Precise, Scalable, and Online Request Tracing
for Multi-tier Services of Black Boxes

Bo Sang, Jianfeng Zhan, Gang Lu, Haining Wang, Dongyan Xu, Lei Wang, Zhihong Zhang, and Zhen Jia

Abstract—As more and more multi-tier services are developed from commercial off-the-shelf components or heterogeneous
middleware without source code available, both developers and administrators need a request tracing tool to (1) exactly know how
a user request of interest travels through services of black boxes and (2) obtain macro-level user request behaviors of services without
manually analyzing massive logs. This need is further exacerbated by IT system "agility”, which mandates the tracing tool to provide
on-line performance data since off-line approaches cannot reflect system changes in real time. Moreover, considering the large scale of
deployed services, a pragmatic tracing approach should be scalable in terms of the cost in collecting and analyzing logs. In this paper,
we introduce a precise, scalable, and online request tracing tool for multi-tier services of black boxes. Our contributions are three-fold.
First, we propose a precise request tracing algorithm for multi-tier services of black boxes, which only uses application-independent
knowledge. Second, we present a micro-level abstraction, component activity graph, to represent causal paths of each request. On
the basis of this abstraction, we use dominated causal path patterns to represent repeatedly executed causal paths that account for
significant fractions; and we further present a derived performance metric of causal path patterns, latency percentages of components,
to enable debugging performance-in-the-large. Third, we develop two mechanisms, tracing on demand and sampling, to significantly
increase the system scalability. We implement a prototype of the proposed system, called PreciseTracer, and release it as open source
code. In comparison with WAP5—a black-box tracing approach, PreciseTracer achieves higher tracing accuracy and faster response
time. Our experimental results also show that PreciseTracer has low overhead, and still achieves high tracing accuracy even if an
aggressive sampling policy is adopted, indicating that PreciseTracer is a promising tracing tool for large-scale production systems.

Index Terms—Multi-tier service, black boxes, precise request tracing, micro and macro-level abstractions, online analysis, performance
debugging, scalability.

+

INTRODUCTION

Ore and more multi-tier services or cloud applica-
Mtions [35] are deployed on data centers. In order
to pinpoint performance bottlenecks, shoot misconfigu-
rations, or even accurately tune power-saving manage-
ment policies [31], both developers and administrators
need a tracing tool to (1) know how exactly a user
request or job of interest travels through services or
job execution frameworks, e.g.,, a MapReduce runtime
system [35] if necessary, and (2) obtain macro-level user
behaviors without analyzing massive logs. The need for
online tracing is further exacerbated by IT system agility
[21]. For example, when emergency events happen like
earthquakes or hurricanes, requests for the related stories
at popular news or weather Websites will result in heavy
loads that could be an order of magnitude greater than
those loads in a normal condition [29]. To deal with
fluctuated workloads, resources are often dynamically
provisioned and service instances are adjusted accord-
ingly. In this context, on-line performance information is
imperative, which only can be obtained with an online
tracing tool because an off-line one cannot reflect system

o Bo Sang, Jianfeng Zhan, Gang Lu, Lei Wang, Zhihong Zhang, and Zhen
Jia are with the Institute of Computing Technology, Chinese Academy of
Sciences. Haining Wang is with the Department of Computer Science,
College of William and Mary. Dongyan Xu is with the Department of
Computer Science, Purdue University. Jianfeng Zhan is the contact person.

changes in real time. Moreover, understanding online be-
havior is also important under normal operating condi-
tions for online scheduling and dispatching decisions [7]
for either multi-tier web services [29] or high throughput
computing (HTC) or many task computing workloads
(MTC) in consolidated cloud computing systems [36]
[37].

This paper focuses on online request tracing of multi-
tiers services of black boxes, since more and more multi-
tier services are developed from commercial off-the-
shelf components or heterogeneous middleware without
source code available. Different from profiling [34] that is
measurement of a statistical summary of the behaviors of
a system, tracing is a measurement of a stream of events
of a system [38]. In this paper, when we refer to precise
request tracing, it implies the accurate tracking of how a
user request of interest travels through services.

Precise request tracing for multi-tier services of black
boxes is challenging in many aspects. First of all, we
cannot access source code for multi-tier services of black
boxes, and thus it is difficult to understand the contexts
of requests or even network protocols [5]. Second, a
precise request tracing tool is needed to exactly track
a user request of interest if necessary, with the focus on
performance-in-the-large [4]. However, services are often
deployed within a large-scale data center, and a precise
request tracing system will inevitably produce massive
logs, and hence a pragmatic tracing tool should be
scalable with respect to log collection and analysis [26].

Moreover, macro-level abstractions are required to facil-
itate debugging performance-in-the-large. Finally, those
tools should not degrade the performance of multi-tier
services.

The most straightforward and accurate way [1] [10]
[11] [12] [15] [26] of correlating message streams is to
leverage application-specific knowledge and explicitly
declare causal relationships among events of different
components. Its drawback is that users must obtain
and modify the source code of target applications or
middleware, or it might even require that users have in-
depth knowledge of target applications or instrumented
middleware. Thus, this approach cannot be used for
services of black boxes. Without the knowledge of source
code, several previous approaches [3] [4] [7] either use
imprecision of probabilistic correlation methods to infer
the average response time of components, or rely upon
the knowledge of protocols to isolate events and requests
for precise request tracing [5]. A precise but unscalable
request tracing tool, called vPath [21], is proposed for
services of black boxes. Because of its limitation in the
implementation, the tracing mechanism of vPath cannot
be enabled or disabled on demand without interrupting
services. Thus, it has to continuously collect and analyze
logs, resulting in an unacceptably high cost. Moreover,
state-of-the-art precise request tracing approaches of
black boxes [5] [21] fail to propose abstractions for repre-
senting macro-level user request behaviors, and instead
depend on users’ manual interpretations of massive logs
in debugging performance-in-the-large. Besides, these [5]
[20] [21] are offline schemes.

In this paper, we present a precise and scalable request
tracing tool for online analysis of multi-tier services of
black-boxes. Our tool collects activity logs of multi-tier
services through the kernel instrumentation, which can
be enabled or disabled on demand. Through tolerating
log losses, our system supports sampling ortracing on
demand, which significantly decreases the collected and
analyzed logs and improves the system scalability. After
reconstructing those activity logs into causal paths, each
of which is a sequence of activities with causal relations
caused by an individual request, we classify those causal
paths into different causal patterns, which represent re-
peatedly executed causal paths. Then, we present a
macro-level abstraction, dominated causal path patterns, to
represent causal path patterns that account for significant
fractions in terms of the numbers of causal paths. On
the basis of this, we propose a derived performance
metric of major causal path patterns, latency percentages
of components, to enable debugging performance-in-the-
large.

We implement a prototype of the proposed system,
called PreciseTracer, and release it as open source code’.
We perform extensive experiments on 3-tier platforms.
Our experimental results show that: (1) with respect

1. The source code can be downloaded from http://prof.ncic.ac.cn/
DCBenchmarks.

to WAP5—a black-box tracing approach [3], Precise-
Tracer achieves higher tracing accuracy and faster re-
sponse time; (2) PreciseTracer has low overhead, and
still achieves high tracing accuracy even if an aggressive
sampling policy is adopted; and (3) our derived perfor-
mance metric of causal path patterns, latency percent-
ages of components, enables debugging performance-in-
the-large.

Summarily, we make the following contributions in

this paper.

1) We design a precise tracing algorithm to deduce
causal paths of requests from interaction activities
of components of black boxes. Our algorithm only
uses application-independent knowledge.

2) We present two abstractions, component activity
graph and dominated causal path pattern, to rep-
resent individual causal paths for each request and
macro-level user request behaviors, respectively.
Based on these abstractions, we propose a derived
performance metric, latency percentages of com-
ponents, to enable debugging performance-in-the-
large.

3) We present two mechanisms, tracing on demand
and sampling, to improve the system scalability.

The remainder of the paper is organized as follows.
Section 2 formulates the problem. Section 3 describes
the design of PreciseTracer. Section 4 details the im-
plementation of PreciseTracer. Section 5 evaluates the
performance of PreciseTracer with respect to WAPS.
Section 6 summarizes related work. Section 7 draws a
conclusion. Appendix A describes the pseudo-code of
PreciseTracer.

2 SYSTEM MODEL AND PROBLEM STATEMENT
2.1 System model

Our target environments are data centers deployed with
multi-tier services. There are two types of nodes in these
environments: service nodes and analysis nodes. Service
nodes are the ones, on which multi-tier services are
deployed, while most the components of the tracing tool
are deployed on analysis nodes.

The application assumptions are as follows:

o We treat each component in a multi-tier service as
a black box, since we cannot obtain the application
or middleware source code, neither deploy the in-
strumented middleware, nor have the knowledge of
high-level protocols used by services, like HTTP.

o We presume that a single execution entity (a process
or a kernel thread) of each component can only
serve one request in a certain period. For serving
each individual request, execution entities of the
components cooperate through sending or receiving
messages via a reliable communication protocol, like
TCP. An individual request is tracked by monitoring
a series of activities, which have causal relations for
tracing requests.

Though not all multi-tier services fall in the scope
of our target applications, fortunately many popular
services satisfy our assumed scenarios. For example, our
method can be used to analyze concurrent servers fol-
lowing nine design patterns introduced in [6] (Chapter
27), including iteration, concurrent process, concurrent
thread, preforking and prethreading models.

