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Abstract—Cloud application marketplaces of modern cloud infrastructures offer a new software deployment model, integrated with the

cloud environment in its configuration and policies. However, similar to traditional software distribution which has been suffering from

software piracy and reverse engineering, cloud marketplaces face the same challenges that can deter the success of the evolving

ecosystem of cloud software. We present a novel system named CAFE for cloud infrastructures where sensitive software logic can be

executed with high secrecy protected from any piracy or reverse engineering attempts in a virtual machine even when its operating

system kernel is compromised. The key mechanism is the end-to-end framework for the execution of applications, which consists of the

secure encryption and distribution of confidential application binary files, and the runtime techniques to load, decrypt, and protect the

program logic by isolating them from tenant virtual machines based on hypervisor-level techniques. We evaluate applications in several

software categories which are commonly offered in cloud marketplaces showing that strong confidential execution can be provided with

only marginal changes (around 100-220 lines of code) and minimal performance overhead. The results demonstrate the effectiveness

and practicality of CAFE in cloud marketplaces.

Index Terms—Cloud computing marketplace, secure execution environment, code confidentiality protection
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1 INTRODUCTION

CLOUD computing infrastructures are becoming increas-
ingly popular and mature. Gartner estimated the size

of public cloud service market to grow to $131 billion by
2017 from $111 billion in 2012 [42]. As the technologies
for cloud infrastructures have become mature, there is an
increasing demand for software services especially in
Infrastructure-as-a-Service (IaaS) clouds, where com-
puters (physical or virtual) are provided to tenants with
full flexibility. It is, however, difficult for cloud providers
to fulfill all of the diverse needs of software that are con-
tinuously increasing.

Consequently, major cloud computing services (such as
Amazon Web Services (AWS), IBM Cloud, and Microsoft
Azure) operate marketplaces where application developers
can upload and retail software, and cloud users can pur-
chase the software that they need.

The ecosystem of cloud marketplaces and services in
general involves three parties: cloud users, application
developers, and cloud providers. Cloud users seek and
purchase the cloud applications suitable to their needs in
terms of functionality, price, the easiness of management,
etc. Compared to traditional software that requires instal-
lation and management specific to each user (e.g., desktop
applications), cloud applications are optimized to run on
a cloud platform utilizing various services delivered from
the cloud provider.

Fig. 1 illustrates how AWS Marketplace works as an
example of a cloud marketplace. AWS application develop-
ers submit their packages to the marketplace after placing
program binaries and dependent components in a disk
image. Cloud users search for the software that meets
their needs in the marketplace and purchase them. When
the cloud users create a virtual machine (VM), they are
prompted with a list of the disk images that include the pur-
chased applications. The selected disk image is then written
to the virtual disk of the VM, so the application can be used
by the cloud users. The applications can be easily deployed
using VM disk images (a.k.a., VM images) without tedious
installation procedures that traditional applications require.

While this new form of distribution simplifies the
deployment of software, one of the key problems in soft-
ware distribution still remains in cloud marketplaces: the
deployed software faces the risk of piracy and reverse engineering,
similar to what conventionally distributed software is fac-
ing. Because cloud users typically own an entire VM with
all privileged permissions given, technically they have no
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restriction on the inspection and replication of the applica-
tions installed in the VM.

In addition to the program logic of individual software,
each cloud provider may have its own value-added serv-
ices, such as improved security or performance optimiza-
tion. If a competing cloud provider acquires the binary code
of such services, they should be able to understand their
logic leveraging reverse engineering techniques and can
thus create similar services. Furthermore, cloud users may
be able to copy and use the binary code in another cloud
infrastructure or in his own machine without major effort.

Several previous work attempt to solve this problem via
code obfuscation, memory protection, secure RPC, and DRM,
but it has not been fully solved.

Binary code obfuscation makes reverse engineering more
difficult by transforming binary code while its semantics
are preserved [21], [30], [32]. However, it only impedes
reverse engineering and cannot prevent the theft of software
logic in the long term. Once the binary code is in the hands
of an attacker, many approaches can be applied to under-
stand or to reuse the logic [53].

Existing approaches [20], [33], [34] leveraging virtualiza-
tion-based memory protection can provide a certain level of
confidentiality to software. They are, however, designed to
protect partial code confidentiality or do not address neces-
sary issues in a practical cloud marketplace setting where
code confidentiality must be fully protected throughout the
entire life span of software after its submission.

Secure remote procedure call (RPC) [3] can be used to pro-
tect the confidentiality of the service logic executed in a
remote server. A client invokes the execution of a server pro-
cedure by sending the input parameters and it receives the
output data from the server through a typically encrypted
session channel. Yet, the security of the mechanism relies on
middleware, operating system (OS) that may be compro-
mised and its performance often suffers from the fact that
input/output datamust be transmitted at every request. Fur-
thermore, another concern is the possibility of vulnerability
or software bugs due to large trusted computing base (TCB).

Many software vendors use digital right management
(DRM) [12] tools to make illegal usage difficult. However,
such attempts appear to be unsuccessful as in reality the
pirated software circumvents the copyright protection [48]. In

DRM, typically a cryptographic key stored inmemory is used
to decrypt the encrypted binary code. Thus, if the attacker fig-
ures out the location of the key in memory, it is possible to
extract the plain binary code. Moreover, even if the decryp-
tion of the binary file fails, the decrypted binary code must
be present in memory while the code is being executed due
to the stored-program computer architecture. If the attacker
has the privilege to access the program’s memory, he can
acquire the program image using amemory dump.

As a new alternative, we propose a system named CAFE1

to address these challenges. CAFE provides a cloud applica-
tion execution environment with code confidentiality so that
it can protect sensitive cloud application logic from any
piracy or reverse engineering attempts performed by cloud
users, even in the case that the guest OS of the cloud user
VM is compromised.

The key idea of CAFE is the end-to-end execution environ-
ment of cloud applications that protects the confidential logic in
the applications in their entire lifetime: license verification,
binary code transmission, loading and execution.

CAFE works in the following way. First, developers cre-
ate software or port existing software in two groups of pro-
gram binary files: a group that can be open to cloud users
and the other that contains confidential logic that needs to be
protected. We name the binary files of the former public
binaries and the latter secret binaries. The public binaries are
submitted in the form of a VM image that also contains
other files related to the application (e.g., configuration files)
and the VM environment but does not contain the secret
binaries. A cloud user may be able to copy the files or
extract the in-memory images of the public binaries as in
the existing cloud application distribution.

In contrast, the secret binaries are submitted in the form
of separate files and are automatically managed by the
cloud providers with protection. When the application is
run in the user VM, the secret binaries are fetched on
demand at runtime for execution via a secure deployment
protocol by the hypervisor. The hypervisor securely loads
the secret binaries through a cryptographically protected
channel after the authentication of the VM. The end-to-end
framework ensures that the sensitive logic is completely iso-
lated from cloud users at all times. Throughout the whole
lifetime of the VM, the binary and runtime states of the sen-
sitive logic stay confidential and are strictly protected from
the entire guest OS in the VM by the hypervisor.

Contributions. The contributions of this paper are as follows.

� A secure license verification and transmission layer for
confidential deployment of secret binaries: To support
the confidential execution of cloud application logic
in real-world marketplaces, a secure authentication
and transmission layer is necessary for the manage-
ment of secret binaries that are requested by a large
number of user VMs in the cloud infrastructure for
confidential execution. We propose a new secure
layer for application license verification and secret
binary transmission to enable the authentication and
distribution of security sensitive program logic in a
confidential way—which is required for a practical
marketplace environment.

Fig. 1. An example of cloud application marketplace model: Amazon
Web Services (AWS).

1. It stands for “Cloud Application Function Enclaving.”
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� A guest-transparent, hypervisor-level runtime environ-
ment: The confidential execution of sensitive applica-
tion logic should not rely on the in-guest mechanisms
for constructing a runtime environment, such as
binary loading and relocation, because the guest OS
cannot be trusted. We provide a novel loading and
relocation mechanism based on hypervisor-level tech-
niques for confidential execution.

� Application and evaluation of CAFE in cloud marketpla-
ces: CAFE is applied to various cloud applications
which are available or similar to the ones in market-
places. The evaluation results show the effectiveness
of CAFE in the provision of complete secrecy for sen-
sitive application logic in cloud infrastructures.

