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Abstract

With wide adoption of robotic aerial vehicles (RAVs), their
accidents increasingly occur, calling for in-depth investigation
of such accidents. Unfortunately, an inquiry to “why did my
drone crash” often ends up with nowhere, if the root cause
lies in the RAV’s control program, due to the key challenges
in evidence and methodology: (1) Current RAVs’ flight log
only records high-level vehicle control states and events, with-
out recording control program execution; (2) The capability
of “connecting the dots” — from controller anomaly to pro-
gram variable corruption to program bug location — is lacking.
To address these challenges, we develop MAYDAY, a cross-
domain post-accident investigation framework by mapping
control model to control program, enabling (1) in-flight log-
ging of control program execution, and (2) traceback to the
control-semantic bug that led to an accident, based on control-
and program-level logs. We have applied MAYDAY to ArduPi-
lot, a popular open-source RAV control program that runs on a
wide range of commodity RAVs. Our investigation of 10 RAV
accidents caused by real ArduPilot bugs demonstrates that
MAYDAY is able to pinpoint the root causes of these accidents
within the program with high accuracy and minimum runtime
and storage overhead. We also found 4 recently patched bugs
still vulnerable and alerted the ArduPilot team.

1 Introduction

Robotic aerial vehicles (RAVs) such as quadrotors have been
increasingly adopted in commercial and industrial applica-
tions — for example, package delivery by RAVs for Amazon
Prime Air service [8]. Meanwhile, RAV accidents are in-
creasingly reported, with undesirable consequences such as
vehicle malfunction, instability or even crash [5, 6], calling
for in-depth investigation of such accidents.

The causes of RAV accidents vary widely, including (but
not limited to) (1) “physical” causes such as physical com-
ponent failures, environmental disturbances, and sensor hard-
ware limitations [4,7,32,42,70]; (2) generic bugs, such as
buffer overflows, in the control program [26,50]; (3) domain-
specific control-semantic bugs, which arise from program-

ming errors in implementing the underlying RAV control
model in the control program. The first two categories involve
hardware or software issues separately, while the third cate-
gory entangles both the cyber and physical aspects of an RAV
system. Meanwhile, current RAV’s flight data recording can
provide information to help trace back to physical causes of
RAYV accidents, but becomes much less informative when in-
specting the control program internals. As a result, an inquiry
to “why did my drone crash” often ends up with nowhere, if
its root cause is a control-semantic bug.

As a motivating case (detailed investigation in Section 3
and 8.1.1), an RAV had been cruising normally at a constant
speed, until it made a scheduled 90-degree turn when the vehi-
cle suddenly became unstable and crashed afterward. It turns
out that the root cause of the accident is a control-semantic
bug — the control program’s failure to check the validity of
a control parameter (control gain), set either by the operator
via the ground control station (GCS) or by an attacker via
a remote parameter-changing command [51] during normal
cruising — long before the crash. Such an accident is difficult
to investigate. First, the physical impact on the vehicle did not
happen immediately after the triggering event (i.e., parameter
change), making it hard to establish the causality between
them. Second, it is challenging to spot the triggering event
among numerous states/events in the RAV’s flight log. Third,
it is non-trivial to locate the bug in the control program, which
should be fixed to avoid future accidents.

The fundamental challenges preventing a successful root
cause analysis for these accidents lie in evidence and method-
ology: (1) current RAV’s flight log — generated by most control
programs — records high-level controller states (e.g., position,
attitude and velocity), without recording control program ex-
ecution; (2) the capability of “connecting the dots” — from
controller anomaly to program variable corruption to program
bug location — is lacking.

To address these challenges, we develop MAYDAY, a cross-
domain post-accident investigation framework by mapping
control model to control program, enabling (1) in-flight log-
ging of control program execution, and (2) traceback to the
control-semantic bug that led to an accident, based on control-
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and program-level logs.

More specifically, to enrich investigation evidence,
MAYDAY first analyzes the control program and instruments
it with selective program execution logging, guided by a con-
trol variable dependency model. This establishes a mapping
between the control model and the program. To investigate an
accident, MAYDAY performs a two-step investigation: (1) In
control-level investigation, MAYDAY analyzes control-level
log to identify (i) the controller (among the RAV’s multiple
controllers) that first went wrong and (ii) the sequence of con-
trol variable corruptions that had led to that controller’s mal-
function. (2) In program-level investigation, MAYDAY uses
the output of (1) and the control model-program mapping to
narrow the scope of program-level log to be analyzed, result-
ing in a very small subset of control program basic blocks
where the root cause (bug) of the accident is located.

We have applied MAYDAY to ArduPilot [12], a popular
open-source RAV control program [20,36] that runs in a wide
range of commodity RAVs, such as Intel Aero, 3DR IRIS+,
the Bebop series, and Navio2. Our investigation of 10 RAV
accidents caused by real ArduPilot bugs demonstrates that
MAYDAY is able to accurately localize the bugs for all the
cases. Our evaluation results show that MAYDAY incurs low
control task execution latency (3.32% on average), relative to
the tasks’ soft real-time deadlines. The volume of log gener-
ated by MAYDAY is moderate: 1.3GB in 30 minutes, which
can easily be supported by lightweight commodity storage
devices.

The contributions of MAYDAY lie in the awareness and
integration of RAV control model for control program instru-
mentation, tracing, and debugging, which specializes these
generic program analysis capabilities for more effective dis-
covery of control-semantic bugs.

* For control program instrumentation (offline), we formalize
the control model as a Control Variable Dependency Graph
(CVDGQG). By establishing a mapping between the control
model and the control program, we bridge the semantic
gap between control- and program-level variables and data
flows. We then develop an automatic instrumentation to
enable CVDG-guided program execution logging.