2.2 Problem statement

As shown in Fig. 1, a request causes a series of interaction
activities in the operating system kernel, e.g. sending or
receiving messages. Those activities occur under specific
contexts (processes or kernel threads) of different compo-
nents. We record an activity of sending a message as S} ;,
which indicates a process i sends a message to a process
j- We record an activity of receiving a message as R] 7
which indicates a process j receives a message from a
process .

Client ~ Server
Process 1 Process 2 Process 3
on Machine on Machine on Machine
A B C
1= 1| P 7| i_ 7 Application
|
| | T I | I
e - - p@—>@ L Kernel
‘ oty 1S'tal Rorb 5.322, R’5 $%y
request- - { - - l‘____“ ___ l L _,
® Activity — Adjacent context relation

— — Causal Path

———>

Message relation

Fig. 1. Activities with causal relations in the kernel.

When an individual request is serviced, a series of
activities having causal relations or happened-before
relationships as defined by Lamport [8] constitute
a causal path, e.g., in Fig. 1, the activity sequence
{R!,,S14,R},,553,R3 3,55, } constitutes a causal path.
For each individual request, there is a causal path.

Given the scenario above, the problems we tackle
in this paper can be described as follows: with the
logs of communication activities, how can we obtain
individual causal paths that precisely correlate activities
of components for each request? how to obtain domi-
nated causal path patterns, which represent repeatedly
executed causal paths, and their on-line or off-line per-
formance data?

The objective of this work is that with the data pro-
vided by PreciseTracer, developers and administrators
can accurately track how a user request of interest
travels through services, debug performance problems
of a multi-tier service, and provide online performance
data of services for the feedback controller in the runtime
power management system [31].

3 PRECISETRACER DESIGN

In this section, we first present the architecture of Pre-
ciseTracer and its abstractions. Then, we detail the trac-

ing algorithm and the mechanisms for improving the
system scalability.

3.1 PreciseTracer Architecture

‘Analysis
Results

Analyzer Component

Correlator Component

TCP_Tracer Component

Fig. 2. Architecture of PreciseTracer.

PreciseTracer is flexible, and administrators can config-
ure it according to their requirements. PreciseTracer can
work under either an offline mode or an online mode.
Under an offline mode, PreciseTracer only analyzes logs
after collecting them for a relatively long period of
time. Under an online mode, PreciseTracer collects, and
analyzes logs in a simultaneous manner, providing ad-
ministrators with real-time performance information.

Fig. 2 shows the architecture of PreciseTracer, which
consists of three major components: TCP_Tracer, Correla-
tor, and Analyzer. TCP_Tracer records interaction activi-
ties of interest for the components of the target applica-
tions, and output those logs to Correlator. Correlator is
responsible for correlating those activity logs of different
components into causal paths. Finally, based on the
causal paths produced by Correlator, Analyzer extracts
useful information, and reports analysis results.

TCP_Tracer includes two modules: Gather and Coordi-
nator. Deployed on each service node, Gather is respon-
sible for collecting logs of services deployed on the same
node. Coordinator, which is deployed on an analysis
node, is in charge of controlling Gather on each service
node. Coordinator configures and synchronies Gather on
each service node to send logs to Correlator.

Gather independently observes the interaction activ-
ities of the components of black boxes on each node.
Concentrating on the major activities, Gather only cares
about when serving a request starts, finishes, and when
components receive or send messages within the confine
of a data center. Of course, we can observe more activ-
ities if the overhead is acceptable. In this paper, our
observed activity types include: BEGIN, END, SEND,
and RECEIVE. SEND and RECEIVE activities are the
ones of sending and receiving messages. A BEGIN ac-
tivity marks the start of serving a new request, while
an END activity marks the end of serving a request.
For each activity, Gather records five attributes: (activity
type, timestamp, context identifier, message identifier), and
message size. For each activity, we use 4-tuple (hostname,
program name, process ID, thread ID) to describe its context
identifier, and use 5-tuple (IP of sender, port of sender,

IP of receiver, port of receiver, message size) to describe its
message identifier.

Correlator includes two major modules: Ranker and
Engine. Ranker is responsible for choosing candidate
activities for composing causal paths. Engine constructs
causal paths from the outputs of Ranker, and then re-
ports causal paths.

Analyzer includes two major modules: Classifier and
Extractor. Classifier is responsible for classifying causal
paths into different patterns, while Extractor provides
analysis results of causal path patterns.

3.2 Abstractions

Formally, we propose a directed acyclic graph G(V, E) to
represent causal paths, where vertices V' are activities
of components and edges E represent causal relations
between activities. We define this abstraction as compo-
nent activity graph (CAG). For each individual request, a
corresponding CAG represents all activities with causal
relations in the life cycle of serving the request.

CAGs include two types of relations: an adjacent context
relation and a message relation. We formally define the
two relations based on the happened-before relation [8],
which is denoted as —, as follows:

An adjacent context relation. Caused by the same request
r, « and y are activities observed in the same context ¢ (a
process or a kernel thread), and = — y holds true. If no
activity z, which satisfies the relations + — z and z — y,
is observed in the same context, then an adjacent context
relation exists between x and y, denoted as = —. y. So,
the adjacent context relation z —. y means that z has
happened right before y in the same execution entity.

A message relation. For serving a request r, if = is a
SEND activity, which sends a message m, and y is a
RECEIVE activity, which receives the same message m,
then a message relation exists between z and y, denoted
as ¢ —p, y. So, the message relation © —,, y means that
x, which sends a message, has happened right before
y, which receives a message, in two different execution
entities.

If there is an edge from activity x to activity y in a
CAG, of which x —. y or x —,, y holds true, then z is
the parent of y.

In a CAG, each activity vertex must satisfy the fol-
lowing property: each activity vertex has no more than
two parents, and only a RECEIVE activity vertex could
have two parents, with which one parent has an adjacent
context relation and the other has a message relation.
This has two-fold reasons: first, an adjacent context
relation is used to describe activities in the same process
or thread caused by the same request, so an activity at
most has a parent activity that is adjacent to and ahead
of it on the time line; second, for a message relation,
SEND and RECEIVE activities always come in pairs.

For an individual request, it is clear that correlating a
causal path is the course of building a CAG with inter-
action activities as the input. Fig. 3 shows an example of
an individual CAG.

,,,,,,,, » 1
Message Relation Ro

— > .
Adjacent Context Relation

Fig. 3. An example of an individual CAG. The notations
are defined in Section 2.

A single causal path can help administrators get
micro-level user request behavior of services. For ex-
ample, administrators can detect transient failures of
nodes if some causal paths show abnormal informa-
tion. However, causal paths cannot be directly utilized
to represent macro-level performance signature data of
services for two reasons. First, there are massive causal
paths. An individual causal path only reflects how a
request is served by services. Considering disturbance
in environments, we cannot take an individual causal
path as a service’s performance signature data. Second,
different types of requests would produce causal paths
with different features. Thus, we propose a macro-level
abstraction to represent performance signature data of
multi-tier services.

We propose to classify causal paths into different
causal path patterns according to the shapes of CAGs.
On the basis of this abstraction, we further consider
which ones are dominated causal path patterns accord-
ing to their fractions in terms of their path numbers,
respectively. Two CAGs will be classified into the same
causal path pattern when they meets the following cri-
teria:

1) There are the same number of activities in the two
CAGs.

2) Two matching activities with the same order in the
two CAGs have the same attribution in terms of
(activity type, program name).

In a CAG, for each activity, we define its order based

on the following rules:

Rule 1: If z —». y or x —,, y, then < y;

Rule 2: If z —, y and x —,, z and there is no relation

between y and z, then = < z < y;
Rule 3: If y —. z and z —,,, « and there is no relation
between y and z, then y < z < z.

Rule 1 is obvious. Rule 2 and Rule 3 can be derived
from our presumption in Section 2.1. In Section 2.1, we
presume that a single execution entity (a process or a
kernel thread) of each component can only serve one
request in a certain period, which implies a blocking
communication mode. For example, in Rule 2, for x —,
z and & —. y, * must be a SEND activity, and z must be
a RECEIVE activity. As an adjacent activity of =, y must
happen after z, since the single execution entity under
which z happens only triggers y after the return from
the call to the execution entity under which z happens.

CAGs include rich performance data of services, be-
cause a CAG indicates how a client request is served by
each component of a service. For example, if adminis-
trators want to pinpoint the performance bottleneck of a
service, they need to obtain the service time consumed
on each component in serving requests. According to a
CAG, we can compute the latencies of components in
serving an individual request. For example, for the re-
quest in Fig. 1, the latency of process 2 is (t(S2 3)—t(R1.2)),
and the interaction latency from process 1 to process 2
is (t(R1,2) — t(S1,2)), where ¢t is the local timestamp of
each activity. The latency of process 2 is accurate, since
all timestamps are from the same node. The interaction
latency from process 1 to process 2 is inaccurate, since
we do not remedy the clock skew between two nodes.
For a request, the server-side latency can be defined as
the time difference between the time stamp of BEGIN
activity and that of END activity in its corresponding
causal path. For each tier, its role in serving a request
can be measured in terms of the latency percentage of each
tier, which is the ratio of the accumulated latencies of
the tier to the server-side latency. The latency percentage
of the interaction between two tiers can be defined as
the ratio of the accumulated latencies between two tiers
to the server-side latency. We adopt the terminology of
latency percentages of components to describe both latency
percentages of each tier and latency percentage of inter-
actions.