This paper is structured as follows: Section 2 presents the
definition of our problem. The design of CAFE is presented
in Section 3. Section 4 describes the implementation details,
and the evaluation of CAFE is presented in Section 5.
Section 6 discusses possible attack scenarios. Related work
is discussed in Section 7, and Section 8 concludes this paper.

2 PROBLEM DEFINITION

2.1 Goals

Our goal is to provide a secure execution environment that
provides a confidentiality service to sensitive program logic
in cloud applications, so the applications released to cloud
marketplaces are protected from malicious cloud users who
attempt to commit software thefts. More specifically, this
goal can be presented as the following two objectives:

Secure Execution of Sensitive Application Logic Confidential
to User VMs. In a typical cloud infrastructure, cloud users
have the privilege to perform any operation in the user VM.
For instance, a cloud user is free to access the binary image
of the OS kernel that his VM boots up with. With this capa-
bility in mind, providing an end-to-end environment for
confidential execution is challenging. Program execution
includes multiple steps such as delivery of a binary, loading
it into memory to construct a runtime environment, and
scheduling it for execution. If a cloud user with administra-
tive privilege obtains the program image, for example, from
the memory space of the process or simply from binary files
at any point of the aforementioned steps, it may lead to the
compromise of confidential execution of the program.

Scalable and Practical Distribution of Secret Binaries for
Cloud Marketplaces. Towards a practical cloud marketplace
system, the distribution and deployment of application
binaries are important. Today’s cloud infrastructures man-
age about hundred thousands of VMs [39] running various
kinds of cloud applications. In order to support such a
diverse set of applications, it is essential to have a secure
and scalable environment for application binary distribu-
tion. For the confidential execution of binary code, its con-
tent must be delivered and deployed with confidentiality.
Thus, the framework for application binary distribution
must ensure that the content of the binary remains confiden-
tial end-to-end from its submission to its execution.

2.2 Adversary Model

We present our adversary model based on a reasonable
cloud environment in modern systems. The main goal of an

adversary would be to obtain the content (in any form) of
program binaries that are protected by our system. We note
that the guest OSes running in cloud user VMs are untrusted,
which means that an attacker can execute arbitrary execut-
able code at any privilege. That is, an attacker can compro-
mise all software including kernel, drivers, libraries, and
applications in the user and kernel mode running in the
user VM. More specifically, an attacker can attempt to
obtain and reverse-engineer the binary codes containing
sensitive application logic using the following methods.

Access to File System. As described in Section 1, applica-
tions are distributed to user VMs as a set of files written to
the VM’s disk image. The most obvious way to obtain the
program is to access the files inside the file system. An
attacker can acquire them using a file I/O tool or via file sys-
tem APIs such as fread. Based on our adversary model, the
attacker has privilege to mount and access any file system.
Therefore, once the program is stored in a file system in a
plain form, he should be able to obtain it.

Access to Runtime ProcessMemory.Amore elevated attack to
obtain the program binary is to capture the runtime states of
the program. We consider that the attacker can access the
memory of application processes. For instance, he can attach a
debugging tool to a target process or inject malicious code into
its memory. Using such methods, the attacker can obtain the
binary code from the runtimememory of the target processes.

Access to Network. Another attack method to obtain the
binary would be using the network layer. We assume that the
attacker can eavesdrop, modify, inject, and block network
traffic between cloud provider servers and cloud user VMs.
For example, if the cloud provider transfers a binary file to the
user VMs over the network in a plain form, then the attacker
may be able to obtain the binary fromnetwork packets.

The aforementioned attack surfaces are based on interac-
tions between a tenant and a VM, and possible attack sce-
narios that are related. We further discuss these attack
scenarios in Section 6.

3 DESIGN

3.1 System Overview

To support confidential execution of various kinds of
applications in a practical cloud marketplace setting, the
confidentiality of sensitive logic should be systematically
maintained in the entire work-flow from the development
of programs to the delivery to the cloud users and their
execution. CAFE achieves the aforementioned goals using
an end-to-end framework for the confidential execution of cloud
applications by using hypervisor-level techniques. This is
one of the key novelties of this paper compared to previous
work which only focus on a local view of protection [20],
[21], [30], [32], [33], [34]. Fig. 2 gives an overview of the
CAFE architecture in the three stages of the distribution and
the use of a cloud application.

Application Development and Submission. As mentioned in
Section 1, cloud application developers build their program
code into two separate groups to be supported by CAFE: the
public binary and secret binary groups. In ourmodel, applica-
tion developers have the responsibility to determine which
part of application logic needs confidentiality. The application
is annotated to use the user level APIs that CAFE provides,
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which are essentially a set of hypercalls that request the
hypervisor to load, unload, and execute a secret binary. The
public binaries are packaged in a VM image along with other
binary files on which the application depends. When the
application is submitted to the marketplace, the public bina-
ries and the secret binary files are submitted separately. The
public binaries are linked at build time to a library, called the
CAFE library. The CAFE library provides a communication
layer for the hypervisor and the hypercall interfaces.

Upon submission, the public VM image is transferred to
the VM image server that stores and manages VM images
as in existing cloud infrastructures. In contrast, the secret
binary files are stored in the secret binary server (SBS) which
works as a secure storage for sensitive application logic.
Both the VM image server and the SBS are a part of the
cloud provider domain linked to user VMs with a dedicated
high bandwidth connection.

Purchase and Deployment of Applications. Cloud users use
the cloud marketplace to find the applications for their
needs. Once an application is purchased by a cloud user in
the marketplace, the cloud provider lets the cloud user cre-
ate a VM using the corresponding VM image that includes
the public binaries of the purchased application. On the
other hand, the secret binaries stored in the SBS are not
delivered to the user VM when the VM is created. Instead,
they are transparently delivered to the hypervisor through
a secure channel when the binaries are requested for use.

Execution of an Application. When the cloud user runs the
purchased application in the VM, the application requests
the hypervisor to load the secret binaries that it needs for
execution via a hypercall. The hypervisor, in turn, commu-
nicates with the SBS to prove the authenticity of itself and
the user’s license for the application. More specifically, the
hypervisor and the SBS exchange the session key to estab-
lish a secure channel, and the SBS attests the integrity of the
hypervisor leveraging the Trusted Platform Module (TPM)
to ensure that it is communicating with the genuine hyper-
visor. After that, the SBS transfers the secret binaries after
encrypting them using the session key shared with the
hypervisor. Upon receiving them, the hypervisor decrypts
and loads the secret binaries in a secure runtime environ-
ment which is isolated from the user VM.

Packet transmission is handled by the CAFE library to
minimize the TCB of the hypervisor. This library transmits
and receives all packets between the hypervisor and the SBS
instead of the hypervisor. The packets are moved in and out
of the hypervisor via hypercall.

Designation of Sensitive Code. Security sensitive code has
the key logic of an application requiring a high degree of
protection. Typically this is a small portion of the entire
application code. Therefore, the cost to achieve confi-
dentiality is generally amortized in the overall perfor-
mance of programs. Our evaluation in Section 5 will
confirm that this high secrecy property can be achieved
with minimal overhead.

In the following sections, we present the details of each
component involved in the execution of secret binaries: (1)
the secure deployment of secret binaries, (2) proving the
trustworthiness of the hypervisor, (3) the secure loading of
secret binaries, and (4) the runtime protection of secret
binary codes.

3.2 Life-Cycle of a Secret Binary

In this section, we present our deployment protocol of secret
binaries, designed to defend against attacks based on the
adversarial model in Section 2.2.

Fig. 3 depicts our protocol for the deployment of secret
binaries. The protocol consists of the following steps.

1) A cloud application developer implements public
binaries and secret binaries separately and submits
them to the cloud marketplace.

2) A cloud user purchases a cloud application in the
cloud marketplace and gets a VM including the pur-
chased cloud application.

3) The purchased cloud application requests the use of
the secret binary from the hypervisor using the
CAFE library.

Fig. 2. Overview of the end-to-end confidential execution architecture of
CAFE.

Fig. 3. Secret binary deployment protocol.
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4) The SBS and the hypervisor exchange a session key
to establish a secure channel.

5) The SBS verifies the trustworthiness of the hypervi-
sor via remote attestation.

6) The hypervisor requests the SBS to send the secret
binary requested by the cloud application.