* For control program tracing (runtime), we leverage the in-
trinsically low controller frequency for the cyber-physical
RAV (tens/hundreds of Hz; versus its MHz/GHz proces-
sor), making it practical to employ the fine-grain control
program execution logging at runtime. Such an approach
would not be feasible for “cyber-only” systems due to the
high relative overhead.

* For control program debugging (post-accident), We de-
velop a two-stage accident investigation process, where the
control-level investigation identifies the first malfunction-
ing controller and infers its control variable corruption path;
and the program-level investigation will backtrack the pro-
gram trace along that corruption path for bug localization,
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Figure 1: Dependencies of an RAV’s Six degrees of freedom
(6DoF) cascading controllers.
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Figure 2: Primitive controllers in x-axis cascading controller.
guided by the control “model-program” mapping.

* Our investigation of 10 RAV accidents caused by real
ArduPilot bugs demonstrates that MAYDAY is able to ac-
curately localize the bugs for all the cases with reasonable
runtime and storage overhead. We also found 4 recently
patched bugs that are still vulnerable and alerted the ArduPi-
lot team.

We structured the rest of this paper as follows: Section 2
illustrates background on RAV control model and program
and security model; Section 3 describes the motivating exam-
ple of MAYDAY; Section 4 shows the overview of MAYDAY
framework; Section 5 introduces CVDG and CVDG-guided
program analysis and instrumentation techniques enabling
cross-domain investigations; Section 6 illustrates our two-
stage post-accident investigation process; Section 7 shows
the detailed implementation of MAYDAY; Section 8 evalu-
ates MAYDAY; Section 9 discusses the limitations and future
work of MAYDAY; Section 10 summarizes the related work;
Section 11 concludes MAYDAY.

2 Background and Models

RAV Control Model MAYDAY is driven by the RAV con-
trol model, which encompasses (1) vehicle dynamics, (2) con-
troller organization, and (3) control algorithm. For vehicle
dynamics, an RAV stabilizes movements along the six degrees
of freedom (6DoF) such as the x, y, z-axes and the rotation
around them, namely roll, pitch, and yaw. Each of the 6DoF
is controlled by one cascading controller, with dependencies
shown in Fig. 1.

Inside each 6DoF controller, a cascade of primitive con-
trollers controls the position, velocity, and acceleration of
that “degree”, respectively. The control variables of these
primitive controllers have dependencies induced by physi-
cal laws. Fig. 2 shows such dependencies using the x-axis
controller as an example. For the x-axis position controller
(c1(1), left-most), x,(¢) is the vehicle state (i.e., position).
ry(t) is the reference which indicates the desired position.
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ex(t) = ry(t) — x,(t) is the error, namely difference between
the state and reference. Intuitively, the goal of the controller
is to minimize e, (r).

Similarly, the velocity and acceleration primitive con-
trollers have their own sets of control variables: %, (¢), i (),
é(t) for x-axis velocity; and X,(t), #(), é(t) for acceler-
ation (the “dot” symbol denotes differentiation). The three
primitive controllers work in a cascade: the output (reference)
of one controller becomes the input of its immediate down-
stream controller. Each controller also accepts other inputs,
such as flight mission and control parameters. The output of a
cascading controller (e.g., 0,(¢)) can be either a motor throttle
value or a reference input for another 6DoF controller (e.g.,
from the x-axis controller to the roll angle controller).

RAYV Control Program The RAV control program imple-
ments the RAV control model. It accepts two types of input:
(1) sensor data that measure vehicle states and (2) operator
commands from ground control (GCS). GCS commands are
typically issued to set/reset flight missions (e.g., destination
and velocity) and control parameters (e.g., control gain). The
control program runs periodically to execute the multiple con-
trollers. For auditing and troubleshooting, most RAV control
programs record controller states (e.g., vehicle state and refer-
ence) and events (e.g., sensor and GCS input) in each control
loop iteration and store them in on-board persistent storage.

Trust Model and Assumptions MAYDAY is subject to
the following assumptions: (1) We assume the soundness
of the underlying RAV control model. (2) We assume that
the RAV control program already generates high-level con-
trol log, which at least includes each primitive controller’s
reference, state and input. This is confirmed by popular RAV
control programs ArduPilot [12], PX4 [16] and Paparazzi [15].
(3) We assume the integrity of logs and log generation logic
in the control program, which can be enforced by existing
code and data integrity techniques [55,59,61]. After a crash,
we assume that the logs are fully recoverable from the vehi-
cle’s “black box”. (4) We assume the control flow integrity of
control program execution. Hence traditional program vulner-
abilities/exploits, such as buffer overflow, memory corruption,
and return-oriented programming, are outside the scope of
MAYDAY. There exists a wide range of software security
techniques to defend against such attacks [1,31,50,71].

Soundness of Control Model To justify Assumption (1)
of the trust model, we show that the underlying RAV con-
trol model adopted by ArduPilot is theoretically sound. For
the model’s vehicle dynamics, prior work [34] has analyti-
cally proved its correctness by modeling a standard rigid body
system using Newton-Euler equations. For the model’s con-
trol algorithm and controller organization, every primitive
controller (e.g., those in Fig. 2) instantiates the classic PID
(proportional-integral-derivative) algorithm; whereas all the
controllers are organized in a dependency graph (CVDG, to
be presented in Section 5.1), which reflects the classic RAV

controller organization for controlling the vehicle’s 6DoF.

Based on the sound control model elements, the model’s
stability has been proved in prior work [33]. Furthermore,
the control model — by design — tolerates vehicle dynamics
changes (e.g., payload change) and disturbances (e.g., strong
wind) to a bounded extent. We note that MAYDAY investigates
accidents/attacks when the vehicle is operating within such
bounds; and the triggering of the control-semantic bug will
make an originally sound control model unsound, by corrupt-
ing its control/mission parameter(s), leading to instability of
the system. Finally, theoretical soundness of the RAV control
model is also testified to by its wide adoption by RAV vendors
such as 3D Robotics, jDrone, and AgEagle for millions of
robotic vehicles [20].