After the classification, we can compute the average
performance data about causal path patterns, i.e. latency
percentage of each tier and latency percentage of in-
teractions, on a basis of which we can further detect
performance problems of multi-tier service or provide
online performance data for the feedback controller that
aims to save cluster power consumption. Our experi-
ments in Section 5.3 and our work in power management
[31] demonstrate the effectiveness of this approach in
debugging performance-in-the-large and saving cluster
power consumption, respectively.

3.3 Tracing algorithm

Before we proceed to introduce the algorithm of Ranker,
we explain how Engine stores incomplete CAGs. In the
course of building CAGs, all incomplete CAGs are in-
dexed with two index map data structures. An index map
maps a key to a value, and supports basic operations,

like search, insertion, and deletion. One index map,
named mmap, is used to match message relations, and
the other one, named cmap, is used to match adjacent
context relations. For mmap, the key is the message
identifier of an activity, and the value of mmap is
an unmatched SEND activity with the same message
identifier. The key in cmap is the context identifier of
an activity, and the value of cmap is the latest activity
with the same context identifier.

In the following, Section 3.3.1 explains how to choose
candidate activities in constructing CAGs in our algo-
rithm; Section 3.3.2 introduces how to construct CAGs;
and Section 3.3.3 describes how to handle disturbances.

3.3.1 Selection of candidate activities for composting
CAGs

For each service node, we choose the minimal local
timestamp of activities as the initial time. We set a sliding
time window for processing the activity stream. Activities,
logged on different nodes, will be fetched into the buffer
of Ranker if their timestamps are within the sliding time
window. Section 3.3.3 will present how to deal with clock
skews in distributed systems.

Ranker puts each activity into several different queues
according to the IP address of its context identifier.
Naturally, activities in the same queue are sorted ac-
cording to the same local clock, so Ranker only needs
to compare head activities of each queue, and selects
candidate activities for composing CAGs based on the
following rules:

Rule 4: If a head activity A in a queue has the
RECEIVE type and Ranker has found an activity X in
the mmap, of which X —,, A holds true, then A is the
candidate.

If a key is the message identifier of an activity A and
the value of the mmap points to a SEND activity X with
the same message identifier, we can say X —,, A.

Rule 4 ensures that when a SEND activity has become
a candidate and been delivered to Engine, the RECEIVE
activity having message relation with it will also become
a candidate once it becomes a head activity in its queue.

Rule 5: If no head activity is qualified with Rule 4,
then Ranker compares the type of head activities in each
queue according to the priority of BEGIN < SEND <
END < RECEIVE < MAX. The head activity with
the lower priority is the candidate.

Rule 5 ensures that a SEND activity X always becomes
a candidate earlier than a RECEIVE activity 4, if X —,,
A holds true.

After a candidate activity is chosen, it will be popped
out from its queue and delivered to Engine, and Engine
matches the candidate with an incomplete CAG. Then,
the element next to the popped candidate will become
a new head activity in that queue. At the same time,
Ranker will update the new minimal timestamp in the
sliding time window, and fetch new qualified activities
into the buffer of Ranker.

3.3.2 Constructing CAG

Engine fetches a candidate, outputted by Ranker, and
matches it with an incomplete CAG. In Appendix A, the
pseudo code illustrates the correlation algorithm. In line
1, Engine iteratively fetches a candidate activity current
by calling function rank() of Ranker. From lines 2-37,
Engine parses, and handles activity current according
to its activity type. Lines 3-11 handle BEGIN and END
activities. For a BEGIN activity, a new CAG is created.
For an END activity, the construction of its matched CAG
is completed.

Lines 12-37 handle SEND and RECEIVE activities.
Activities are inherently asymmetric between a sender
and a receiver because of their underlying buffer sizes
and delivery mechanisms. Thus, a match between SEND
and RECEIVE activities is not always one-to-one, but n-
to-n relations. Fig. 4 shows a case in which a sender
consecutively sends a message in two parts and a re-
ceiver receives messages in three parts. Our algorithm
correlates and merges these activities according to the
message sizes in the message identifiers. If some RE-
CEIVE activities are lost, the received message size will
be less than the sent message size, but this would not
prevent the algorithm from constructing a CAG.

R1(size=40) H

S1(size=80)

S2(size=40)
R2(size=40)

R3(size=40)

Message relation

Fig. 4. Merging multiple SEND and RECEIVE activities.

It is possible that an activity is wrongly correlated to
two causal paths, because of reusing threads in some
concurrent programming paradigms. For example, in a
thread-pool implementation, one thread may serve one
request at a time; when the work is done, the thread is
recycled into the thread pool. Lines 31-33 check if two
parents are in the same CAG. If the check returns true,
Engine will add an edge of a context relation.

3.3.3 Disturbance tolerance

In an environment without disturbance, our algorithm
can produce correct causal paths. However, in prac-
tice, there are many disturbances. In the rest of this
subsection, we consider how to resolve noise activities
disturbance, concurrency disturbance, and clock skew
disturbance.

Noise activities disturbance. Noise activities are
caused by other applications coexisting with the target
service on the same nodes. Their activities through the
kernel’s TCP stack will also be logged and gathered by
our tool. Ranker handles noise activities in two ways:
1) it filters noise activities according to their attributes,
including program name, IP and port; and 2) If activities
cannot be filtered with the attributes, the ranker checks

them with is_noise() function. If true, the ranker will
discard them. The pseudo code of is_noise() function can
be found at Appendix A.

Concurrency disturbance. The second disturbance
is called concurrency disturbance, which only exists in
multi-processor nodes. Fig. 5-a illustrates a possible sce-
nario, of which two concurrent requests are concurrently
served by two multl—processor nodes and four activities
are observed. S1 , means a SEND activity produced on
the CPU1 of Nodel, and R} 5 is its matched RECEIVE
activity produced on the CPUO of Node2. When these
four activities are fetched into the buffer of Ranker, they
are put into two queues as shown in Figure. 5a. The
head activities of both two queues are RECEIVE activi-
ties, and hence they block the matched SEND activities
of each other. This case is detected according to two
conditions: 1) both head activities of two queues are
RECEIVE activities. 2) SEND and RECEIVE activities in
two queues are matching with each other, respectively.
Ranker handles this case by swapping the head activity
and its following activity in the first queue. Figure. 5b
illustrates our solution.

Llll front tail front

_— >
Nodel Nodel
2,0
a. an example of

! b. solution of concurrency
concurrency distrubance disturbance

Node2 2

Fig. 5. An example of concurrency disturbance.

Clock skew disturbance. As explained in Section
3.3.1, activities will be fetched into the buffer of Ranker
according to their local timestamp. However, due to
clock skew, RECEIVE activities might be fetched into the
buffer before their corresponding SEND activities. We
take a simple solution to resolve this issue. Comparing
head activities of each queue, we record the timestamp of
the first activity from each node. Then, we compute the
approximate clock skew between two nodes. Based on
the approximate clock skew, we remedy the timestamp
of activities on the node with the larger clock skew,
and hence we can prevent the scenario mentioned above
from happening.

3.4

We use two mechanisms, tracing on demand and sam-
pling, to improve the system scalability.

Improving system scalability

3.4.1 Tracing on demand

The instrumentation mechanism of PreciseTracer de-
pends on a open source software named SystemTap
[32], which extends the capabilities of Kprobe [30]—a
tracing tool on a single Linux node. Using SystemTap,
we have written the LOG_TRACE module, which is a

part of Gather. LOG_TRACE obtains context information
of processes and threads from the operating system,
and further inserts probe points into tcp_sendmsg() and
tcp_recvmsg() functions of the kernel communication
stack to log sending or receiving activities.

Deployed on each node, Gather receives commands
from Coordinator. When PreciseTracer is enabled or
disabled on user demand, Coordinator will synchronize
each Gather to dynamically load or unload the kernel
module LOG_TRACE, which is supported by the Linux
OS. The instrumentation mode of PreciseTracer can be
set as continuous collection, tracing on demand, or periodical
sampling. When administrators detect the running states
of services are abnormal, they can choose the mode of
tracing on demand, in which PreciseTracer starts tracing
requests according to the commands of administrators.
When administrators have pinpointed problems, they
can stop tracing requests. When PreciseTracer is set as
the mode of periodical sampling, it will be enabled
and disabled alternately, which reduces the overhead of
PreciseTracer and improves the system scalability.

3.4.2 Sampling

Sampling is a straightforward solution to reduce the
amount of logs produced by tracing requests of multi-
tier services. However, it is not a trivial issue to support
sampling in precise request tracing approaches. First,
the tracing mechanism should be flexible enough to be
enabled or disabled on demand. Second, the tracing
algorithm must tolerate log losses. In the following, we
discuss how to tolerate losses of activities and consider
three different cases:

e Case 1: Lost BEGIN and END activities;
e Case 2: Lost RECEIVE activities;
o Case 3: Lost SEND activities.

It is difficult to handle Case 1. Each CAG needs
a BEGIN activity and an END activity to identify its
begin and end. Fortunately, losses of BEGIN and END
activities only affect the construction of their affiliated
CAG, and have no influence on other CAGs whose
BEGIN and END activities have been identified.