7) The SBS verifies whether the cloud user associated
with the VM has a license to use the requested
application.

8) The SBS transmits the secret binary image to the
hypervisor if the user VM has a valid license for the
application.

9) The hypervisor decrypts and loads the secret binary
in the confidential execution environment isolated
from the user VM.

10) The hypervisor responds to the application with the
address of the secret binary loaded in the confiden-
tial execution environment.

11) When the public binary calls secret functions, the
function calls trap to the hypervisor. The hypervisor
handles the traps and runs the secret functions.

12) Prior to the termination of the purchased application,
the public binary initiates unloading of the secret
binary via the CAFE library and the hypervisor with-
draws the protectedmemory of the secret binary.

Creation of Secret Binaries. Cloud application developers
determine which part of application logic needs to be confi-
dential and separated into two groups, the public binary
and secret binary groups.

The public binary is a part of the cloud application which
can be open to cloud tenants. When the cloud application
developers build the public binary, the CAFE library is
linked to the application. For the secure transmission of the
secret binary, the hypervisor and the SBS establish a secure
channel over the network. Since the hypervisor does not
contain the functionality of the packet transmission to mini-
mize TCB, the CAFE library performs it on behalf of the
hypervisor. The packets are moved into and out of the
hypervisor via hypercall. The CAFE library can be viewed
as a thin network layer on top of the hypervisor—it does
not contain any security-critical logic.

The secret binary is a set of code and data that composes
the security-sensitive functionalities. CAFE generates the
secret binary in form of the shared library because the secret
binary is loaded at execution time in a user VM.

Secure Channel Establishment.When an application requests
a secret binary from the hypervisor, a secure channel is estab-
lished between the hypervisor and the SBS for tamper-resis-
tant communication. The secure channel protects the
communication between the hypervisor and the SBS against
network-based attacks. The details of the secure channel
establishment are as follows.

Among several candidate key exchange algorithms (i.e.,
Diffie-Hellman and RSA), we choose a variant of Transport
Layer Security (TLS) [4] as our handshake protocol and
RSA as our key exchange algorithm. TLS allows two parties
of the secure channel (i.e., the SBS and the hypervisor) to
authenticate each other with the other’s certificate. The cer-
tificate authority (CA) guarantees the certificates of both
sides; thereby, they can securely authenticate each other.
Unlike the standard handshake protocol of TLS, CAFE

leverages the TPM to generate an RSA key pair of the hyper-
visor and a pre-secret which is used to derive shared secrets
such as an encryption key, an initial vector (IV), and a
HMAC key. With the use of the TPM, we provide a level of
security higher than the standard TLS.

CAFE generates a RSA key pair inside the TPM and wraps
itwith the TPM’s StorageRootKey (SRK). The SRK is a unique,
non-migratable 2048-bit RSA key and is guaranteed to always
be present in the TPM. Due to these features, a key wrapped
by the SRK can only be used in themachine onwhich the same
TPM is placed. Therefore, even in the case that the attacker
acquires a wrapped RSA key pair, he cannot unwrap it with-
out the same TPMused to generate andwrap it.

Remote Attestation of the Hypervisor. After establishing a
secure channel, the SBS generates a nonce (Nonce), which is
a true random number generated by the TPM, and sends it
to the hypervisor. The nonce is used as a parameter of the
TPM_Quote2 operation, a TPM operation used for integrity
measurement [23]. The hypervisor performs TPM_Quote2

and transfers the resulted digest (SignedDigest) to the
SBS. The SBS verifies the integrity of the hypervisor by
matching the received digest with the certificate (CertAIK)
from the privacy CA. The detailed process of the remote
attestation is presented in Section 3.3.

Verification of Application Licenses. Upon successful attes-
tation of the hypervisor, the cloud application sends the
VM ID and the secret binary ID (respectively VmID and
SecretBinaryID in Fig. 3) to the SBS requesting the trans-
mission of the encrypted secret binary image. A VM ID is
the unique identifier of a VM managed internally by the
cloud infrastructure. A secret binary ID is the unique identi-
fier of a secret binary determined upon the submission of
the application to the cloud infrastructure, and it is known
to both the SBS and the application that uses the secret
binary. The cloud infrastructure maintains the association
between a VM ID and a user, and what licenses the user has
(e.g., types of VM, cloud applications, etc.) for billing
purposes. Based on this information, the SBS determines
whether the user associated with the VM ID has a valid
license for the application of the secret binary ID. If the
license is valid, the SBS proceeds to the transmission, other-
wise it refuses the request.

Transmission of Secret Binaries. The hypervisor and the
SBS share the same encryption key, IV, and HMAC key after
establishing the secure channel. The SBS encrypts the relo-
cation, the secret code, and the secret data sections in a
secret binary with the encryption key and the IV using the
HMACmessage authentication of the encrypted secret bina-
ries with the shared HMAC key. The SBS and the hypervi-
sor establish a new secure channel with the derived shared
secrets at every request of a secret binary, and the secret
binary is encrypted using the session key. Therefore, the
deployment protocol can resist brute-force attacks on the
secure channel and the secret binary encryption.

Loading of Secret Binaries. The encrypted secret binaries
are stored in the user VM’s disk after the transmission. The
original contents of the secret binaries remain encrypted in
the user VM’s disk throughout the all steps of the secret
binary loading and execution. The confidentiality of the
secret binaries in the disk are as strong as the encryption
algorithm that the SBS uses. The hypervisor decrypts and
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loads secret binaries in the confidential execution environ-
ment that is isolated from the user VM. The integrity of the
secret binaries is checked using the shared HMAC key with
the SBS before the loading. The details of the secret binary
loading are described in Section 3.5. Finally, the result of the
loading is sent back to the SBS, and the application receives
the address of the secret binary.

Even though attackers manage to acquire encrypted
secret binaries from the VM’s file system, the encrypted
secret binaries are cryptographically protected because the
keys are stored in the memory where only the hypervisor
can access.

Storing secret binaries from the SBS in the hypervisor’s file
system could be another option. This design would require
high level functionalities such as a network stack for the com-
munication with the SBS and a file system support to store
secret binaries. This choice will lead to the increase of the
code size of the hypervisor, which is the TCB of CAFE.
Therefore, we did not pursue this direction in our approach.

Invocation of Secret Functions. After loading of secret bina-
ries, secret functions are inaccessible from the guest VMs.
The secret functions, however, must be able to be invoked
by the public functions for the application to run despite the
boundary between the two groups of binaries. The hypervi-
sor performs the following steps to serve the secret function
invocation.

1) Any secret function call from the public binaries
traps into the hypervisor.

2) The hypervisor marshals input parameters from the
calling public function into the secret function and
calls the secret function.

3) The secret function serves its own security-sensitive
features.

4) After executing the secret function call, the hypervi-
sor unmarshals returned values from the secret func-
tion to the calling public function.

5) The calling public function obtains the returned val-
ues and is resumed.

Unloading of Secret Binaries. When the cloud user termi-
nates the purchased cloud application, the public binaries
initiate unloading of the secret binaries prior to its termina-
tion. At first, the hypervisor initializes the memory area
where the secret binary is placed in order to protect the
security-sensitive codes from the access to this memory area
after unloading of the secret binaries. Next, the hypervisor
merges the memory of the secret binary into the user VM
and the purchased cloud application is terminated.

3.3 Verifying Trustworthiness of Hypervisor

Remote Attestation of the Hypervisor. Since the hypervisor is
part of the trusted computing base of CAFE, the SBS must
ensure that the hypervisor is trustworthy prior to sending
the secret binaries. In order to perform the attestation of the
hypervisor at startup time, we utilize the hardware technol-
ogy, the Dynamic Root of Trust for Measurement (DRTM).
Modern processors with the virtualization technology (e.g.,
AMD SVM and Intel TXT) and the TPM enabled support
DRTM [11], [26]. DRTM provides a dynamic means to
launch a hypervisor (or an OS) after checking the integrity
of the code using the TPM. We leverage the DRTM

technology to measure the hypervisor. More specifically,
DRTM extends the PCR17 (i.e., a TPM register designated
for DRTM) with the measurement value (i.e., the crypto-
graphic hash) of the hypervisor when the hypervisor is
launched. To securely transfer the measurement value to the
verifier (in our case, the SBS), the TPM provides crypto-
graphic operations, such as TPM_Quote and TPM_Quote2,
designed to provide cryptographic reporting of the PCR val-
ues. These operations use a RSA private key to sign a mea-
surement value that specifies the current value of a chosen
PCR and externally supplied data such as the nonce gener-
ated by the SBS. CAFE leverages the TPM_Quote2 with a
specific locality (locality 2) preoccupied by the hypervisor at
startup time. Any later attempts in the user VM that try to
use the locality are trapped to and blocked by the hypervisor.
The semantic of the TPM_Quote2 operation is as follows:

Sign ðSHA1 ðPCRs; nonce; locality Þ; PRAIK Þ

With the remote attestation using TPM_Quote2, we can
guarantee that the SBS performs the session key exchange
with the genuine hypervisor that has not been compromised.

