attack code into the
data space. However, the attack code in the data space
cannot be fetched for execution as instructions are only
retrieved from the code space. We have implemented a
Linux prototype on the x86 architecture, and experimental
results show the system is effective in preventing and
responding to a wide range of code injection attacks in both
artificial and real-world scenarios while incurring accep-
table overhead.

ACKNOWLEDGMENTS

The authors would like to thank Glenn Wurster, the
anonymous IEEE Transactions on Dependable and Secure
Computing (TDSC) reviewers, and the anonymous re-
viewers of a preliminary conference version of this paper
[37] for their insightful comments and suggestions. This
work was supported in part by the US National Science
Foundation (NSF) under Grants 0546173, 0716444, 0852131,
and 0855297. One of the authors (X. Jiang) is also supported
in part by the US Army Research Office (ARO) under grant
W911NF-08-1-0105 managed by the NCSU Secure Open
Systems Initiative (SOSI). Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the NSF or the ARO.

REFERENCES

[1] “A Detailed Description of the Data Execution Prevention (dep)
Feature in Windows xp Service Pack 2, Windows xp Tablet pc ed.
2005, and Windows Server 2003,” http://support.microsoft.com/
kb/875352, Dec. 2006.

[2] “Pax Pageexec Documentation,” http://pax.grsecurity.net/docs/
pageexec.txt, Dec. 2006.

[3] Intel Corporation, IA-32 Intel Architecture Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1. Intel Corp.,
publication number 253668, 2006.

[4] “Buffer Overflow Attacks Bypassing dep (nx/xd bits)—Part 2:
Code Injection,” http://www.mastropaolo.com/?p=13, Dec. 2006.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A.
Grier, P. Wagle, Q. Zhang, and H. Hinton, “StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks,” Proc. Seventh USENIX Security Conf., pp. 63-78, http://
citeseer.ist.psu.edu/cowan98stackguard.html, 1998.

[6] H. Etoh, “Gcc Extension for Protecting Applications from Stack-
Smashing Attacks,” http://www.trl.ibm.com/projects/security/
ssp/, Dec. 2006.

[7] Vendicator “Stack Shield: A ‘Stack Smashing’ Technique Protec-
tion Tool for Linux,” http://www.angelfire.com/sk/stackshield/
info.html, Dec. 2006.

[8] J. Wilander and M. Kamkar, “A Comparison of Publicly Available
Tools for Dynamic Buffer Overflow Prevention,” Proc. 10th
Network and Distributed System Security Symp., pp. 149-162,
citeseer.ist.psu.edu/wilander03comparison.html, Feb. 2003.

[9] J. von Neumann, “First, Draft of a Report on the EDVAC,” 1945,
reprinted in, The Origins of Digital Computers Selected Papers,
second ed., pp. 355-364, Springer, 1975.

[10] P.C. van Oorschot, A. Somayaji, and G. Wurster, “Hardware-
Assisted Circumvention of Self-Hashing Software Tamper Resis-
tance,” IEEE Trans. Dependable and Secure Computing, vol. 2, no. 2,
pp. 82-92, Apr. 2005.

[11] H.H. Aiken, “Proposed Automatic Calculating Machine,” 1937,
reprinted in, The Origins of Digital Computers Selected Papers,
second ed., pp. 191-198, Springer, 1975.

[12] H.H. Aiken and G.M. Hopper, “The Automatic Sequence
Controlled Calculator,” 1946, reprinted in, The Origins of Digital
Computers Selected Papers, second ed., pp. 199-218, Springer, 1975.

[13] “kernelthread.com:SecuringMemory,”http://www.kernelthread.
com/publications/security/smemory.html, Dec. 2006.

[14] Skape and Skywing, “Bypassing Windows Hardware-Enforced
dep,” Uninformed, vol. 2, http://www.uninformed.org, Sept. 2005.

[15] R. Krishnakumar, “Hugetlb—Large Page Support in the Linux
Kernel,” Linux Gazette, vol. 155, http://linuxgazette.net/155/
krishnakumar.html, Oct. 2008.

[16] “Pax aslr Documentation,” http://pax.grsecurity.net/docs/
aslr.txt, Dec. 2006.

[17] S. Bhatkar, D.C. DuVarney, and R. Sekar, “Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error
Exploits,” Proc. 12th USENIX Security Symp., 2003.

[18] S. Bhatkar, R. Sekar, and D.C. DuVarney, “Efficient Techniques for
Comprehensive Protection from Memory Error Exploits,” Proc.
14th USENIX Security Symp., 2005.

[19] J. Xu, Z. Kalbarczyk, and R.K. Iyer, “Transparent Runtime
Randomization for Security,” Proc. 22nd Symp. Reliable and
Distributed Systems (SRDS), Oct. 2003.