About Case 2, due to the underlying delivery mecha-
nism, a receiver will receive a message in several parts,
which is mentioned in Section 3.3.2. The situation that all
parts of a message fail to be collected seldom happens.
Therefore, in Case 2, the received message size will be less
than its corresponding sent message size, but this wouldn’t
prevent us from constructing a CAG.

For Case 3, Fig. 6 shows a scenario of lost SEND activ-
ities when candidate activities are in queues of Ranker.
Activities from the same node are put into a queue
and ordered based on their local timestamps. We hereby
utilize (activity type, context identifier, message identifier,
message size) to identify an activity. In Fig. 6, (SEND, con-
text_4, message_3, 60) is related to (RECEIVE, context_7,
message_3, 60), while (SEND, context_6, message_3, 40)
is related to (RECEIVE, context 9, message_3, 40) and

Tail Head Tail Head
SEND RECEIVE SEND RECEIVE
BEGIN context 2 | context_1 BEGIN context 2 | context_1
Apache = — Apache — —
context_3 message_2 | message_1 context_3 message_2 | message_1
50 70 50 70
SEND RECEIVE | SEND SEND RECEIVE
context_6 | context 5 context_4 context_6 | context 5
JBoss JBoss
message_3 | message 4 | message 3 message_3 | message 4
40 80 60 40 80
RECEIVE | SEND RECEIVE RECEIVE | SEND RECEIVE
context 9 | context 8 | context_7 context 9 | context 8 | context_7
MySQL message_3 | message 4 | message 3 MySQL message_3 | message 4 | message 3
40 80 60 40 80 60

Candidate queues
without any loss of SEND activities

Candidate queues
with the loss of a SEND activity

Fig. 6. A case of lost SEND activities.

they share the same message identifier. Ranker would
pick candidate activities. However, if it fails to collect the
activity of (SEND, context_4, message_3, 60), the activity
types of all head activities will be RECEIVE, and our
algorithm mentioned above cannot proceed. We take a
simple solution to resolve this issue, and we just discard
the RECEIVE activity with the smallest timestamp. In
Section 5.1.2, our experiments show that our solutions
of handling lost activities perform well.

3.4.3 The complexity of the algorithm

For a multi-tier service, the time complexity of our algo-
rithm is approximately O(g * p x An), where g measures
the structure complexity of a service, p is the number
of requests in a certain duration, and An is the size of
activity sequence per request in a sliding time window.
Furthermore, the time complexity of our algorithm can
be expressed as O(g * n), where n is the size of activity
sequence in a sliding time window. The space complexity
of our algorithm is approximately O(2g * p * An) or
0O(2g xn).

4 PRECISETRACER IMPLEMENTATION

We have implemented PreciseTracer with three key com-
ponents: TCP_Tracer, Correlator, Analyzer.

After the kernel module named LOG_TRACE (which
is a part of Gather) is loaded, a logging point will
be trapped to generate an activity log whenever an
application sends or receives a message. The original
format of an activity log produced by LOG_TRACE
is “timestamp hostname program_name Process ID Thread
ID SEND/RECEIVE sender_ip: port-receiver_ip: port mes-
sage_size”. Gather further transforms the original logs
into more informative n-ary tuples to describe the con-
text and message identifier of each activity (described
in Section 3.1). Determining activity types is straight-
forward: SEND and RECEIVE activities are transformed
directly; BEGIN or END activities are determined by
the ports of the communication channel. For example,
the RECEIVE activity from a client to the web server’s
port 80 means the START of a request, and the SEND
activity via the same connection in opposite direction
means END of a request. After all Gathers have finished

log transformation, Coordinator will start Correlator and
Analyzer to further process the collected logs.

Correlator constructs CAGs and delivers them to Ana-
lyzer. Analyzer analyzes CAGs to obtain causal path pat-
terns, and further derives statistical information about
those patterns.

5 EVALUATION

In this section, we evaluate and compare PreciseTracer
with respect to WAPS. First, we evaluate and compare
PreciseTracer’s accuracy and efficiency with respect to
WAPS. Second, we present PreciseTracer’s sampling ef-
fect. Finally, we demonstrate how PreciseTracer can be
used to aide in performance debugging. Note that we
perform experiments on three different hardware con-
figurations, indicating that PreciseTracer is independent
on specific systems though it needs to instrument the
operating system kernel.

5.1 Evaluation and comparison of PreciseTracer and
WAP5

5.1.1

We have performed experiments with RUBiS and TPC-
W [33]. In the rest of this section, we present the detailed
results from the RUBIS experiments. Developed at Rice
University, RUBIS is a three-tier auction site prototype
modeled after eBay.com for evaluating the performance
of multi-tier applications.

Experimental setup

PreciseTracer
Analyze
Server

N ,

MySQL
Database
Server

requests
<)

response|

paths

(=

Client Emulator

/4

paths
X~
responsef)
S

Hittpd JBoss.
Web Application
Server Server

requests
<

response|

Ve

Client Emulator
Fig. 7. The deployment diagram of RUBIS.

The experiment platform is a 6-node Linux cluster
connected by a 100Mbps Ethernet switch. Apache, JBoss,
MySQL and two client emulators are deployed on five
SMP nodes with four 1.60GHz Intel(R) Xeon(R) pro-
cessors and 4GB memory, respectively. The analysis
components of PreciseTracer are deployed on an SMP
node with two AMD Opteron(tm) processors and 2GB
memory. Each node runs the Redhat Fedora Core 6 Linux
with the kprobe [30] feature enabled. The deployment of
RUBIS is shown in Fig. 7.

Before each experiment, we use NTP to synchronize
clocks of three nodes deployed with RUBIS applications,
since a NTP service can guarantee time synchronization
to a large extent. For example, NTPv4 can achieve an
accuracy of 200 microseconds or better in local area
networks under ideal conditions.

In the following experiments, the clients emus-
late two types of workload: the read_only workload
(Browse_only) and the read_write mixed workload (De-
fault). We utilize two physical nodes to emulate the
clients. On each node, we set Client Emulator with the
same number of concurrent clients. According to the user
guide of RUBIS, each workload includes three stages: up
ramp, runtime session, and down ramp. In the following
experiences, we set different durations for the three
stages.

5.1.2 Evaluating accuracies

To compare the accuracies of PreciseTracer and WAPS5,
we build another library-interposition tool to log net-
work communications. We instrument the following sys-
tem library functions: write, writev, send, read, recv. When
a message is sent, an unique request ID will be tagged to
and propagated with it, and hence we can obtain causal
paths with 100% accuracy. The following attributes are
logged for the Apache web server, the JBoss Server and
the MySQL database: (1) request ID, (2) start time and
end time of serving a request; (3) process or thread ID. At
the same time, without application-specific knowledge,
we use PreciseTracer or WAPS to identify causal paths
and obtain derived information items (2) and (3). If all
attributes of a causal path obtained by PreciseTracer or
WAPS are consistent with those obtained by the library-
interposition tool, we will confirm that the causal path
is correct. Hence we define the path accuracy as:

Path accuracy = correct paths/ all logged requests

We test the accuracy of our algorithm in the offline
mode for the read_write mixed workload of RUBIS. The
sliding time window is 400 milliseconds. The number of
concurrent clients is set to 100, 300, and 500, respectively.
For RUBiS, the up ramp, runtime session, and down
ramp durations are set to 1 minute, 0.5 minutes and
1 minute, respectively. Table 1 summarizes the results.
Our PreciseTracer outperforms WAPS. PreciseTracer ac-
curately correlates all logged activities into causal paths
with the accuracy of our algorithm reaching close to
100%, while the accuracy of WAP5 is lower than 70%.
Note that in our experiments PreciseTracer uses Sys-
temTap, which extends the capabilities of Kprobe [30]—
a tracing tool on a single Linux node, to instrument
the OS kernel activities. The reason for the minor im-
perfection of PreciseTracer lies in the implementation
of SystemTap, which fails to collect the small fraction
(less than 1%) of send/receive activities. WAP5 depends
on the outputs of the library interposition tool, which
intercepts the system library functions and hence does
not lose any activity information. The probability cor-
relation algorithm of WAPS5 makes its accuracy worse

than that of PreciseTracer. For PreciseTracer, Fig. 8 in the
subsequent experiments with the number of concurrent
clients varying from 100 to 500 shows the size of the
sliding time window has little effect on the the accuracy
of PreciseTracer.

TABLE 1
CAGs’ Accuracy Results
[100]300 500

Total CAGs (library interposition) | 5443 16115 26723

Matched (PreciseTracer) 5442 16081 26702

Matched (WAP5) 3710 9634 15707

Accuracy (PreciseTracer) 99.98% | 99.79% | 99.92%

Accuracy (WAPS5) 68.16% | 59.78% | 58.78%

100% T MW W—W—W—K—
. 90%
2 80%
= 70%
2 60%
5 50% ——100
S 40% 200
s 3% —300
g 20% ==400
10% —=500
0%
\Q ,-\/Q %Q /\Q \QQ '»QQ DKQQ @Q %QQ \QQQ \‘)QQ ,\'QQQ \QQQQ

Sliding time window (milliseconds)

Fig. 8. The path accuracy of PreciseTracer v.s. the sliding
time window. Five lines overlaps with each other.