3.4 Runtime Protection of Secret Binary

In order to ensure that the sensitive application logic is
not exposed, it is important to protect the secret binary
code throughout the entire stages including authentication,
deployment, loading, and execution of the secret binary. To
achieve this, the secret binary image must remain encrypted
anytime in the user VM during deployment until it is loaded
in an isolated memory for execution. More specifically, the
confidentiality of the secret binary should be maintained
while the code is being transferred over the network, on the
disk, and in the memory of the user VM. We showed in
Section 3.2 that the secret binary deployment protocol
securely transfers secret binaries through the network in the
cloud provider domain. In this section, we describe how
CAFE protects secret binaries on disk andmemory.

Protection of the Secret Binary on Disk. First, the secret
binary file on disk is cryptographically protected by an
encryption algorithm. Unlike existing work that obfuscates
binary code to make reverse-engineering more difficult [21],
[30], [32], CAFE aims to prevent the theft of sensitive appli-
cation logic by completely encrypting the binary code using
cryptography. The security of the binary content is deter-
mined by the strength of the encryption algorithm and the
protection of the encryption key. Among various available
encryption algorithms, we choose AES-256 in the CBC
mode to encrypt and decrypt secret binaries. Any stronger
cryptographic algorithm will improve the strength of the
encryption making an attack more difficult. The SBS per-
forms the encryption of the binary on demand when a
request for a binary is received from an application. The ses-
sion key obtained from the session channel establishment
(Section 3.2) is used for encryption to prevent brute-force
attempts that target the transmission of the secret binary.
The application uses an API provided by CAFE to load the
secret binary and the API is responsible for receiving the
encrypted secret binary from the SBS and storing it on disk.
The secret binary file remains encrypted until it is verified
and loaded into an isolated memory maintained by the
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hypervisor. Therefore, any attempts to reverse-engineer the
decrypted content of the binary file on disk fail.

Protection of the Secret Binary in Memory. Once the secret
binary is delivered to the user VM, the integrity of the secret
binary is verified by the hypervisor using the HMAC key
shared with the SBS. After that, the secret binary is loaded
into the isolated memory for an execution. The memory iso-
lation is implemented leveraging the hardware-assisted
memory virtualization technology.

Several types of hardware-support for memory virtuali-
zation are readily available in modern commodity process-
ors such as Intel Extended Page Tables (EPT) and AMD
Rapid Virtualization Indexing (RVI) which can be used to
implement CAFE. When any of these virtualization support
is enabled, the memory management unit (MMU) accesses
both the guest page tables and the nested page tables
(NPTs) to translate the guest linear addresses to guest phys-
ical addresses, and the guest physical addresses to machine
physical addresses respectively.

CAFE uses this technique to load the secret binary into
the memory and create a secure execution environment iso-
lated from the user VM. Before the secret binary is loaded,
there is one set of NPTs that is maintained by the hypervisor
to map all guest physical addresses to machine physical
addresses. When the binary is loaded, the NPTs are split
into two exclusive sets: the public NPTs and the secret
NPTs. The public NPTs contain the page entries for all
memory blocks used by the user VM except those used by
the secret binary, whereas the secret NPTs contain the page
entries for the secret binary only. The hypervisor ensures
that the user VM uses the public NPTs while the public
binary is running. Thus, any memory access to the secret
binary during the execution of the public binary is blocked
by the MMU. On the other hand, when the application exe-
cutes the secret binary the hypervisor switches the public
NPTs with the secret NPTs. The secret NPTs enforce that
the secret binary can only access the memory that is exclu-
sively assigned to it providing strong isolation between the
secret binary and the user VM.

Previous work leveraging memory virtualization primar-
ily focus on the runtime isolation of the program binary in
memory [33], [34]. Compared to the existing work, CAFE
ensures that the sensitive application logic is inaccessible
from the user VM at any time. The binary code remains
encrypted both on the disk and in the memory of the user
VM, and the secure execution environment runs the
decrypted code in complete isolation from the user VM.

3.5 Secure Hypervisor Loading of Secret Binary

A program’s execution is performed through several opera-
tions such as allocation of system resources (e.g., memory
pages, stack, heap), loading the program image into the
memory, linking library code, and bootstrapping the pro-
gram code. These operations are typically performed by the
high privileged software layer in the operating system or
system level libraries, to manage such resources. In our set-
ting, the user VM including its operating system is
untrusted. Therefore, CAFE has its own mechanism for
such operations to ensure the confidentiality of the program
throughout its execution. In this section, we describe how
this execution environment is established.

Loading of an Executable Binary. Program code typically
consists of multiple binary codes: the main executable and a
number of shared libraries linked to the main executable.
When a binary is loaded, its location in the virtual memory
of the process is determined dynamically by the loader. In
addition to the location of the binary image, the addresses of
the symbols (e.g., exported global variables and functions) in
the binary are also selected at runtime. Thus, any instructions
of the program that refer to the symbols in the binarymust be
updated with the addresses determined at run time and this
process is known as relocation. When the executable file is
built, the compiler constructs a relocation table that includes
the information necessary for the relocation. The information
includes the locations of the instruction operands to be
patched, the location of the symbols in the binary, and how
the loader is expected to perform relocation (i.e., the reloca-
tion type). This table is used by the OS loader when the exe-
cutable file is loaded or when the relocation is necessary in a
lazymanner depending on the configuration.

Loading by the Hypervisor. In order to provide the confi-
dential execution of an application, the secret binaries are
encrypted and sent to a user VM via a secure channel in
CAFE. When the application wants to use a secret binary, it
requests the hypervisor to load the secret binary using the
CAFE library. Then the hypervisor decrypts the secret
binary into the memory isolated from the user VM. The
challenge here is that the loader in the user OS does not
have an access to the decrypted secret binary in the isolated
memory; thus, it cannot perform relocation on it. On the
other hand, if the secret binary is decrypted in the memory
that the OS loader can access to, the untrusted OS can obtain
the decrypted binary content during the loading process.

To solve this challenge, we use the hypervisor to perform
the loading, the decryption, and the relocation of the secret
binary. When the binary is loaded into the isolated memory,
the hypervisor performs the decryption. After that it per-
forms the relocation of the binary. Fig. 4 demonstrates how
relocation is performed by the hypervisor. The relocation on
the public binaries is performed by the OS loader as usual,
but the relocation on the secret binaries is delegated from
the loader to the hypervisor. When the application requests
CAFE to load a secret binary, it locates the relocation section
of the secret binary, and the encrypted relocation informa-
tion is sent to the hypervisor via a hypercall. When the
hypervisor receives the hypercall, it decrypts the relocation
information. If decryption is successful, then it performs
relocation on all sections of the secret binary including the

Fig. 4. Hypervisor loading of a secret binary.
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code and data sections. In addition to the code section, relo-
cation is also performed on the data section because the
symbols that hold memory addresses (e.g., global pointer
variables) must also be updated in memory.

Position Independent Code. While relocation is the most
common and the traditional way to ensure correct code and
data references, there is another approach to resolve the
issue, namely Position Independent Code (PIC) [24]. PIC
solves the relocation problem using a Global Offset Table
(GOT) and a Procedure Linkage Table (PLT). A GOT is a
table where each entry contains the address of a target sym-
bol in memory. The code instruction referring to a target
symbol uses this table to obtain its dynamic address; thus,
avoiding the need for relocation. PLT is similarly used for
function addresses. However, GOT does not completely
avoid relocation because the entries of GOT are still subject
to relocation to contain the accurate symbol addresses deter-
mined at runtime. CAFE supports the loading and execu-
tion of both relocation-based and PIC-based executables.