[20] E.G. Barrantes, D.H. Ackley, S. Forrest, T.S. Palmer, D. Stefanovic,
and D.D. Zovi, “Randomized Instruction Set Emulation to Disrupt
Binary Code Injection Attacks,” Proc. 10th ACM Conf. Computer and
Comm. Security (CCS), 2003.

[21] G.S. Kc, A.D. Keromytis, and V. Prevelakis, “Countering Code
Injection Attacks with Instruction-Set Randomization,” Proc. 10th
ACM Conf. Computer and Comm. Security (CCS), 2003.

[22] S. Sidiroglou, M.E. Locasto, S.W. Boyd, and A.D. Keromytis,
“Building a Reactive Immune System for Software Services,” Proc.
USENIX Ann. Technical Conf., 2005.

[23] L. Lam and T. Chiueh, “Checking Array Bound Violation Using
Segmentation Hardware,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN ’05), pp. 388-397, 2005.

[24] “Wind River: Vxworks,” http://www.windriver.com/vxworks/,
Mar. 2007.

[25] S. Chen, J. Xu, E.C. Sezer, P. Gauriar, and R. Iyer, “Non-Control-
Data Attacks Are Realistic Threats,” Proc. USENIX Security Symp.,
Aug. 2005.

[26] “bochs: The Open Source ia-32 Emulation Project,” http://
bochs.sourceforge.net/, Dec. 2006.

[27] P. Venda, “PaX Performance Impact,” http://www.pjvenda.org/
linux/doc/pax-performance/, Oct. 2005.

[28] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi, and V. Roy,
“Digsig: Run-Time Authentication of Binaries at Kernel Level,”
Proc. 18th USENIX Conf. System Administration (LISA ’04), pp. 59-
66, 2004.

[29] B. Lymn, “Verified Exec—Extending the Security Perimeter,” Proc.
Australian Unix Users Group Conf. 2004.

[30] “Sebek,” http://www.honeynet.org/tools/sebek/, 2010.
[31] X. Jiang and X. Wang, “‘Out-of-the-Box’ Monitoring of VM-Based

High Interaction Honeypots,” Proc. 10th Recent Advances in
Intrusion Detection (RAID ’07), Sept. 2007.

[32] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: An Emulator
for Fingerprinting Zero-Day Attacks for Advertised Honeypots
with Automatic Signature Generation,” Proc. ACM SIGOPS/
European Conf. Computer Systems (EuroSys ’06), pp. 15-27, 2006.

[33] A. Avizienis, J.C. Laprie, and B. Randell, “Fundamental
Concepts of Dependability,” Proc. Int’l Workshop Information
Security (ISW ’00), 2000.

[34] “Linux/Unix nbench,” http://www.tux.org/mayer/linux/
bmark.html, Dec. 2006.

[35] “Unixbench,” http://www.tux.org/pub/tux/benchmarks/
System/unixbench/, Dec. 2006.

[36] J. Giffin, M. Christodorescu, and L. Kruger, “Strengthening
Software Self-Checksumming via Self-Modifying Code,” Proc.
21st IEEE Ann. Computer Security Applications Conf. (ACSAC ’05),
pp. 18-27, Dec. 2005.

[37] R. Riley, X. Jiang, and D. Xu, “An Architectural Approach to
Preventing Code Injection Attacks,” Proc. 37th Ann. IEEE/IFIP Int’l
Conf. Dependable Systems and Networks (DSN ’07), pp. 30-40, 2007.

364 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2010

Ryan Riley received the BS degree in computer
engineering and the PhD degree in computer
science in 2009 from Purdue University. He is an
assistant professor of computer science at Qatar
University in Doha. His current research inter-
ests include virtualization technologies, mal-
ware, and operating system security. He is a
member of the IEEE.

Xuxian Jiang received the BS degree from
Xi’an Jiaotong University in 1998 and the PhD
degree in computer science from Purdue Uni-
versity in 2006. He is an assistant professor of
computer science at North Carolina State Uni-
versity. His current research interests mainly
focus on improving the security and reliability of
commodity operating systems against various
malware attacks. He is a member of the IEEE.

Dongyan Xu received the BS degree from
Zhongshan (Sun Yat-Sen) University in 1994
and the PhD degree in computer science from
the University of Illinois at Urbana-Champaign in
2001. He is an associate professor of computer
science and electrical and computer engineering
(by courtesy) at Purdue University. His current
research interests include virtualization technol-
ogies, computer malware defense, and cloud
computing. He is a member of the IEEE and a

recipient of the US National Science Foundation CAREER Award.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

RILEY ET AL.: AN ARCHITECTURAL APPROACH TO PREVENTING CODE INJECTION ATTACKS 365