Since we adopt a sampling policy to reduce the system
overhead, we cannot accurately keep complete logs for
each request of interest. Furthermore, we perform online
request tracing to compare accuracies of PreciseTracer
and WAP5 vs. different sampling rates, which can be
defined as the ratio of the collecting time window to the
sleeping time window. we use a tuple (online, the collect-
ing time window, the sleeping time, the sliding time window,
rounds) to denote the configuration of online request
tracing. Note that in the rest of this section, the unit of
sliding time window is millisecond, and the unit of other time
metrics is seconds. We choose the fixed concurrent clients
as 200. For the configuration (online, x, y, 400, 1) with the
varying collecting time window z and sleeping time y,
we evaluate the accuracies of PreciseTracer and WAPS.
Fig. 9 shows that even when the sampling rate is lower
as 4%, PreciseTracer still achieves the high accuracy close
to 100%, while the accuracy of WAPS is lower than 60%.

5.1.3 Evaluating the complexity

In this experiment, the configuration is (online, 150, 600,
400, 1), indicating that PreciseTracer will work under an
online mode; it will gather logs for one round which lasts
150 seconds, and then stop collecting logs in the next 600
seconds; the sliding time window is 400 milliseconds.
With the number of concurrent clients varying from 50
to 500, we record the number of requests and the corre-
lation time. The test duration is fixed for the read_write

= PreciseTracer WAPS5

100% -

90% B B
80% - B Bl OB OB OB O
70% B OBl OB OB RO
60% B = B o H o H o H
50% B IE B CECECE R B
40% B EHEECECE R B
30% B UE B ECECE N e
20% B E B NECOEE R e
10% - B EEECECNE R B

0% = T = = = T = 7
(5.115) (10,110) (20,100) (30,90) (40,80) (60,60) (80,40) (120,0)

Path accuracy (%)

(collecting time, sleeping time) (seconds)

Fig. 9. The path accuracies of PreciseTracer and WAP5
v.s. different sampling rates for online request tracing. The
up ramp, runtime session, and down ramp are 1 minute,
0.5 minute and 1 minute, respectively.

mixed workload. We set the up ramp, runtime session,
and down ramp durations to 1 minute, 10 minute, and
1 minute, respectively.

30000

25000 -~
A e
£ 20000 ~
= /
< 15000 -
g ~
p o
E 10000 _
5000 _ -~

50 100 150 200 250 300 350 400 450 500

Concurrent clients (number)

Fig. 10. The request number v.s. the number of concur-
rent clients.

40

30
25 /
20

15 /

10

5 /

-

2791 5443 8135

Correlation time (seconds)

10867 13437 16115 18904 21501 23928 26723

Requests (number)

Fig. 11. The correlation time of PreciseTracer v.s. the
number of requests.

From Fig. 10 and 11, we observe that the number of
requests is almost linear with the number of concurrent
clients and the correlation time is almost linear with the
number of requests in the fixed duration. In Section 3.4.3
, we conclude that the time complexity of our algorithm

is O(g * p * An). Our results in Fig. 11 are consistent
with that analysis. Since g is a constant for RUBIS and
An is unchanged in the fixed sliding time window, the
correlation time is linear with the number of requests in
the fixed test.

—&—PreciseTracer WAPS5
1000 —

900 —
800
700
600
500
400
300
200
100

Correlation time (seconds)

N . N o o PN

50 100 150 200 250 300 350 400 450 500

Concurent client (number)
Fig. 12. The correlation time of PreciseTracer v.s. the
number of clients.

—&—PreciseTracer WAP5

35 A
. ~
25 /
0 Pt
15 /
10 /
5 /
/

50 100 150 200 250 300 350 400 450 500

Correlation time (seconds)

Concurent client (number)

Fig. 13. The partially enlarged view of the correlation time
of PreciseTracer v.s. the number of clients.

We also compare PreciseTracer with WAP5 on the
regard of the correlation time. In Fig.12, for the worst
case, the correlation time of WAPS5 is 26 times that of
PreciseTracer. Fig. 13 shows a partially enlarged view.

350

300

250
200

=50
150
=250
=>=350
=H#=450

150

100

correlation time (S)

50

0 -

Sliding time window (milliseconds)

Fig. 14. The correlation time v.s. the size of the sliding
time window. The concurrent clients varies from 50 to 450.

Two important parameters in the experiments could
influence the efficiency of PreciseTracer’s correlation al-
gorithm: collecting time window and sliding time window.
The collecting time window is the duration of log col-
lection. The longer the collecting time window, the more

10

0 |
60 f
o I\ [y
\ /‘/ / [=50

40

30 4 150

20 | —4—250
| =350

=H#=450

Correlation time (seconds)

L
N N

S O QX A O OSSO
I RANENN P\ RN LN RN
RS ESSESS

Sliding time window (milliseconds)

Fig. 15. The partially enlarged view of the correlation time
v.s. the size of the sliding time window.

logs our algorithm has to process thus the higher over-
head. The influence of the sliding time window is more
complex. Fig. 14 shows the effect of sliding time window
size on the correlation time for different number of con-
current clients. Fig. 15 shows a partially enlarged view.
The size of sliding time window affects the correlation
time in two ways: First, when the number of requests
in the fixed duration is fixed, the time complexity of
the algorithm is linear with the size of An for RUBIS.
An is the size of log sequence per request in the sliding time
window. Hence the correlation time will increase with the
sliding time window; Second, if the size of the sliding
time window is smaller (less than 10 milliseconds), the
following situation will arise more frequently: the related
logs of each component fail to be fetched to the buffer of
Ranker—a component of PreciseTracer at the same time
hence increasing the correlation time. From Fig. 15, we
can observe these effects.

PreciseTracer =#=WAP5

2250

@
2 2000
E /
S 1750
< 1500
= /
2 1250
]
= /
£ 1000 /
=
E 750
<

500
-
B
g 250 /
R

50 150 250 350 450

Concurrent client (number)

Fig. 16. The memory consumptions of PreciseTracer (the
sliding time window is 400 milliseconds) and WAPS5.

Fig. 16 compares the memory consumptions of Pre-
ciseTracer with that of WAP5 , indicating that the major
analysis component of WAP5 consumes more memory
than that of PreciseTracer. Fig. 17 presents the effect of
the size of the sliding time window on the memory con-
sumption of the major analysis module—Correlator for
different concurrent clients. We do not show the memory
consumption of other components of PreciseTracer, be-
cause they consume fewer memory in comparison with
Correlator.

200
180
160
140
120 -
100

80

60 —]

40 || —
20 — —
. L

50 150 250 350 450

=20
100
=200
=400
= 1000
10000
100000

Memory consumption (kilobytes)

Concurrent client (number)

Fig. 17. The memory consumption of PreciseTracer v.s.
the size of sliding time window varying from 20 to 100000
milliseconds.

5.1.4 The overhead on the application

We compare the throughput and the average response
time of RUBIS for the read_write mixed workload when
the instrumentation mechanism is disabled (no instru-
mentation), enabled (only starting the Gather module),
or PreciseTracer is in the online analysis mode. In order
to test the worst-case overhead of PreciseTracer under
the online model, we choose the continuous collection
mode. The configuration of PreciseTracer is (online, 60,
0, 400, 10). We set the up ramp, the runtime session, and
the down ramp durations to 1 minutes, 10 minutes, and

1 minute, respectively.

Fig. 18. The effects of PreciseTracer on the throughput of
RUBIS.

= No instrumentation offline = online

180 1

Throughput (requests / second)

, ||/

Concurrent clients (number)

In Fig. 18 and Fig. 19, we observe that PreciseTracer
in the continuous log collection mode has little impact
on the throughput and a small and acceptable impact on
the average response time of RUBIS.

5.1.5 Evaluating the online analysis ability

In this section, we demonstrate the online analysis ability
of PreciseTracer. We set the baseline configuration as
(online, 10, 50, 400, 10). The test duration is fixed for
the read_write mixed workload. We set the up ramp,
runtime session, and down ramp durations to 1 minutes,
5 minutes, and 1 minute, respectively.

11

= No instrumentation offline = online

ds)

700 e

600

500

time (milli

400

300

P

200

100

Average r

I = O o B U B S B 1 -l, ’

50 150 250 350
Concurent clients(number)

Fig. 19. The effect of PreciseTracer on the average
response time.

" Transformation M transferring | Correlation ™ Analysis

T

Time consumption (second)

50 150 250 350 450

Concurrent clients (number)

Fig. 20. The time consumptions in each stage of Precise-
Tracer.

There are four steps in applying request tracing to
online analysis of services: first, the system transforms
original logs into tuple logs (transformation); second, it
transfers the tuple logs to an analysis node for further
analysis (transferring); third, the system correlates the
tuple logs to compute CAGs (correlation); fourth, the
system analyzes the CAGs (analysis). Because the second
step is conducted on each node simultaneously, we take
the maximum one as the time consumption in this stage.

Fig. 20 shows that PreciseTracer processes the logs
efficiently. In particular, it generates analysis results
within 20 seconds when we set concurrent clients to
450. The results demonstrate the practicality of using
PreciseTracer for online analysis.

5.2 The sampling effect

The experiment platform is a 6-node Linux cluster con-
nected by a 100Mbps Ethernet switch. Apache and JBoss
are deployed on two SMP nodes with two PIII processors
and 2G'B memory, respectively. Database (MySQL) and
the analysis components of PreciseTracer are deployed
on two SMP nodes with eight Intel Xeon processors
and 8GB memory, respectively. Each node runs the
Redhat Fedora Core 6 Linux with the kprobe [30] feature
enabled.