Threat and Safety Model MAYDAY addresses safety and
security threats faced by RAVs, with a focus on finding
control-semantic bugs in RAV control programs after acci-
dents. These accidents may be caused by either safety issues
(e.g., buggy control code execution or operator errors) or
attacks (e.g., deliberate negligence or exploitation by a mali-
cious insider). We assume that attackers know the existence of
a control-semantic bug and its triggering condition. Then, an
attacker may (1) continue to launch flight missions under the
bug-triggering condition (e.g., strong wind) or (2) adjust ve-
hicle control/mission parameters to create the bug-triggering
condition (demonstrated in [51]). Action (1) requires the oper-
ator to simply “do nothing”; whereas action (2) will only leave
a minimum bug-triggering footprint which could gradually
corrupt controller states over a long period of time (Section
3). Such small footprint and long “trigger-to-impact” time
gap make investigation harder. Furthermore, attacks exploit-
ing control-semantic bugs do not require code injection, sen-
sor/GPS spoofing, or blatantly self-sabotaging commands. As
such, the security threat posed by control-semantic bugs is
real to RAV operations and “exploit-worthy” to adversaries.
All accident cases in our evaluation (Section 8) can happen in
either accidental (i.e., safety) or malicious (e.g., security) con-
text, reflecting the broad applicability of MAYDAY for RAV
safety and security.

Meanwhile, accidents caused by either physical failures/at-
tacks or generic software bugs are out of scope, as they have
been addressed by existing efforts. For example, built-in
logs can provide information for investigating either sus-
picious operator commands or physical attacks/accidents
[19,29,45], without cross-layer (i.e., from control model to
program) analysis (Section 9); and there has been a large
body of solutions targeting generic software vulnerabilities
[47,49,54,60,64,73,76,77].

Finally, we note that there are multiple possible root causes
to check after an RAV accident (e.g., software bugs, mechan-
ical issues, and human operator factors). MAYDAY, which
specializes in control-semantic bugs, is only one of multiple
investigation tools (e.g., those for physical attacks) to enable
a thorough, multi-aspect investigation.
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Figure 3: Motivating example flight. An RAV first flies to the
north east with 60 cm/s (only in east, 30 cm/s) and then flies
to east with 60 cm/s speed.
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Figure 4: Controller states with and without the x-axis velocity
parameter manipulation. The control loop iterates at a 10 Hz
interval.

3 Motivating Example

Modern control programs are robust systems that operate
while addressing and minimizing the impact of not only vari-
ous physical non-deterministic factors (e.g., inertia and noise)
but also control anomaly and security attacks [38, 48, 62].
However, we have found that such robustness is not enough
to tackle all safety and security issues. Specifically, combined
impacts of (i) operational inputs (e.g., mission, parameter
changes) with (ii) particular altered physical conditions may
go beyond the protection capability of a control system, which
is an implication of a control-semantic bug. As a result, such
impact starts to appear in a control variable of an exploited
controller and will be propagated to its dependent controllers
and can be signified over the multiple control loop iterations.
To illustrate this, we introduce the following intuitive moti-
vating accident case (more cases are discussed in Section 8)
only with high-level control logs recorded by a built-in flight
recorder.

In this example, we assume that our target RAV loads an
item to deliver (as performed by real RAVs [8,9, 11]) and
flies to the north east with 60 cm/s (only in east, 30 cm/s) as
described in Figure 3. At Iteration 4,850, the RAV operator
increases Parameter P of x-axis velocity controller to make
up for the weight gain. In the next 80 iterations of the control
loop, the RAV continues to operate normally (i.e., the x-axis
controller maintains a stable state). At a scheduled turn (i.e.,
flying east in Figure 3), the RAV is supposed to drastically
decrease its x-axis velocity and to exhibit a behavior similar

to that of the velocity and acceleration references depicted in
Fig. 4a and Fig. 4b, respectively. However, at the junction, the
changed parameter P unexpectedly leads to a corrupt state;
the x-axis velocity started showing digression (Fig. 4c) and
generating a corrupt x-axis acceleration reference. Conse-
quently, the RAV completely failed to stabilize, ultimately
resulting in a crash due to intensified digression over the mul-
tiple control loop iterations. We note that our example case is
realistic because this accident can be triggered via a remote
operational interface (e.g., MAVLink [13]).

Unfortunately, to answer “why did my drone crash” in this
case, the existing flight status logging is not sufficient for root
cause analysis. Unlike control-level investigation based on
built-in flight control data logging, there is no evidence avail-
able for program-level investigation. While investigators may
be able to identify a malicious command by cross-checking
the command logs recorded by the GCS and by the on-board
logging function, such a method cannot investigate (1) acci-
dents caused by malicious or vulnerable commands that are
indeed issued from the GCS (e.g., by an insider threat) or (2)
accidents not triggered by external commands (e.g., divide-by-
zero). Most importantly, such a method cannot pinpoint the
root cause of the accident. In other words, observing the RAV
controller anomaly does not reveal what is wrong inside the
control program. We need to bridge the semantic gap between
the safety/security impacts in the control (physical) domain
and the root causes in the program (cyber) domain.

4 MAYDAY Framework

MAYDAY spans different phases of an RAV’s life cycle,
shown in Fig. 5. In the offline phase, MAYDAY defines a
formal description of the RAV control model, and uses it to
enable CVDG-guided program-level logging during the con-
trol program execution via automatic instrumentation (Sec-
tion 5). Then the RAV goes back into service with the instru-
mented control program, which will generate both control-
and program-level logs during flights. In the case of an ac-
cident or attack, MAYDAY retrieves the logs and performs a
two-stage forensic analysis, including control- and program-
level investigations (Section 6). The investigations will lead
to the localization of the control-semantic bug in the control
program — the root cause of the crash.