3.6 Formal Verification of Protocol

To verify the safety of our protocol for the deployment of
secret binaries, we use a formal verification tool, ProVerif
[16] on our protocol algorithm which consists of the secure
channel establishment, the remote attestation, and the trans-
portation of the secret binaries. Since the secure channel
establishment is based on a variant of TLS, we assume that
the verification of the channel is performed by TLS. ProVerif
can handle many cryptographic primitives like public key
cryptography and an unbounded number of sessions of
protocol. Based on the formal verification, we confirm that
an attacker cannot acquire the secret binaries transmitted
over the network.

4 IMPLEMENTATION

CAFE consists of three major components: the hypervisor,
the SBS, and the user level APIs that the cloud applications
use to send requests to the hypervisor.

First, the hypervisor is implemented on top of eXtensible
and Modular Hypervisor Framework (XMHF) [49] which is
used in several related work [33], [49], [50]. XMHF provides
a general framework for building a DRTM-based hypervi-
sor. We implement the authentication/verification layer
that interacts with the SBS and the loading and unloading

mechanism for secret binaries that involve the hypervisor
level relocation.

Second, the SBS is a server that interacts with the hyper-
visor to receive the requests of secret binaries and send the
encrypted binaries along with their authentication records.
This component is implemented using OpenSSL to perform
certificate verifications and cipher operations.

Third, the user level APIs are essentially a set of hyper-
calls that the cloud applications issue to request the hyper-
visor to load, unload, and execute secret binaries, as well as
for input and output data marshaling.

We use two machines for our experiments for the hyper-
visor and the SBS. Both machines are equipped with an
AMD Turion II P520 2.30 GHz processor, 4 GB RAM, and a
256 GB SSD, and run the 32-bit version of Ubuntu 12.04. The
virtual machines and the SBS are connected to a 1 Gb/s net-
work. We wrote 5,743 lines of code (LoC) which include all
three components beyond the base systems that we used.

5 EVALUATION

5.1 Use Cases

We demonstrate that various types of application code can
be protected by CAFE using 9 applications grouped into
three distinct categories (as listed in Table 1). The applica-
tions are selected based on their popularity in real-world
usages and cloud marketplaces. Many of these applications
are available in AWS Marketplaces at the time of writing
this paper. We use the source code of these applications to
slice out example sensitive code that is compiled into
secret binaries. The chosen program logic may not be
“confidential” in real world, but they are selected to simu-
late the developers’ efforts to take the benefit of confidential
execution of CAFE. In our evaluation, only 100-220 LoC are
added for the separation of the secret binaries. Despite our
use cases mainly address tenants applications, we would
like to note that our techniques would be also applicable to
cloud providers applications such as accounting logics and
management functions of services.

This experiment shows the applicability of CAFE to vari-
ous types of application software to verify that similar pro-
gram logic can be executed confidentially. Table 1 shows
the details of the applications that run on CAFE with confi-
dential execution. In the first column, the table has three cat-
egories of applications in the type of protected program

TABLE 1
Use Cases of Confidential Execution of Secret Cloud Application Binaries

Application Program Binary Code info Runtime info

category name name Protected code jLj jF j jCj jDj jRj
Decision- NGINX nginx-access Access module 169 1 4 44 19
making Sendmail sendmail-filter Mail Filter (Milter) 106 1 52 52 559
logic Apache HTTP Server httpd-firewall Web Application Firewall (WAF) 104 1 52 52 556

Crypto- Google Authenticator gauth-otp One-time passcode generation 102 1 8 44 16
graphic EncFS encfs-aria ARIA block encryption/decryption 220 3 24 48 346
operations MariaDB (server) mariadb-aes AES tuple encryption/decryption 163 4 12 52 169

Data MapReduce MapReduce-kmeans k-means clustering 173 1 12 44 380
processing MPI mpi-mmult Matrix-matrix multiplication 149 1 4 44 20
workload Hadoop hadoop-wcount Word counting 180 2 4 44 32

jLj: LoC added for porting, jF j: the number of exported secret functions, jCj: Code section size (KB), jDj: Data section size (KB), jRj: Relocation table size.
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logic: decision-making logic, cryptographic operations, and
data processing workload. In the following columns, Table 1
shows the program information (program name, binary
name), the description of the protected program logic (Pro-
tected Code), the number of lines of code added as porting
attempts (jLj), the number of exported secret functions (jF j)
and runtime characteristics of the secret binaries (jCj: code
section size, jDj: data section size, jRj: relocation table size).
Note the exported secret functions (jF j) mean the interface
functions that are exported to the non-secret (public) binary
code so that they can be called from outside. Within the
secret binary there are many more finer-grained functions,
but we mainly focus on the exported functions because they
are more relevant to the evaluation. The characteristics of
the applications in the three categories are as follows.

Decision-Making Logic. Application code in this category
determines the behaviors of the application. For example,
the access module, nginx-access, of NGINX decides
whether the web server allows or denies an incoming web
request based on the ALLOW/DENY list in the web
server configuration. Another application, the mail filter
module, sendmail-filter, of the sendmail server ana-
lyzes the content of an outgoing mail and decides whether
to send out the mail or not. Specifically the ported code
examines the header of an input mail and finds whether
the sender’s address is illegal using a regular expression.
In addition, we port the Web Application Firewall (WAF)
module, httpd-firewall, in the Apache HTTP Server.
This module watches for HTTP requests and responses to
allow or block them based on their contents. Particularly
this module analyzes the GET parameters of a HTTP
request using a regular expression to detect a potential
SQL injection attack.

Cryptographic Operations. In general, the strength of cryp-
tographic operations are determined by their keys and algo-
rithms. However, if the OS is compromised, such operations
are no longer safe because high privileged software can look
into the runtime states of the cryptographic functions, cipher
modes, or the algorithms of closed cryptographic functions.
This can impact the confidentiality of cryptographic opera-
tions of cloud users as well as the cloud providers via
techniques like reverse engineering. CAFE can make crypto-
graphic code on cloud applications confidential to the entire
user VMs. We show several use cases of well known cloud
applications. Google Authenticator includes a time-based
one-time passcode generator in the form of OpenSSH’s Plug-
gable Authentication Module (PAM) for two-factor user

authentication. We port the Google Authenticator PAM,
gauth-otp, that protects the passcode generating code.
Another example is EncFS which is a file system with the
block-level encryption. We selected a particular version of
EncFS, encfs-aria, that uses the ARIA cipher [6] for the
file block encryption and decryption. The encryption and
decryption algorithms along with the key initialization func-
tion are protected. MariaDB is a SQL server that aims to
replace the MySQL DBMS with enhanced performance and
increased productivity in the enterprise and the cloud. We
port the AES encryption and decryption functions of
MariaDB, mariadb-aes, to demonstrate that the confi-
dentiality of such crypto logic can be protected.

Data Processing Workload. Some security sensitive code
may involve intensive computation on a certain amount of
data. We use three parallel data processing algorithms as
examples (k-means clustering, matrix-matrix multiplication,
and word counting), each running on a parallel computing
framework to show the support of this category by CAFE.
MapReduce-kmeans is an implementation of k-means
clustering based on Pheonix [40], a shared-memory and C
language based MapReduce framework. The protected
code partitions n-dimensional integer points into a number
of clusters. mpi-mmult is a matrix-matrix multiplication
algorithm running on MPI (OpenMPI). It takes two two-
dimensional arrays as inputs and produces another 2-D
array as a result of the multiplication. Lastly, hadoop-

wcount is a simple algorithm based on Apache Hadoop
which analyzes an input text file and outputs the total num-
ber of distinct English words.

The number of lines of code added to the applications for
conversion depends on the amount of the confidential code
of the application. In our use cases, it ranges 100-220. Com-
pared to the total LoC of the entire program, it is a small
portion of the program (average 1.18 percent for the applica-
tions we evaluate).

The performance of a secret binary relies on the execu-
tion frequency of the secret functions and the amount of the
input and output data marshaled each time when the code
is executed. Table 2 shows the runtime characteristics of the
secret binaries protected by CAFE. The sizes of the input
data to the secret code (jIj) and the output data (jOj) from
the secret code are mainly determined by the input scale
factor (N), which depends on the size of input to the appli-
cation, such as the configuration of the application and the
input data that the application receives. The details of N is
presented in the fourth column.