PreciseTracer supports sampling as it tolerates loss
of activity logs. In this section, we demonstrate that

adopting a lossy sampling policy could decrease the
size of collected logs, while still capturing most of the
dominating causal path patterns. As defined in Section 1
, a causal path pattern represents a repeatedly executed
causal path.

We run offline experiments twice — in one minute
and in 10 minutes. The test duration is fixed for the
brown_only workload. We set the up ramp, the runtime
session and the down ramp durations to 30 seconds,
30 minutes, and 1 minute, respectively. The sliding time
window is 20 milliseconds.

We analyze the top 10 dominated causal path patterns
in two runs of experiments: 1 minute vs. 10 minutes. In
Fig. 21, Pattern x represents the top x dominated causal
path pattern. We have two observations: first, in two
runs, causal paths belonging to the top 10 causal patterns
take up a significant percentage of all causal paths (both
88%); Second, two runs of the experiment lead to the
same top 10 dominated causal path patterns. These two
observations justify the sampling policy since adopting
a sampling policy still captures most of the dominated
casual path patterns.

Pattern 1# Other Pattern 17#
16% Pattern 10/ patierns 14%
3%

Pattern 10# Other
2%

Pattern 9%

6% Pattern 9% (.

10% 3%

b b +

Pattern 2# Pattern 8#t__ (S 11223
16% 4 |

Pattern 2#
Pattern 8¢ 14%

6%

Pattern 7#
6%

Pattern 6# /
7%

Pattern 3#
10%

Pattern 3# Pattern 6# Pattern 4#

Pattern 5% Patiern 4# 1% 8% Pattern 5# 5%
8% 9% 15%

10 minutes' logs 1 minute' logs

Fig. 21. Comparisons of the dominated causal path
patterns in two runs of one minute and ten minutes
respectively.

Table 2 compares log sizes in two runs of experiments
of 1 minute and 10 minutes, respectively. It indicates that
the sampling policy decreases the cost of collecting and
analyzing logs, and hence improves system scalability.

TABLE 2
The log size in two runs of experiments
Original Original Original
logs of | logs of Jboss | logs 0
Apache (M) | (M) MySql (M)
1-minute run 3.9 6.6 6.7
10-minute run | 27.9 55.1 58.6

5.3

In the following section, we will utilize PreciseTracer
to detect performance problems of a multi-tier service.
The experiment platform is a Linux cluster connected
by a 100Mbps Ethernet switch. Web tier (Apache) and
active web pages server (JBoss), database (MySQL) and

Identifying performance bottleneck

12

analysis components of PreciseTracer are deployed on
four SMP nodes, respectively, each of which has two
PIII processors and 2G'B memory. Each node runs the
Redhat Fedora Core 6 Linux with the kprobe [30] feature
enabled. The deployment of RUBiS is similar to Fig. 7.

5.3.1 Misconfiguration inference

When we perform experiments to evaluate the overhead
of PreciseTracer under the offline model, we observe that
when the number of concurrent clients increases from
700 to 800, the throughput of RUBiS decreases. Fig. 22
shows the relationship between the number of requests
served and the number of concurrent clients. The test
duration is fixed for the brown_only workload. And
we set the up ramp, the runtime session and the down
ramp durations to 1 minute, 7 minutes, and 1 minute,
respectively. The sliding time window is 20 milliseconds.
An interesting question we try to answer is “what is the
root cause for the throughput decline?”

No_Instrumentation —o—Offline

180
160
140
120
100

80

40

Throughput (requests / second)

20

100 200 300 400 500 600 700 800 900 1000

Concurrent clients (number)

Fig. 22. The overhead of PreciseTracer in the offline
model

Generally, we will observe the resource utilization
rates of each tier and the metrics of quality of service
to pinpoint bottlenecks. Using the monitoring tool of
RUBIS, we observe that the CPU utilization rate of each
node is less than 80% and the I/O usage rate is not high.
Obviously, the traditional method does not help.

To answer this question, we use our tool to analyze
the most frequent request —Viewltem for RUBIS, and
visualize the view of latency percentages of each tier and
each interaction between tiers.

From Fig. 23, we observe that when the number
of concurrent clients increases from 500 to more, the
latency percentage of httpd2Java from the first tier to
the second tier changes dramatically, and they are 46%,
80%, 71% and 60%, respectively, for 500, 600, 700 and
800 concurrent clients. In Fig. 23, the latency percentage
of httpd2Java is 46% for 500 clients, which means that
the processing time for the interaction from httpd to
Java takes up the maximum percentage of the end-to-
end time of servicing a request.

At the same time, the latency percentage of
httpd2httpd (the first tier) increases dramatically from
17% (700 clients) to 31% (800 clients). We observe the

= clients=500 clients=600 clients=700 M clients=800
80
é 70
] 60
D
2 50
<
2 40
z
= 30
E
= 20
10
0 T T - W= N TS W T e
> > & > & >
K & K & & &
> N > N N &
F & & & £ &
<~ ® A R &

Fig. 23. The latency percentages of each tier and each
interaction between tiers.

CPU utilization rate of the Jboss node is less than 60%
and the I/O usage rate is not high. When servicing
a request, httpd2httpd is before httpd2java in a causal
path. So we can confirm that there is something wrong
with the interaction between httpd and JBoss. Through
reading the manual of RUBIS, we infer that the problem
is mostly likely related to the thread pool configuration
of JBoss. According to the manual of JBoss, one param-
eter named MaxThreads controls the maximum available
threads, of which each thread serves a connection. The
default value of MaxThreads is 40.

We set the value of MaxThreads as 250 and run
the experiments again. In Fig. 24, we observe that our
troubleshooting is effective. In Fig. 24, TP_MTx is the
throughput when MaxThreads is , and RT_MTx is the
average response time when MaxThreads is z. With
the concurrent clients increasing from 500 to 800, the
throughput gets higher than under the default config-
uration (i.e. MaxThreads being 40); and the average
response time is lower than under the default configu-
ration. However, for 900 concurrent clients, the resource
limit of hardware platform results in a new bottleneck,
which narrows the performance difference.

TP_MT40 —#—=TP_MT250 —#—RT _MT40 ==RT_MT250

Fig. 24. Performance under different MaxThreads config-

uration

100 200 300 400

500 600 700 800

Concurrent clients (number)

900 1000

5 200 2000

£ 180 #1800

% 160 S 1600 qé
% 140 P 400 52
2 278
g 120 A 1200 £ &
E e // =91
g 100 — y/i 1000 §§
~ 80 800 =
S el = | o0 BE
= / / £
% w0 7/" —7 —/ a0 8
E 20 200 <
g, M ;

5.3.2 Identifying injected performance problems

To further validate the accuracy of locating performance
problems using PreciseTracer, we have injected several

13

performance problems into RUBiS components and their
host nodes: for abnormal case 1, we modify the code of
the second tier to inject a random delay; for abnormal
case 2, we lock the items table of the database to inject a
delay; for abnormal case 3, we change the configuration
of the Ethernet driver on the node running JBoss from
100Mbps to 10Mbps.

= Normal EJB_Delay

Database_Lock ®EJB_Network

Latency percent (%)

Fig. 25. Latency percentages of components for abnor-
mal cases. work model: offline, gather time period: 10min,
sliding time window:20ms

We use PreciseTracer to locate the component in trou-
ble where different performance problems are injected.
Fig. 25 shows the latency percentages of components for
normal case and three abnormal cases.

For abnormal case 1 (EJB_Delay), the latency percent-
age of Java2Java (the second tier) increases from less
than 10% under the normal configuration to more than
40%, and the latency percentages of other components
decrease. Hence we infer that JBoss is the problematic
component.

For abnormal case 2 (DataBase_Lock), the latency per-
centage of mysqld2mysqld (the third tier) increases from
12% under the normal configuration to more than 20%,
and the latency percentage of java2mysqld (interaction
from the second tier to the third tier) increases from
26% to more than 35%. The Latency percentages of other
components remain unchanged or decrease. Hence we
infer that MySQL is in trouble.

For the abnormal case 3 (EJB_Network), the latency
percentage of Java2mysqld (from the second tier to the
third tier) increases from 26% to 47%; mysqld2java (from
the third tier to the second tier) remains at about 37%.
The latency percentage of httpd2java from the first tier to
the second tier increases from 1% to 2%; the percentage
of java2httpd from the second tier to the first tier in-
creases from 4% to 8%. We observe that most of time for
servicing a request is spent on the interactions between
the second tier and the third tier, and the three latency
percentages out of the four interactions with the second
tier increase. We infer that the second tier has problem.

Further observation shows the latency percentage of
Java2java strangely decreases from 9% to almost 0%. So
we further conclude that there is something wrong with
the network of the second tier.

6 RELATED WORK

This section summarizes related work from three per-
spectives: black-box and white-box tracing approaches,
and profiling approaches.