5 Control-Guided Control Program Analysis
and Instrumentation

This offline phase of MAYDAY formalizes a generic RAV
control model using a Control Variable Dependency Graph
(CVDG) (Section 5.1), which will guide the analysis (Section
5.2) and instrumentation (Section 5.3) of the control program,
in preparation for the runtime program execution logging and
the post-accident investigation (Section 0).
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5.1 Control Variable Dependency Graph

MAYDAY is guided by the RAV’s control model, with depen-
dencies among controllers and control variables. To capture
such dependencies, we define the Control Variable Depen-
dency Graph (CVDG). Fig. 6 shows a generic CVDG that
applies to a wide range of RAVs, such as rigid-body trirotors,
quadrotors, and hexarotors. The CVDG captures generic de-
pendencies among the 6DoF controllers without assuming
any specific control algorithm. Inside each controller, there is
a cascade of three primitive controllers that control the posi-
tion, velocity, and acceleration for that DoF, respectively. Each
node in the CVDG represents a control variable or a controller
input. Each control variable represents a vehicle state (e.g., xy,
Xy, OF Xy), reference (e.g., ry, Iy, OF i), or control parameters
(e.g., k, ky or k). The controller accepts three types of input
S, M, and P: S represents inputs from various sensors, which
will become vehicle state after pre-processing (e.g., filtering);
M and P represent mission plan and control parameter inputs,
respectively. Each directed edge in the CVDG indicates a
dependency between its two nodes. For example, the edge
from 7 to #, in the x-axis controller indicates that #, depends
on ry.

Inter-Controller Relation We also define the “parent-
child” relation between two controllers with edge(s) between
them. More specifically, if primitive controller C’s refer-
ence is the output of controller C’, then C’ and C have a

parent-child relation. Within a 6DoF cascading controller,
the state of a child controller (e.g., x-axis acceleration) is
the derivative of its parent controller (e.g., x-axis velocity).
The relation between 6DoF controllers is more complicated.
For example, the roll angle (¢) controller has three parent
controllers (i.e., yaw (¥), x, and y acceleration controllers).
Mathematically, the input of the roll angle controller is de-
termined by the outputs of its three parent controllers as:
¢ = atan((—isin(y) + jcos(V))/g) (Fig. 6, g is the standard
gravity).

5.2 Mapping CVDG to Control Program

Mapping CVDG Nodes to Program Variables We now
establish a concrete mapping between the CVDG and the
control program that implements it. First, we map the CVDG
nodes (control variables) to the corresponding control pro-
gram variables, which are either global or heap-allocated. For
most CVDG control variables, the control program’s existing
logging functions directly access and log the corresponding
program variables. For certain CVDG variables, we need to
look deeper. For example, the x-, y-, and z-axis velocity states
are retrieved via function calls. To handle such cases, we
perform backtracking on LLVM bitcodes (i.e., the interme-
diate representation (IR) of the Low Level Virtual Machine
(LLVM)): Starting from the logged (local) variable in a log-
ging function, we backtrack to variables whose values are
passed (without processing) to the logged variable. Among
those, we select the first non-local variable (e.g., a class mem-
ber variable) as the corresponding program variable.

Mapping CVDG Edges to Program Code Next MAYDAY
analyzes the control program to map each CVDG edge to
the portion of control program codes that implement the data
flow between the two nodes (variables) on the edge. For each
edge, MAYDAY conservatively identifies all possible program
paths that induce data flows between the source node and sink
node.

Our analysis is performed by Algorithm | at LLVM bitcode
level. It is inter-procedural and considers pointer aliases of
the control variables as well as other intermediate variables
for completeness. It first performs a path-insensitive and flow-
sensitive points-to analysis [72] to identify all aliases of the
control variables (Line 2-3). For each alias identified, the algo-
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Algorithm 1 Mapping CVDG edges to program code.

Input: Control variable set in the CVDG (CV)
Output: Mapping control variables to backward sliced instructions (M)
1: Initialize M

2: for cv; € CV do

> Our algorithm entry point
> Backward slicing for each CV

3: PV < POINTS-TOANALYSIS(cv;)

4: S < BACKWARDSLICINGVARSET(PV) > Backward slicing for aliases of cv;

S: N < GETAFFECTINGNODES(S) > Get CVDG nodes connected to cv;

6: for n; € N do

7: e < GETEDGE(cv;,n;) > Get a CVDG edge connecting between cv; and
another CVDG node

8: M{e] < GETINSTSFOREDGE(e,S) > Mapping instructions to each edge

9: return M

10: function BACKWARDSLICINGVARSET(SV) & This function is called recursively
11: VSV

12: S0 > Backward slicing set for the given variable set
13: for v; € SV do

14: §" <~ BACKWARDSLICINGONEVAR(v;)

15: S« Sus > Add new slicing results for each v;
16: V' < GETAFFECTINGVARS(S') —V > Get newly found variables
17: V+vuv!

18: for v, € V' do > Perform recursive slicing on new variables
19: PV < POINTS-TOANALYSIS(V})

20: S” <~ BACKWARDSLICINGVARSET(PV) > Recursive slicing
21: V + V UGETAFFECTINGVARS(S")

22: S+ Sus” > Add new slicing results for each v}

23: return S

rithm performs backward slicing [44] to identify the program
code that may influence the value of the control variable (Line
4, 10-23). As a result, each slice contains all the instructions
that directly read or write the control variable and those that
indirectly affect its value through some intermediate variables.
Since the intermediate variables may have aliases not covered
in the previous steps, Algorithm | recursively performs both
points-to analysis and backward slicing on those variables to
identify additional instructions that may affect the value of the
control variable (Line 16-22). As new intermediate variables
may be found in the identified slices during a recursion, this
process will continue until no more affecting variable or alias
exists.