TABLE 2
Runtime Characteristics of Secret Binaries

Binary name jIj jOj Input scale factor (N)

nginx-access 12N þ 12 4 Number of ALLOW/DENY rules in server configuration
sendmail-filter N 4 Length of sender’s email address
httpd-firewall N 4 Length of requested URI string
gauth-otp 5ðN þ 7Þ=8 4 Length of authentication token (default: 90)
encfs-aria N N Size of block to encrypt or decrypt (default: 256)
mariadb-aes N þ 64 N Size of block to encrypt or decrypt (default: 16)
MapReduce-kmeans 4N=M þ 4M þ 12 4N=M þ 4 Number of n-dimensional points,M : Number of clusters
mpi-mmult 8N þ 12 4N Number of elements in each of two-dimensional input matrices
hadoop-wcount N 4 Size of text file that contains input words to count

Input parameter and output data sizes are on a per-function call basis. jIj: input parameter size (bytes), jOj: output data size (bytes).

PARK ET AL.: CAFE: A VIRTUALIZATION-BASED APPROACH TO PROTECTING SENSITIVE CLOUD APPLICATION LOGIC... 891



5.2 Performance of Confidential Execution of Cloud
Applications

Microbenchmark. First, we evaluate the overhead of the oper-
ations necessary to execute secret binaries in an isolated
VM: secret binary loading (Table 3a), secret binary unload-
ing (Table 3b), hypervisor-level relocation (Table 3c), and
input data marshaling (Table 3d).

In order to show how the overhead scales with the size of
input, we select four representative binary code sizes for
loading and unloading and five different sizes of the reloca-
tion table for the performance of hypervisor-level relocation
and marshaling.

The loading of a secret binary includes the communica-
tion between the hypervisor and the SBS through network
for the delivery of a binary and the local procedures to load
it in the user VM. The communication overhead depends
on the bandwidth and traffic between the user VM and
the SBS. Typically, rack mounted servers have multiple
interface cards for management purposes and the delivery
of secret binaries can be performed using a separate
connection to minimize the impact from data traffic (e.g.,
network congestion). In our experiments, we use a Gigabit
network for connection without significant background traf-
fic assuming an out-of-the-band connection. The communi-
cation overhead dominates the overhead of local secret
binary loading as shown in Table 3a. Unloading of the bina-
ries also similarly scales with the size of binaries (Table 3b).

The performance of hypervisor-relocation is proportional
to the size of the relocation table for the secret binary, the
number of entries in the relocation table, as shown in
Table 3c. The relocation of a secret binary is performed by
the hypervisor after decrypting the binary content in the iso-
lated memory.

Marshaling parameters to the secret binary code involves
copying data from a memory region to another. The mar-
shaled parameters are serialized and copied from the
unprotected memory to the protected memory that the
secret binary exclusively owns. The marshaling overhead is
proportional to the size of the data as shown in Table 3d.

Macrobenchmark. Next, we present the overhead of the
applications for confidential execution in CAFE (Table 4).
We calculate the overhead by comparing the performance
of the original version with the modified version with confi-
dential protection of application logic. The overhead scales
with the workload of protected code. We present the
detailed information regarding the protected code in
Section 5.1. In general, one major source of overhead is VM-
level context switches that occur while the secret code is
running and during marshaling for input and output data.
Specifically, the overhead highly depends on the frequency
of secret function calls and the size of the marshaled data
for each secret function call, which is determined by appli-
cation behavior. The complexity of the protected logic has a
minor impact on the overhead.

We have evaluated several server programs by setting up
the client for benchmarking workload in a separate physical
machine in a local network (1 Gb/s). We note that the setup
is conservative since cloud data centers are typically con-
nected with a higher bandwidth (e.g., 10 Gb/s).

Table 4 presents our evaluation result and the input
workload. To measure the overhead of nginx-access and
httpd-firewall, we have the Apache Benchmark (ab)
issue 10,000 transactions per trial with each transaction,
which requests one page at a time to the server. Diverse con-
tent of each page is simulated with a binary blob filled with
randomly-generated bytes. We experimented the average
size of the web page in top 100 web sites as of July, 2014 [1]
(1.829 MB). The number of requests per second is used as
the comparison unit. httpd-firewall has higher overhead
(26.86 percent) than nginx-access (1.90 percent) because
the firewall module performs regular expression match-
ing to detect an SQL injection attack from the request URIs,
which is heavier than the simple IP/domain name matching
used in nginx-access.

TABLE 3
Microbenchmark of Secret Binary Operations

TABLE 4
Application Overhead Induced by CAFE’s Confidential Execution

Benchmark name Overhead (%) Input workload

nginx-access 1.90 Apply 7 ACCESS/DENY rules to 10,000 transaction requests
httpd-firewall 26.86 Check the URIs of 10,000 transaction requests for an SQL injection attack using a regular expression
sendmail-filter 2.81 Verify the FROM addresses of an email sent repeatedly for 30 seconds using a regular expression
gauth-otp 2.52 SSH login/logout attempts using one-time passcodes repeatedly for 30 seconds
encfs-aria 900.13 Run the IOzone Filesystem Benchmark writing a 512KB file using a 4KB buffer
mariadb-aes 14.57 Handle 10,000 queries, each involving the AES decryption of two binary fields (100 and 200 bytes)
MapReduce-kmeans 8.04 Partition 8K two-dimensional integer points (64 MB) into 4K clusters
mpi-mmult 4.15 Multiplication of two 1000�1000 integer matrices (3.815 MB)
hadoop-wcount 5.82 Word count analysis of a text file containing 10,000 words
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We use the Mstone SMTP performance testing tool [2] to
measure the overhead of sendmail-filter. The test is run
for 30 seconds with one client which repeatedly sends an
email with the default Mstone email content. The format
validity of the sender’s email address is checked every
time the email is sent by the server. The comparison unit
is the number of trials per minute. The evaluation shows
that the overhead is only 2.81 percent.

To evaluate gauth-otp case, the SSH client repeatedly
logins to and logouts from the server for 30 seconds using
one-time passcodes generated by secret binary. We measure
the number of login and logout attempts per second as the
unit of the comparison. The overhead for confidential exe-
cution is as trivial as 2.52 percent.

The overhead of encfs-aria is measured using the
IOzone Filesystem Benchmark [10]. We use the average
throughput (KB/sec) of each process writing a 512 KB
file using a 4 KB buffer. The benchmark result shows that the
application with the confidential execution support is about
9 times slower than with the binary without the support. We
note that this benchmarking is a stress casewhere the file sys-
tem is stressed with very frequent secret function calls,
which cause high context switch cost. According to [44],
which analyzed the file system workloads in various envi-
ronments, the amount of data written in the web server is
960MB per day and one in the NTworkstation is 19.3 GB per
day. On the other hand, encfs-aria in CAFE can write up
to 68.96 GB per day (798.2 KB/sec), thereby we expect the
overhead in the realistic setting to bemuch lower.

The mariadb-aes secret binary performs the encryp-
tion or the decryption of database fields when the DBMS
executes a related SQL statement. We measure the perfor-
mance of the server executing 10,000 SELECT statements,
each requesting to decrypt and read two binary fields that
are 100 and 200 bytes respectively. Our evaluation focuses
on decryption, instead of encryption, because decryption
is much more commonly and frequently executed than
encryption in real-world database use. The time (in seconds)
that takes for the DBMS to execute all of the queries is used
as the comparison unit. Every time it is requested the query
triggers the execution of the protected decryption logic
twice and it is executed intensively for a short time, which
results in the relatively large overhead of 14.57 percent.

MapReduce-kmeans is configured to partition 8,192
two-dimensional integer points (64 MB) into 4,096 clusters.
The size of each dimension is set to 1,000, and two threads
perform the clustering in parallel. The algorithm searches
the data space for the cluster with the nearest mean for each
point, computing the squared distance between every pair
of the input points. The application is about 8 percent
slower with the confidentiality support than the original
application, both given the same input.