6.1 Black-box tracing approaches
TABLE 3
Comparisons of black-box tracing approaches
accuracy | scalability request mode
abstraction

Project5 imprecise| / macro level | offline

WAPS5 imprecise| / macro level | offline

E2EProf imprecise| / macro level | online

BorderPatrol | precise | continuous micro level | offline
logging

vPath precise continuous micro level | offline
logging

PreciseTracer | precise sampling & | micro/macro| online
tracing on | levels
demand

6.1.1

A much earlier project, DPM [9], instruments the operat-
ing system kernel and tracks the causality between pairs
of messages to trace unmodified applications. However,
DPM is not precise, since any real causal path does
not necessarily follow the edges of a path in DPM’s
output graph. Project5 [4] and WAPS5 [3] accept im-
precision of probabilistic correlations. Project5 proposes
two algorithms for offline analysis. A nesting algorithm
assumes 'RPC-style” (call-returns) communication, and
a convolution algorithm does not assure a particular
messaging protocol. The nesting algorithm only uses one
timestamp per message [3] without distinguishing SEND
or RECEIVE timestamp, and hence it only provides
aggregate information per component. The convolution
algorithm only infers average response time of compo-
nents, and cannot build individual causal paths (micro-
level request abstraction) for each request. More re-
cently, WAPS [3] infers causal paths from tracing stream
on a per-process granularity via library interposition,
and propose a message-linking algorithm for inferring
causal relationships between messages. Similar to the
convolution algorithm of Project5, E2Eprof [7] proposes a
pathmap algorithm, and uses compact trace representa-
tions and a series of optimizations to make itself suitable
for online performance diagnosis. Just like Project5 and
WAPS5, E2Eprof is inaccurate.

Imprecise black-box tracing approaches

14

6.1.2 Precise black-box tracing approaches

There are only two precise black-box approaches, Border-
Patrol and vPath, which are offline and cannot offer per-
formance information in real time. With the knowledge
of diverse protocols used by multi-tier service, Border-
Patrol isolates and schedules events or requests at the
protocol level to precisely trace requests. When multi-
tier services are developed from commercial components
or heterogeneous middleware, BorderPatrol has to write
many protocol processors and requires more specialized
knowledge than pure black-box approach [5]. vPath
consists of a monitor and an offline log analyzer. The
monitor continuously records which thread performs a
send or recv system call over which TCP connection.
The offline log analyzer parses logs generated by the
monitor to discover request processing paths. The mon-
itor is implemented in virtual machine monitor (VMM)
through system call interceptions. Using library interpo-
sition (BorderPatrol) or system call interception (vPath),
the logging mechanism of BorderPatrol or vPath cannot
be enabled or disabled on demand without interrupting
services, and hence it is unscalable in terms of the cost of
collecting and analyzing logs. For example, as stated in
[2], a simple e-commercial system could generates 10M/
logs per minute. A data center usually consists of tens
of thousands or even more nodes being deployed with
multi-tier services. If we debug performance problems of
multi-tier services on this scale for one minute, a tracing
system with continuous logging has to analyze at least
0.17B logs, which is unscalable. Besides, BorderPatrol
and vPath fail to present macro-level abstractions to
facilitate debugging performance-in-the-large, and users
have to deal with massive logs with great efforts. With
respect to our previous work [20], our new contributions
are two-fold. First, we improved the tracing algorithm to
tolerate log losses, on the basis of which, we developed
two mechanisms: tracing on demand and sampling to
significantly increase system scalability. Through experi-
ments, we demonstrate that adopting a sampling policy
could decrease the size of collected logs, while still
preserving performance data of services in the way that
it captures most of dominated causal path patterns.
Second, we designed and implemented an online request
tracing tool. Through experiments, we demonstrate the
online analysis ability of PreciseTracer.

6.2 White-box tracing approaches

The common requirements of white-box approaches are
that they need to obtain the source code of applications
or middleware.

The most invasive systems, such as Netlogger [10] and
ETE [11], require programmers to add event logging
to carefully-chosen points to locate causal paths, rather
than infer them from passive traces. Pip [13] inserts
annotations into source code to record actual system
behaviors, and can extract causal path information with
no false positives or false negatives. Magpie [1] collects

events at different points in a system and uses an event
schema to correlate these events into causal paths. In
order to track a request from end to end, Magpie must
obtain the source code of an application, at least require
"wrapper” around some parts of the application [4].
Stardust [12] is a system used as an on-line monitoring
tool in a distributed storage system, and is implemented
in a similar manner. Whodunit [14] annotates profile data
with transaction context synopsis, tracks and profiles
transactions that flow through shared memory, events,
and inter-process communication. Chen et al. [19] applies
path-based macro analysis to two broad classes of tasks
encountered with large distributed systems: failure man-
agement and evolution. Their approach is to associate
each request with a unique identifier at the system entry
point while maintaining the association throughout the
process.

To avoid modifying applications’” source code, several
previous work has enforced middleware or infrastruc-
ture changes, bound to specific middleware or deployed
instrumented infrastructure. Pinpoint [15] locates com-
ponent faults in J2EE platforms by tagging and propa-
gating a globally unique request ID with each request.
Causeway [16] enforces change to network protocol so as
to tag meta-data with existing module communication.
X-Trace [17] modifies network layer to carry X-Trace
meta-data, which enables casual path reconstruction and
focuses on debugging paths through network layer. As
Google’s production tracing infrastructure, Dapper [26]
uses a global identifier to tie related events together from
various parts of a distributed system, which mandates
accessing the source code of applications. Dapper uses
sampling to improve system scalability and reduce per-
formance overhead.

With the support of logging mechanism of Hadoop,
Tan et al. [27] presented a non-intrusive approach to
tracing the causality of execution in MapReduce-like
cloud systems [35], which is significantly different from
multi-tier services.

6.3 Profiling approaches

Tracing is a measurement of a stream of events of
the behavior of a system [38], while profiling is mea-
surement of a statistical summary of the behavior of
a system. Another tool from Google, Googel-Wide-
Profiling(GWP) [34], a continuous profiling infrastruc-
ture for data centers, provides performance insights for
cloud applications. GWP introduces novel applications
of its profiles, such as application platform affinity mea-
surements and identification of platform-specific, micro-
architectural peculiarities. In our previous work [39], we
design and implement an innovative system, AutoAna-
lyzer, that automates the process of debug performance
problems of SPMD-style parallel programs, including
data collection, performance behavior analysis, locating
bottlenecks, and uncovering their root causes. AutoAn-
alyzer is unique in terms of two features: first, without

15

any apriori knowledge, it automatically locates bottle-
necks and uncovers their root causes for performance
optimization; second, it is lightweight in terms of the
size of performance data to be collected and analyzed.

7 CONCLUSION AND FUTURE WORK

We have developed an accurate request tracing tool,
called PreciseTracer, to help users understand and debug
performance problems in a multi-tier service of black
boxes. Our contributions lie in four-fold: (1) we have de-
signed a precise tracing algorithm to derive causal paths
for each individual request, which only uses application-
independent knowledge, such as timestamps and end-
to-end communication channels; (2) we have presented
two abstractions, component activity graph and domi-
nated causal path pattern, for understanding and debug-
ging micro-level and macro-level user request behaviors
of the services, respectively; (3) we have developed
two mechanisms, tracing on demand and sampling, to
increase the system scalability; and (4) we have designed
and implemented an online request tracing system. To
validate the efficacy of PreciseTracer, we have conducted
extensive experiments on 3-tier platforms. In comparison
with WAP5—a black-box tracing approach, PreciseTracer
achieves higher tracing accuracy and faster response
time. Our experimental results also show PreciseTracer
has low overhead, and still achieves high tracing accu-
racy even if an aggressive sampling policy is adopted,
which indicates that PreciseTracer is a promising tracing
tool for large-scale production systems.

We found that real workload, application, and data are
all important for characterizing datacenter systems [40].
We are being building a testbed for datacenter and cloud
computing, which is available from [41].

ACKNOWLEDGMENT

We are very grateful to anonymous reviewers. This
work is supported by the Chinese 973 project (Grant
No.2011CB302500) and the NSFC project (Grant
No0.60933003).

REFERENCES

[1] P. Barham, et al. Using Magpie for Request Extraction and Workload
Modeling. In Proc. 6th OSDI, 2004, pp. 18-18.

[2] P. Barham, et al. Magpie: online modelling and performance-aware
system. In Workshop on HotOS’03, 2003, PP.85-90.

[3] P. Reynolds, et al. WAPS5: Black-box Performance Debugging for Wide-
area Systems. In Proc. 15th WWW, 2006, pp.347-356.

[4] M. K. Aguilera, et al. Performance Debugging for Distributed Systems
of Black Boxes. In Proc. 19th SOSP, 2003, pp. 74-89.

[5] E. Koskinenand, et al. BorderPatrol: Isolating Events for Black-box
Tracing. SIGOPS Oper. Syst. Rev. 42, 4, 2008, pp. 191-203.

[6] M. Ricahrd Stevens, UNIX Network Programming Networking APIs:
Sockets and XTI, Volume 1, Prentice Hall, 1998.

[7] S. Agarwala, et al. E2EProf: Automated End-to-End Performance Man-
agement for Enterprise Systems. In Proc. 37th DSN, 2007, pp.749-758.

[8] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed
System, Comms. ACM, 21(7), 1978, pp.558-565.

[9] B. P. Miller. DPM: A Measurement System for Distributed Programs,
IEEE Trans. on Computers, 37(2), 1988, pp.243-248.