In the final step, Algorithm | goes through the identified
program code paths for each CVDG edge and reports only
those that begin and end — respectively — with the source and
sink variables on the CVDG edge (Line 5-8).

5.3 Control Program Instrumentation

With the mapping from control model to program (CVDG
nodes — variables; edges — code), MAYDAY now instru-
ments the control program for logging the execution of the
CVDG-mapped portion of the program, which bridges the se-
mantic gap between control-level incidents and program-level
root cause analysis. To achieve this, MAYDAY instruments
LLVM bitcodes by inserting program-level logging functions
at entries of basic blocks selected from the CVDG-mapped
portion of the control program, and adds control loop iteration
number into a logging function.

Efficient Logging of Program Execution A key require-
ment of control program execution logging is high (time and
space) efficiency. MAYDAY meets this requirement via two
methods. The first method is selective basic block logging.

MAYDAY only instruments the basic blocks of the CVDG-
mapped program code. For example, in ArduPilot, the CVDG-
mapped basic blocks are about 40.08% of all basic blocks. The
second method is execution path encoding, which involves
inserting logging functions at proper locations to record en-
coded program execution paths. We adopt Ball-Larus (BL) al-
gorithm [24] — an efficient execution path profiling technique
with path encoding. Under BL algorithm, each execution path
is associated with a path ID, which efficiently represents its
multiple basic blocks in the order of their execution.

Temporal Log Alignment To temporally align the control
log and the added program execution log, MAYDAY generates
control loop iteration numbers (plus timestamps) at runtime
and tags them to both control and program execution logs.
Such alignment enables temporal navigation of log analysis
during a post-accident investigation.

6 Post-Accident Investigation

After control-guided program analysis and instrumentation,
the subject RAV will be back in service and start generating
both control- and program-level logs during its missions. In
the case of an accident, the logs will be recovered and ana-
lyzed by MAYDAY in a two-stage investigation to reveal the
accident’s root cause.

6.1 Control-Level Investigation

The control-level investigation has two main steps: (1) iden-
tify which controller, among all the primitive controllers in
the CVDG, was the first to go wrong during the accident (Sec-
tion 6.1.1); (2) infer the possible sequence of control variable
corruption, represented as a corruption path in the CVDG,
that led to that controller’s malfunction.

6.1.1 Initial Digressing Controller Identification

During an RAV accident, multiple controllers in the CVDG
may go awry, which leads to the operation anomaly of the ve-
hicle. However, because of the inter-dependency of controllers
(defined in the CVDGQG), there must exist one controller that
is initially malfunctioning, whereas the others are causally
affected and go awry later following the inter-dependency
and control feedback loop. To uncover the root cause of the
accident, it is necessary to identify the first malfunctioning
controller, as well as the time when the malfunction started.
More formally, the malfunction of a controller manifests it-
self in two perceivable ways [51]: (1) non-transient digression
between the control state and reference and (2) non-transient
digression between the control reference and mission input.
(1) means that the real state of the vehicle cannot “track” (i.e.,
converge to) the reference (i.e., desired state) generated by
the controller; whereas (2) means that the reference cannot
approach the target state set for the flight mission. As such, we
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call the first controller that exhibited (1) or (2) the initial di-
gressing controller; and we call the time when the digression
started the initial digressing time.

To identify the initial digressing controller and time,
MAYDAY examines the control log. Similar to [51], a slid-
ing window-based digression check is performed on each
primitive controller (1) between state and reference and (2)
between reference and mission input. Unlike the previous
work, MAYDAY uses the Integral Absolute Error (IAE) for-
mula [37] in a distinct way to identify the initial digression in
a reverse temporal order (details are discussed in Appendix B).
By performing the digression check with the sliding window
from the crash point backward, we identify the first digression
window (hence time) of that controller, from which the digres-
sion persists toward the end of the log. The controller with
the earliest first-digression window is the initial digressing
controller.

6.1.2 CVDG-Level Corruption Path Inference

Given the initial digressing controller and the pair of digress-
ing variables (i.e., “state and reference” or “reference and
mission input”), MAYDAY will infer the sequence of opera-
tions on relevant control variables that had caused the initial
digression. Such inference is guided by the CVDG model and
the operation sequence of digression-inducing variables is
called CVDG-level corruption path, represented by a directed
path in the CVDG.

We first define several terms. Each primitive controller has
three inputs: sensor input S, flight mission M, and control pa-
rameter P, with M and P coming from ground control (GCS).
x1, r7, and k; denote the control state, reference, and parameter
(a vector) of the initial digressing controller — denoted as Cj.
Xc, te, and k. denote the control state, reference, and param-
eter of C;’s child (i.e., immediate downstream) controller —
denoted as C,, respectively. Now we present the inference of
CVDG-level corruption path as summarized in Figure 7.

If the initial digression is between x; and r;, we can infer
that x; failed to track r;. There are three possible causes for
this, which correspond to different CVDG-level corruption
paths:

* Type I: x; was corrupted “locally” during the sensor input
data processing (e.g., filtering). In the CVDG, such cor-
ruption corresponds to path § — x; — r. as described in
Figure 7a.

* Type II: x; was corrupted indirectly via the control feed-
back loop. In this case, the control parameter k; was first
corrupted via GCS input (e.g., a parameter-changing com-
mand), which then corrupted r,, the output of C;. In C,’s
effort to track the corrupted r,, it generated the corrupted
reference for its own child controller, and so on so forth.
Finally, the RAV motors physically changed the vehicle’s
state, leading to the anomalous change of x;. In the CVDG,

Parent
Controller

Controller

ontroller ontroller

Parent
Controller

Parent
Controller

(c) Type III CVDG-level path (d) Type IV CVDG-level path

Figure 7: Summary of CVDG-level corruption paths accord-
ing to different corruption types.

such corruption corresponds to path P — k; — r. as de-
scribed in Figure 7b.