For the mpi-mmult case, we configure the program to
take two 1000�1000 matrices of the integer type whose size
is near 3.815 MB, as its input to the multiplication using one
process. The protected logic is highly computation-oriented
and the overhead introduced by the confidential execution
is as low as 4.15 percent.

hadoop-wcount is run with an input text file that con-
tains 10,000 words (108 KB). The input text is analyzed in
two phases. First, each thread takes a distinct line from the

text and counts the number of words in the line simulta-
neously. Second, a new set of threads reduce the intermedi-
ate word counts from the first phase to get the total number
of words in the text. We use the CPU time spent during the
two phases as the unit of the comparison. The phases mainly
focus on simple arithmetic operations and memory I/O. The
overhead imposed by CAFE for this binary is 5.8 percent.

We note that if these application functions were executed
via secure RPC [3] between the hypervisor and the SBS, the
overhead would be higher because of the high frequency of
the input and output data transmission. In general, the size
of input and output data for a program is larger than the
size of the code. This is particularly important for data-
intensive workload (e.g., big-data applications).

Resource Accounting. Secret functions are executed in the
context of the hypervisor. Thus the resource usage of this
code (e.g., CPU and memory usage) should be accounted as
the resource consumption of a corresponding tenant VM.
Cloud providers have various ways to define the resource
accounting for confidential execution in CAFE. As in our
measurement, the execution frequency of the secret func-
tions and the amount of the input and output datamarshaled
can be used as a coarse grained measure. Alternatively accu-
rate amount of memory and CPU usage can be also mea-
suredwith low level techniques.

5.3 Performance Impact to Applications without
Protection

We use the XMHF as the base of our implementation for
basic hypervisor primitives and DRTM-related code. To
evaluate the performance impact we run benchmarks (Uni-
xBench) on CAFE without any secret binaries loaded and
compare the results with a vanilla XMHF hypervisor with
the basic VM management functionality only. The results
confirm that CAFE does not impact unprotected applica-
tions in the VM (zero overhead). Due to space constraints,
we do not present the data in this paper.

5.4 Porting Effort

In the usage scenario of CAFE, developers for cloud envi-
ronments configure and modify software to separate the
sensitive code, so that its confidentiality could be provided
by CAFE. Since the strength of individual developers differ,
measuring this efforts would need a user study. As one
example, we describe the effort took for porting applications
used in evaluation section so that their sensitive code could
be separated and protected as a secret binary.

Separated Modules. In most applications of our evaluation,
the sensitive code was separated from the rest of code.
Thus, it is straightforward to identify and separate the secret
binary from the applications. The decision-making logics
(nginx-access, sendmail-filter, httpd-firewall),
cryptographic operations (gauth-otp, encfs-aria,
mariadb-aes), and computation algorithms (MapRe-
duce-kmeans, mpi-mmult) meet the properties of the
self-contained code, porting them into the CAFE framework
was a very simple and straightforward task.

Mixed Modules. When the call target of sensitive code is
outside of sensitive functions, the developers need to
carefully refactor the code so that the whole logic can be
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self-contained. hadoop-wcount uses classes derived from
the HadoopPipe library, which provides C++ APIs such as
Mapper and Reducer that encapsulate many features for
supporting the MapReduce framework. Hadoop Pipe uses
the well defined classes and functions (e.g., HadoopPipes::
ReduceContext and HadoopUtils::splitString) and
the C++ Standard Library (e.g., vector) to run aMapReduce
job. To protect the algorithmalongwith such dependentmod-
ules, the sensitive code and related parts from the C++ classes
are taken and ported to C functions.

Overall porting applications for CAFE only needed
between 102 and 220 lines of code to be written as shown in
Table 1. The actual effort to understand the code may vary
depending on the software’s structure, but given a set of
benchmark programs in our evaluation, in many programs
the sensitive code is organized as a separated module which
will make the porting straightforward.

6 POSSIBLE ATTACKS AND DEFENSE

Attack of an Illegitimate Hypervisor.Apossible attack for amali-
cious cloud user is to pretend to be a legitimate hypervisor to
obtain secret binaries from the SBS. The attack can run in the
user or kernel mode in the machine where the legitimate
hypervisor is present. In either case, the fake hypervisor has
TPM locality 1, different from the genuine hypervisor that has
locality 2which is reserved using the TPM_Quote2 operation.
A fake hypervisor may run in a different physical machine.
However, the machine will fail the remote attestation due to
unmatched TPM operations. Consequently, the SBS can
detect the attack and refuse to send the secret binary.

Attack of an Illegitimate SBS. An attacker can attempt to
run his own code on the hypervisor using his own illegiti-
mate SBS. A general attack strategy would be observing
how the transportation protocol works by inspecting net-
work packets, and then the attacker can emulate the behav-
ior of the legitimate SBS in a different machine. This attack
fails because the fake SBS does not have the private key of
the genuine SBS. Specifically, the hypervisor verifies a certif-
icate transmitted from the fake SBS with the certificate from
the CA. Since the certificate from the fake SBS is not issued
by the CA, the verification fails and the transportation pro-
tocol is terminated by the hypervisor.

Stealing the Secret Binary ID or VM ID. In the deployment
protocol, the secret binary ID and the VM ID are used to
check the license for the loading of the secret binary. An
attacker may attempt to steal the IDs and obtain the secret
binary using them. However, the license check by the SBS
uses the IDs only after the authorization of the attested
hypervisor is passed. Therefore, stealing such information
is not helpful for the attack to succeed.

Modification of a Secret Binary. An attacker in the user VM
may try tomanipulate the secret binary sent from the SBS. For
example, the attacker may inject his own malicious logic into
the code section of the secret binary in the file or memory
before the isolation. CAFE prevents this kind of attacks using
the cryptographic hash function, HMAC. Prior to loading the
encrypted secret binary, CAFE verifies the integrity of the
secret binary using the HMAC value generated by the SBS. In
order to compute the legitimate HMAC value of the manipu-
lated secret binary, the attacker must possess the valid

HMACkey. However, because the validHMACkey is shared
only by the hypervisor and the SBS via secure channel, the
attacker is not able compute the legitimate HMAC value.
Upon the failure of the integrity verification, the loading of
themanipulated secret binary is rejected by the hypervisor.

Man-in-the-Middle Attack (MITMA). An attacker may
attempt an MITMA to derive the same shared secrets with
the SBS that manages the secret binaries. In order to be suc-
cessful, the attacker must impersonate both the hypervisor
and the SBS and relay the communication in a machine
where the attacker can eavesdrop the relevant network
packets. To prevent this attack, the hypervisor and the SBS
authenticate each other using the certificate of the other
party. We have verified that our deployment protocol is
invulnerable to MITMA using a formal verification tool
examining the possible facets of the attack (Section 3.6).

7 RELATED WORK

Secure Execution Environment. Flicker [34] and TrustVisor
[33] provide an infrastructure for executing security-
sensitive code in isolated memory based on the remote attes-
tation of binary code. However, they primarily focus on
blocking user VM’s accesses to the application code in mem-
ory only while the memory isolation is enabled at runtime.
This design may compromise code confidentiality because
attackers in the VM may obtain a copy of the application
code from the file system or memory during the deployment
before the protection is enabled. In contrast, CAFE protects
the confidentiality of the binaries in an end-to-end manner
for the entire lifetime of the deployed software.

Overshadow [20] provides cloaking for general purpose
legacy unmodified applications and untrusted kernel. How-
ever, related work [19], [37] have shown that a malicious
kernel is able to compromise the protected OS even with the
protection schemes by Overshadow. In contrast, CAFE pro-
vides stronger code confidentiality than Overshadow by
providing tightly verified and sanitized input and output
via marshaling layer, and a constrained scope of sensitive
code which in combination significantly reduce the chance
of vulnerability. More importantly, supporting a massive
number of applications in cloud marketplaces requires sev-
eral essential functions such as the secure attestation of
TCB, key management, and deployment of binaries for
which Overshadow is not designed. CAFE provides an end-
to-end solution that covers the essential functionalities to
enable confidential execution with cloud marketplaces.

AppSec [41] verifies the code integrity of protected appli-
cations and dynamic shared objects by imposing the safe
loader. However, like Overshadow, it does not verify the
integrity of OS so that attackers can exploit the Iago attacks.