[10] B. Tierney, et al. The NetLogger Methodology for High Performance
Distributed Systems Performance Analysis. In Proc. 17th HPDC, 1998,
pp. 260-267

[11] J. L. Hellerstein, et al. ETE: a Customizable Approach to Measuring
End-to-end Response Times and Their Components in Distributed Sys-
tems. In Proc. 19th ICDCS, 1999, pp. 152-162.

[12] E. Thereska, et al. Stardust: Tracking Activity in a Distributed Storage
System. In Proc. SIGMETRICS, 2006, pp. 3-14.

[13] P. Reynolds, et al. Pip: Detecting the Unexpected in Distributed
Systems. In Proc. 3rd NSDI, 2006, pp.115-128.

[14] A. Chandaet al. Whodunit: Transactional Profiling for Multi-tier
Applications, SIGOPS Oper. Syst. Rev. 41, 3, 2007, pp. 17-30.

[15] M. Y. Chen, et al. Pinpoint: Problem Determination in Large, Dynamic
Internet Services. In Proc. 32th DSN, 2002, pp.595-604.

[16] A.Chanda, et al. Causeway: Operating System Support for Controlling
and Analyzing the Execution of Distributed Programs. In Proc. 10th
HotOS, 2005, pp. 18-18.

[17] R. Fonseca, et al. X-Trace: A Pervasive Network Tracing Framework.
In Proc. 4th NSDI, 2007, pp.271-284.

[18] A. Anandkumar, et al. Tracking in a spaghetti bowl: monitoring
transactions using footprints. In Proc. SIGMETRICS’08, 2008, pp. 133-
144.

[19] M. Y. Chen, et al. Path-based faliure and evolution management. In
Proc. NSDI'04, 2004.

[20] Z. Zhang, et al. Precise Request Tracing and Performance Debugging of
Multi-tier Servcies of Black Boxes. In Proc. DSN’09, 2009, pp.337-346.

[21] B. C. Tak, et al. vPath: Precise Discovery of Request Processing Paths
from Black-Box Observations of Thread and Network Activities. In Proc.
USENIX'09, 2009.

[22] B. M. Cantrill et al. Dynamic Instrumentation of Production Systems.
In Proc. USENIX'04, 2004.

[23] Y. Ruan et al. Making the "box” transparent: system call performance
as a first-class result. In Proc. USENIX ATC’04, 2004.

[24] Y. Ruan et al. Understanding and Addressing Blocking-Induced Net-
work Server Latency. In Proc. of the USENIX ATC’ 06, 2006.

[25] K. Shen, et al. Hardware counter driven on-the-fly request signatures.
In Proc. ASPLOS XIII, 2008, pp.189-200.

[26] B. H. Sigelman, et al. Dapper, a Large-Scale Distributed Systems
Tracing Infrastructure, Google Technical Report dapper-2010-1, April
2010.

[27]]. Tan, et al. Visual Log-based Causal Tracing for Performance Debug-
ging of MapReduce Systems. In Proc. of ICDCS10.

[28] C.Stewart et al. Performance Modeling and System Management for
Multi-component Online Services. In Proc.NSDI'05, 2005.

[29] K. Appleby, et al. Oceano- SLA Based Management of a Computing
Utility. In Proc. of the IFIP/IEEE Symposium on Integrated Network
Management, 2001, pp.855-868.

[30] R. Krishnakumar. Kernel korner: kprobes-a kernel debugger.
Linux J. 2005, 133 (May. 2005), 11.

[31] L. Yuan, et al. PowerTracer, tracing requests in multi-tier services to
save cluster power consumption. Technical Report. 2010, Avaialable
at http://arxiv.org/corr/.

[32] SystemTap: http://sourceware.org/systemtap

[33] TPC Benchmark: http://www.tpc.org/tpcw/

[34] G. Ren, et al. Google-Wide Profiling: A Continuous Profiling Infras-
tructure for Data Centers. IEEE Micro 30, 4 (July 2010), 65-79.

[35] P. Wang, et al. Transformer: A New Paradigm for Building Data-
Parallel Programming Models. IEEE Micro 30, 4 (July 2010), 55-64.

[36] L. Wang, et al. In cloud, do MTC or HTC service providers benefit
from the economies of scale?. In Proc. of MTAGS ’09. 2009.

[37] L. Wang, et al. In cloud, can scienfific communities benefit from the
economies of scale?. Accepted by TPDS. March, 2011.

[38] Readings in Instrumentation, Profiling, and Tracing:
http:/ /www.inf.usi.ch/faculty /hauswirth /teaching /ipt.html.

[39] X. Liu, et al. Automatic Performance Debugging of SPMD-style
Parallel Programs. JPDC. Volume 71, Issue 7, July 2011, Pages 925-
937.

[40] H. Xi, et al. Characterization of Real Workloads of Web Search Engines.
In Proc. of IISWC 11, 2011.

[41] A testbed for datacenter
http://prof.ncic.ac.cn/htc-testbed.

and cloud computing:

16

Bo Sang is currently a Ph.D student in Depart-
ment of Computer Science, Purdue University.
He joined Purdue University in 2010 and work
with Professor Dongyan Xu in FRIENDS re-
search group. Currently his research interests in-
clude reliability&dependency of distributed sys-
tem and cloud computing. He got his bache-
lor degree in Computer Science from Nanjing
University, China in 2007. Under the direction
of Professor Jianfeng Zhan, he got his master
degree in Computer Science, from Institute of
Computing Technology, Chinese Academy of Sciences, China in 2010.

Jianfeng Zhan received the Ph.D degree in
computer engineering from Chinese Academy
of Sciences, Beijing, China, in 2002. He is cur-
rently an Associate Professor of computer sci-
ence with Institute of Computing Technology,
Chinese Academy of Sciences. His current re-
search interests include distributed and parallel
systems. He has authored more than 40 peer-
reviewed journal and conference papers in the
aforementioned areas. He is one of the core
members of the petaflops HPC system and data
center computing projects at Institute of Computing Technology, Chinese
Academy of Sciences. He was a recipient of the Second-class Chinese
National Technology Promotion Prize in 2006, and the Distinguished
Achievement Award of the Chinese Academy of Sciences in 2005.

Gang Lu is a master student in computer sci-

ence at the Institute of Computing Technology,

Chinese Academy of Sciences. His research fo-
- cuses on parallel and distributed computing. He
received his B.S. degree in 2006 from Huazhong
University of Science and Technology in China,
in Computer Science.

Haining Wang received his Ph.D. in Computer
Science and Engineering from the University
of Michigan at Ann Arbor in 2003. He is an
Associate Professor of Computer Science at the
College of William and Mary, Williamsburg, VA.
His research interests lie in the area of network-
ing systems, security, and distributed computing.
He is a senior member of IEEE.

Dongyan Xu is an associate professor of com-
puter science and electrical and computer en-
gineering (by courtesy) at Purdue University.
He received a B.S. degree from Zhongshan
(Sun Yat-Sen) University in 1994 and a Ph.D. in
Computer Science from the University of lllinois
at Urbana-Champaign in 2001. His current re-
search areas include virtualization technologies,
computer malware defense, and cloud comput-
ing. He is a recipient of a US National Science
Foundation CAREER Award.

APPENDIX A

Lei Wang received the master degree in com-
puter engineering from Chinese Academy of Sci-
ences, Beijing, China, in 2006. He is currently
a research assistant with Institute of Computing
Technology, Chinese Academy of Sciences. His
current research interests include resource man-
agement of cluster and cloud systems. He was
a recipient of the Distinguished Achievement
Award of the Chinese Academy of Sciences in
2005.

Zhen Jia is a master student in computer sci-
ence at the Institute of Computing Technology,
Chinese Academy of Sciences. His research
focuses on parallel and distributed computing.
He received his B.S. degree in 2006 from DaLian
University of Technology in China, in Computer
Science.

PRECISETRACER PSEUDO-CODE

17

Algorithm 1 Procedure correlate {}

1. while current=ranker.rank() do

2.

3
4
5.
6

® N

10.
11.
12.
13.

14.
15.
16.
17.
18.
19.

20.
21.
22.
23.

24.
25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.

36.
37.

e = current — get_type()
if (¢ == BEGIN) then
create a CAG with current as its root;
else if (e == END) then
find the matched
parent— .current;
if (the match is found) then
add current into the matched CAG;
add an adjacent context edge from parent to
current;
output CAG;
end if
else if (¢ == SEND) then
find matched parent_ msg where
ent_msg— .current;
if (the match is found) then
if (parent_msg.type == SEND) then
parent_msg.size + = current.size;
else
add current into the matched CAG.
add an adjacent context edge from par-
ent_msg to current.
end if
end if
else if (e == RECFEIVE) then
find matched parent_msg
ent_msg—,,, current;
if (the match is found) then
parent_msg.size -= current.size;
if (current — CAG = NULL) then
add current into the matched CAG;
current — CAG = current CAG;
add a message edge from parent_msg to cur-
rent;
if (matched parent_cntx
parent_cntx—.current is found) then
if (parent_msg and parent_cntx are in the
same CAG) then
add a context edge from parent_cntx to
current;
end if
end if
end if
end if
end if

parent where

par-

where

par-

where

38. end while

Algorithm 2 Function is_noise(Activity *FE)

1: return (F — type == RECEIV E) and (No matched

SEND activity X in mmap with X —,, E) and (No
matched SEND activity Y in the buffer of Ranker
with Y —,, F)