* Type III: x; was similarly (to Type II) corrupted via the
control feedback loop, due to the corruption of r.. Unlike
Type 11, r.’s corruption was not triggered by external input.
Instead, it was caused by some execution anomaly along
CVDG edge x; — r. or rj — r, as described in Figure 7c.

We point out that, between x; and 7;, r; cannot be initially
corrupted by C;’s parent (upstream) controller. This can be
proved by contradiction based on the CVDG model: If r; were
initially corrupted by its parent controller C,, the corruption
would have happened before C;’s initial digression. However,
without C;’s digression, C,, would not be triggered by the
control feedback loop to generate a corrupted r;, unless Cy
experienced a digression itself. But that would contradict with
the fact that Cy is the first digressing controller.

To determine if an accident is caused by Type I or II/III
corruption path, MAYDAY needs to check if x; is corrupted
locally or indirectly. This is done by checking the state consis-
tency between Cy and C, (i.e., between x; and x.). Intuitively,
the state consistency is an indication that C, makes control
decisions following the “guidance” — either right or wrong
— of Cy; and the observation of C, is consistent — according
to physics laws — with that of C;. For example, if C is a ve-
locity controller and C, is an acceleration controller, then x;
(velocity) is consistent with x. (acceleration), provided that
the observed velocity x; closely matches the velocity com-
puted using the actual acceleration x, (via integration) in each
iteration. ! Since x, did not digress from r, when x; digressed
from r; (by C;’s definition), if x; and x, are consistent, then we
can infer that x; is not locally corrupted and the CVDG-level
path for x;’s corruption should be of Type II or III. Otherwise,
the corruption path for x;’s corruption should be of Type 1.

If the initial digression is between r; and mission input M

The formal definition of state consistency is given in Appendix A.
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(Type IV), we can infer that a mission input (e.g., a GCS
command to change trajectory or velocity) must have led to
the change of r;; and the new r; value made C; malfunction.
In the CVDG, the corruption of r; happened on path M — r,
as described in Figure 7d. Similar to Types I-III, we can prove
that the parent controller of C; cannot initially corrupt 7;.

In summary, Table | shows all four types of CVDG-level
corruption paths and their determination conditions, to be ap-
plied during the investigation. Notice that the four types fully
cover the CVDG edges in the initial digressing controller.

Table 1: Four types of CVDG-level corruption paths.
Initial Digressing Initially Corrupted CVDG-Level

x7 and x,

Type Variables Consistent? Variable Corruption Path
1 Between r; and x; No X7 S—=x;—re
I Between r; and x; Yes ky P—ki—re
11 Between r; and x; Yes Te X| =Ty — Te
IV | Between M and r; Yes I M —r

6.2 Program-Level Investigation

The control-level investigation generates two outputs: (1) the
initial digressing controller (and time) and (2) the CVDG-
level corruption path that had led to the digression. With these
outputs, MAYDAY transitions to its program-level investiga-
tion, analyzing a narrowed-down scope of the control program
execution log. The final result of this investigation is a small
subset of control program code (in basic blocks) where the
bug causing the accident can be located.

6.2.1 Transition to Program-Level Investigation

MAYDAY first makes the following preparations: (1) mapping
the control variables on the CVDG-level corruption path to
program variables, based on the control model — program
mapping established during the offline analysis (Section 5);
(2) locating the program trace for the initial digressing iter-
ation — recall that the log has been indexed by control loop
iteration number — as the starting point for (backward) log
analysis; and (3) restoring the LLVM instruction trace from
the encoded log for LLVM bitcode-level data flow analysis.

6.2.2 CVDG-Guided Program Trace Analysis

MAYDAY first identifies the data flows of program-level vari-
able corruptions representing the CVDG-level corruption path.
It runs Algorithm 2 to identify such data flows, starting from
the initial digressing iteration and going backward. There are
four inputs to Algorithm 2: (1) the restored LLVM bitcode-
level program trace, indexed by control loop iteration number;
(2) the initial digressing iteration number (iyjgress); (3) the
source and sink program variables that correspond to the start
and ending nodes on the CVDG-level corruption path; * (4)
the mapping between instructions in the trace and the program
basic blocks they belong to. The output of Algorithm 2 is a

2For a Type Il CVDG-level path (Table 1), we also identify the program
variable that corresponds to the intermediate node k; on path P — k; — r¢.

Algorithm 2 Identification of basic blocks implementing a
CVDG-level corruption path.

Input: CVDG (G), decoded program execution logs (L), CVDG-level corruption
path (Pe,q,), control loop iteration with initial digression (igigress)
Output: A set of basic blocks of the program-level corruption paths

12 Pyrog <= BACKTRACK(Peyag, 0, igigress) > Get program-level data flows
> Control loop iteration with the triggering input
> Find additional data flows

2: itrigger < Pprog-istant
3: while iiigger < igigress do

4: idigress < Pprog-lend — 1

51 Purog < Pprog UBACKTRACK Py, irrigger idigress)

6: return GETBB(P,,,)

7: function BACKTRACK(Peydg, istarr s fend)

8: Ppyg 0

9: for ¢ € P.,q do

10: Pprog < Pprog UBACKTRACKSRCSINK (e.57¢, .80k, isiart y iend)
11: return P,,,,

12: function BACKTRACKSRCSINK(src, sink, isiars , ieng)
13: if src = sink then

14: return 0

15: Pprog 0

16: for i € {ieng..-istar } dO > Backtrack the executed paths at every iteration

17: P; < G.GETDATAFLOWPATHS (L[i], src, sink) > Between source and sink
18: for p € P; do

19: for sink, € p.sinks do > Consider intermediate variables
20: Pyrog < Pprog UBACKTRACKSRCSINK(sre, sinky, isar 1)

21: return Py,

small subset of control program basic blocks that may have
been involved in the CVDG-level corruption path.