Several solutions have been proposed for non-x86 archi-
tectures. Santos et al. [45] ported a small trusted language
runtime for the .NET Framework into a secure environment
protected by ARM TrustZone [13]. Thus, the security-
sensitive logic of .NET applications running on top of the
runtime environment can be protected by ARM TrustZone.
Koeberl et al. proposed TrustLite [28], a secure execution
environment for tiny embedded devices. It modifies the
memory protection unit to manage a range of the trusted
code section.
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Software Protection with Code Obfuscation. Software ven-
dors have been working hard to protect their code from
reverse engineering and software piracy. A popular tech-
nique is code obfuscation [21] which transforms binary
code into another form that is a functionally identical but
more difficult to understand.

There are several packers that have been widely used
such as UPX [5] and ASPack [7]. More advanced methods
have been proposed as follows. Linn and Debray et al. [32]
proposed a method to thwart disassembly using the self-
repairing disassembly, the junk insertion, etc. Popov et al.
[36] proposed a signal-based obfuscater that changes control
transfers into signals. Sharif et al. [46] proposed an auto-
matic transformation of a program based on code encryp-
tion that conditionally uses an input value as a key. binOb+
[30] eliminates statistical abnormality of obfuscated binary
by inserting statistics-compensation code.

Virtualization-based code obfuscation techniques are
known to be strong against reverse engineering due to their
abstraction layers. These techniques convert executable
code into a non-standard architecture to make the analysis
difficult. Themida [8], VMProtect [9], and Truly-Protect [14]
are well known examples.

While the code obfuscation techniques can impede the
analysis of code, they cannot provide the complete secrecy
of executable code because obfuscated code may still retain
code semantics. Also, unless the execution environment is
isolated from an adversary, the runtime execution pattern
can be observed (e.g., through memory) and used to deob-
fuscate the code [22], [43]. Unlike such solutions, CAFE pro-
vides full confidentiality by cryptographically encrypting
the binary code and running the decrypted code in an iso-
lated environment from the user VM. Therefore, any soft-
ware running in the user VM, including the guest OS,
cannot access the runtime state of the protected code.

Comparison with Intel SGX. Intel Software Guard Exten-
sions (SGX) [25] is a new set of instructions to build a secure
execution environment for user level applications against
physical and software attacks. CAFE and SGX both have a
goal of providing a secure enclave for secret code and data, however
there are several technical differences as shown in Table 5.

(1) Trusted Services. Compared with SGX, CAFE offers
several trusted services: confidential deployment of secret
binaries, trusted storage for sensitive information, and
trusted path, which are the problems of SGX and thus
addressed by related work [17], [27], [29], [35].

The confidential deployment of secret binaries is one of
the primary features of CAFE. Several researchers proposed
conceptual designs [27], [29] that enable secure deploy-
ment of encrypted code and data in an SGX enclave. For

this feature, SGX should be able to perform dynamic
memory allocation and change access permissions associ-
ated with the enclave memory, but SGX1 does not have
these features. As a solution, F. McKeen et al. [35] pre-
sented SGX2 that includes dynamic memory management
support for enclaves.

Secure storage is a protected, persistent memory area to
securely store private data (e.g., cryptographic keys) that can
be directly accessed only by a trusted execution environment
(TEE). Its access must not involve untrusted OS. CAFEwithin
a TEE can securely access non-volatile RAM (NVRAM) in a
TPM as a secure storage with the access control based on
locality and PCR values [52]. In contrast, an enclave operates
in a user mode (ring 3). To access NVRAM similarly, its con-
trol flow has to escape from it. By relying on untrusted OS
code, it is challenging for SGX to embed a separate memory
medium under the direct control of SGX [38]. The lack of
secure storage poses rollback and forking attacks to stateful
SGX enclaves. To address this problem, [17] proposed a proto-
col to defeat the rollback and forking attacks on SGX enclaves.

CAFE provides a trusted path that guarantees the trust-
worthiness of input and output (I/O) data because the
hypervisor has the top priority for processing I/O events.
However, SGX does not support the trusted path feature
because an enclave running in a user mode cannot preempt
I/O events with a higher priority than kernel mode soft-
ware. To address this problem, S. Weiser et al proposed a
framework called SGXIO [51] that securely handles input
and output based on a hypervisor, a Trusted Boot enclave,
and one more secure I/O drivers.

As a useful scenario for the CAFE’s trusted path feature,
CAFE can deliver the trusted geolocation of the cloud ser-
vice to the cloud tenant who may wonder where their cloud
services run. CAFE can provide a trusted path regarding
the geolocation of a cloud server by directly handling a GPS
sensor placed on the cloud server.

(2) Trusted Computing Base (TCB). The TCB is a set of
hardware and software components that should not be com-
promised for maintaining a trusted system. CAFE leverages
the DRTM mechanism that relies on the CPU and the TPM,
and the hypervisor in CAFE to be run via the DRTM
resides in memory. The CPU, the TPM, and memory
transfer data via buses. Therefore, they become the hard-
ware TCBs of CAFE. On the other hand, when SGX
enclaves’ code and data are loaded into memory, the
CPU encrypts them with a CPU-specific key and stores
encrypted enclaves’ code and data into memory. When
the CPU needs to run the enclave’s code and data, the
CPU decrypts them inside the CPU and executes them.
Thus, the hardware TCB of SGX is the CPU.

TABLE 5
Comparison Between CAFE and Intel SGX

Trusted service Trusted computing base Rich OS support

Confidential
deployment

Access to
secure storage

Trusted path Hardware Software Syscall Ext. call Whole app
execution

CAFE Secure binary
transmission

Trusted access to
NVRAM in TPM

Direct access in
hypervisor

CPU, TPM,
DRAM, buses

Hypervisor,
secret binary

� � �

Intel SGX � Untrusted due to
escape of enclave

� CPU Architectural enclaves,
secret binary

� OCALL

instruction
�
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The software TCB of CAFE includes a secret binary and
the hypervisor because a compromised hypervisor can leak
secret binaries outside the CAFE framework. In SGX, the
software TCB includes a secret binary and architectural
enclaves (AEs) [25] because compromised AEs can under-
mine SGX’s remote attestation. An AE is a privileged
enclave issued by Intel and performs complex operations
(e.g., cryptographic operations) instead of hardware. In
AEs, the launch enclave and the quoting enclave play an
important role so as to remotely attest an application logic
running in an SGX enclave. Thus, the AEs must be main-
tained securely for trustworthy remote attestation.

(3) RichOS Support. In general porting secure code anddata
into the TEE is complicated work, as we mentioned in Section
5.4. SGX and CAFE do not feature rich OS supports causing
developers’ efforts. To ease this situation, several approaches
were proposed. Panoply [47] provides an abstraction layer
calledmicron to enable SGX enclave code to call external func-
tions, including system calls and library functions. Haven [15]
and Graphene-SGX [18] implement existing library OSes,
Drawbridge and Graphene, into an SGX enclave in order to
run unmodified legacy applications inside an enclave.

However, these approaches are not without risks due to
recent attacks against such efforts. First, J. Lee et al. presented
a new attack called Dark-ROP [31] that finds gadgets for the
return-oriented programming (ROP) attack without any
knowledge of SGX enclave code and data. Authors noted that
expanding the TCB and the attack surface (e.g., Haven and
Graphene-SGX) for the easy enclave development is not good
research direction because the Dark-ROP attack can findmore
ROP gargets in an enclave. Second, SGX offers an instruction
for calls outside the enclave (OCALL) for developers’ conve-
nience,which is used by Panoply’smicron.However, the Intel
SGX developer guide [25] indicates that OCALLs have associ-
ated several security risks such as information leak with
OCALL, no execution of OCALL, and recursiveOCALLs.

We considered this tradeoff between security and sup-
port for development. Currently CAFE does not provide
rich OS support due to our priority on the trustworthiness
of the CAFE framework.

8 CONCLUSION

The secure distribution and execution of cloud applications
is an essential feature to prevent the illegitimate usage of
cloud applications and further for the success of the evolv-
ing ecosystem of cloud systems. In order to defeat software
piracy and reverse engineering of sensitive software logic,
we present CAFE which provides the confidential distribu-
tion and execution of cloud applications even when the
entire guest OS of the tenant virtual machine is compro-
mised. We present its evaluation on 9 applications which
are commonly used in data centers and offered in cloud
marketplaces showing the effectiveness and practicality of
CAFE in cloud marketplaces.
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