To explain Algorithm 2, we show a simple example in
Fig. 8: The initial digressing controller is the x-axis velocity
controller, and the CVDG-level corruption path is P — k, —
#y. The initial digressing time is Iteration 4930. P, k,, and
¥, are mapped to program variables (msg, _pi_vel_xy._kp,
and _accel_target.x). Algorithm 2 starts from the sink
variable (_accel_target.x) in Iteration igigress (4930) and
finds a variable-corruption data flow from source variable
msg, through intermediate variable _pi_vel_xy._kp (Line 1,
7-21), to sink variable _accel_target.x. Data flows that go
through the intermediate variables (e.g., _pi_vel_xy._kp)
are reconstructed using the additional sink information (Line
19-20). This information is retrieved via backward slicing
(Line 17) as described in Section 5.2. In Fig. 8, the data flow is
Pygs0 — kxagso — Vaasso — V84920 — Fx 4930, which realizes
CVDG-level path P — k, — #,. In particular, Iteration 4850
is the starting iteration of control variable corruption with the
triggering input (P). We denote this iteration as i;gger .

After identifying the latest (relative to igigress) program-
level variable corruption data flow, Algorithm 2 will con-
tinue to identify all earlier data flows that reflect the same
CVDGe-level corruption path between Iterations i;,igeer and
lgigress (Line 3-5, 7-21). In Fig. 8, such an earlier data flow is
Pagso — kxas50 — Vaass0 — V8,851 — Fra852. We point out
that, different from traditional program analysis, MAYDAY
needs to capture the influence on the corrupted control vari-
able (#;) in multiple control loop iterations towards (and in-
cluding) igigress- This is because, in a control system, each
update to that variable may contribute to the final digression
of the controller — either directly or via the control feedback
loop — and hence should be held accountable.

Once Algorithm 2 finds all the data flows of program-level
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4850 4851 4852 4929 4930
Control Loop Iteration Number

Figure 8: An example showing the working of Algorithm 2.

variable corruption, it can identify the corresponding basic
blocks that implement each of the corrupting data flows (Line
6). In most cases, the multiple data flows will be mapped to
the same set of program basic blocks, because of the iterative
nature of control program execution. For example, the two
corruption data flows in Fig. 8 share the common segment
V4 — Vg — 7, implemented by the same set of basic blocks.
This helps keep the number of basic blocks reported by Algo-
rithm 2 small, making it easy for investigators to examine the
source code of those basic blocks to finally pinpoint the bug
that caused the accident.

7 Implementation

We have implemented MAYDAY for an IRIS+ quadrotor with
a Raspberry Pi 3 Model B (RPi) [17] as the main processor
board powered by a 1.2 GHz 64 bit quadcore ARM Cortex-
A53 CPU with 1 GB SDRAM. Attached to the RPi are a
Navio2 sensor board and a 64 GB SD card. The sensor board
has a number of sensors (GPS, gyroscope, barometer, etc.)
and is equipped with four actuators and a telemetry radio
signal receiver. The control program is the popular ArduPilot
3.4 on Linux 4.9.45, with the main control loop running at a
default frequency of 400 Hz.

For MAYDAY’s control program analysis (Section 5.2), we
leverage the SVF 1.4 static analysis tool [72] for the points-to
analysis. We modified SVF to support our inter-procedural
backward slicing and control program instrumentation on
LLVM 4.0. MAYDAY’s control- and program-level investiga-
tion functions (Section 6) are implemented in Python 2.7.6.
The entire MAYDAY system contains 10,239 lines of C++
code and 7,574 lines of Python code.

8 Evaluation

We evaluate MAYDAY'’s effectiveness with respect to RAV
accident investigation (Section 8.1) and bug localization (Sec-
tion 8.2); and MAYDAY’s efficiency with respect to runtime,
storage, and energy overhead (Section 8.3).

8.1 Effectiveness of Accident Investigation

Summary of Cases We investigated 10 RAV accidents
based on real control-semantic bugs in ArduPilot 3.4. Table 2
summarizes the nature of the 10 accidents, with respect to cat-
egorization, physical impact, triggering condition, nature of
control program bug, patching status, and vulnerability status.

We chose these cases by the following criteria: (1) their root
causes are real control-semantic bugs; (2) the specific nature
of the bugs should be representative (e.g., invalid control/mis-
sion parameter values, integer overflow, and divide-by-zero);
(3) the initial digressing controllers in these cases should
cover all six degrees of 6DoF; and (4) the CVDG corruption
paths in these cases should show diversity.

Specifically, Cases 1-4 are caused by controller parameter
corruption, which corresponds to Type I CVDG-level path
in Table 1 (Section 6.1) and results in unrecoverable vehicle
instability, deviation, or even crashes. Cases 5-7 are caused by
corruption of flight missions (e.g., location, velocity), which
corresponds to Type IV CVDG-level path in Table 1. Cases 8-
10 are caused by data (e.g., sensor or GCS input) processing
errors such as divide-by-zero, which corresponds to either
Type I (Case 10) or Type II (Cases 8-9) CVDG-level path in
Table 1.

The root causes of these accidents are real control-semantic
bugs that exist in ArduPilot 3.4 or earlier. The ones in Cases 5-
10 are known bugs that have since been patched; whereas the
bugs in Cases 1-4 still exist in the later version of ArduPilot
3.5. Our code review shows that the patches for those four
bugs only fix the RAV’s pre-flight parameter-check code, but
not the in-flight parameter adjustment code. We alerted the
ArduPilot team that the bugs in Cases 1-4 are not fully patched.
Their reply was that, the four bugs were recently reported and
confirmed along with other “invalid parameter range check”
bugs. However, if ArduPilot fixes every parameter check, the
firmware size may not fit in the memory of some resource-
constrained micro-controllers supported by ArduPilot °.

The “Patch Commit Number” column in Table 2
shows the patch commit numbers for all cases.
Detailed  ArduPilot  bug-patching  history, includ-
ing the code snippets involved, can be accessed at:
https://github.com/ArduPilot/ardupilot/commit/[ commit
number].

Note that these accidents are not easy to reproduce or in-
vestigate. Their occurrences depend on vehicle-, control-, and
program-level conditions. For example, the control program
bugs may be triggered only when the vehicle takes a certain
trajectory (Cases 1-4) and/or accepts a certain controller pa-
rameter or flight mission (Cases 1-9). Or they can only be
triggered by a certain environment factor (e.g., wind speed in
Case 10). Such accidents abound in real-world RAV opera-
tions [13]. Due to their hazardous nature and in compliance
with safety regulations, we run these realistic accidents us-
ing a software-in-the-loop (SITL) RAV simulator [3], with a
real control program and logs but simulated vehicle and ex-
ternal environment. Widely used in drone industry, the SITL
simulator provides high-fidelity simulation of the vehicle as
well as the physical environment it operates in (including
aerodynamics and disturbances). We leverage MAVLink [13]

3nttps://github.com/ArduPilot/ardupilot/issues/12121
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Table 2: List of accident cases caused by control-semantic

Table 3: Investigation results of accident cases in Table 2.

bugs. SLoC: Source lines of code.
Case » Patch Still Vulr.lerable Control-Level Investigation Progrfu_n-L_e vel
D Category Impact Condition | Root Cause (Bug) | Commit | in ArduPilot 3.5 Case Investigation
Number and up? D Initial CVDG-Level # of Iterations from | # of B
Extreme No range check of Digressing Corrupti v Initial Corruption to| Basic | SLoC ue o0
h - ption Path L. . . Found?
1 vehicle Command | kp parameter for x, Ofl41da* Yes Controller Initial Digression | Blocks
instability or| & turn y-axis velocity con- ” X, y-axis K
fly off course trollers 1 Velocity P — kyy = Ty >4 34 89 v
Extreme Command No range check of Z-axis
2 vehicle & altitud kp parameter for z- 9f1414a" Yes 2 Vel P— kz — 7 >4 32 85 v
Controller instability c;a:l;ee axis velocity con- 4 es eRo:i[y
—— Parameter ;r lcrra;h ;\r]o)llerr = heck 3 Anogle P = kyott = Frol >4 50 121 v
Corruption V)::hieclce Command ot'( k a fsran(l:cleccr Pitch
P « B
3 instability & turn for roll angular ofl4l4a Yes 4 Angle P = Kpiteh = Fpiccn z4 30 121 v
or crash controller X, y-axis .
Ex:.erfle . . Nfo kmnge check 5 Velocity M = Fxy >4 12 44 v
venicle omman 0] p parameter .- Sk . —axi
4 instability &turn | for pitch angular Ofl414a Yes 6 * y.a.X‘S M = ryy >4 48 137 v
Position
or crash controller -
gy z-axis
Crash Command :::g:g lead‘i’irldbtl: 7 Position M—r, >4 48 135 v
5 afterslow | & speed | JIRE T & | es0328d No Zaxis
e : 8 o P—k.— i, 4 9 30 v
movement change y-axis velocity Position ~ "z
. . Wrong  waypoint X, y-axis .
Flight Moving to Ny - o 9 . P — kyy — Fyy 4 41 94 v
6 | Mission | aninvalid | Command ;‘;"’p“‘:(‘)‘;"‘ex'i’:l:i 9739859 No Rp‘l’:‘;?“h v
C ti locati _ non-exis oll, Pitch, ) .
orruption ocation ;Oofld,ij"f“c ] 10 Yaw Angle 8 = Xrpy = Frpy 1 7 22 v
nvalid type-casting
of z-axis location . . . . ..
7 Crash | Command | Ging an integer | /209904 No bitrary number of iterations later, depending on the timing of
overflow . s : 13 99 : :
Missing dvidedby- the vehicle’s operation that “sets off” the digression (e.g., a
s Crsh | Command | 100 o | 252900 No turn or a change of altitude). Such “low-and-slow” nature of
position controller accidents makes it harder to connect their symptoms to causes
Data Missing divided-by- . .
i : . and highlights the usefulness of MAYDAY.
9 Processing Crash Command | “™ check of kp Pa- 1 03506 No ghiig
Error rameter for x, y-axis
- position controllers Program-Level Investigation: The 5th and 6th columns of
‘eak Missing divided-by- .
10 Crash orno | zero check in angu- | 29da80d No Table 3 show respectively the number of control program
wind lar calculation

* The bug is partially patched by ArduPilot developers and still vulnerable.

to trigger control-semantic bugs by issuing GCS commands
to adjust control/mission parameters. MAVLink is able to
communicate with both real and simulated RAVs.

Investigation Results Table 3 presents the results of our
investigations using MAYDAY. For each case, MAYDAY first
performs the control-level investigation, which identifies the
initial digressing controller and infers the CVDG-level cor-
ruption path(s) by analyzing the control-level log. MAYDAY
then performs then program-level investigation, which iden-
tifies the portion of control program code that implements
the CVDG-level paths. We clarify that the final output of
MAYDAY is not the specific buggy line of code per se. Instead,
it is a small subset of program code (basic blocks) which the
investigator will further inspect to pinpoint and confirm the
bug.

Control-Level Investigation: The 2nd and 3rd columns of
Table 3 show the initial digressing controller and the CVDG-
level corruption path identified in each case, respectively. The
4th column shows the number of control loop iterations (du-
ration) between the initial corruption of the control variable
and the initial occurrence of controller digression. For Cases
1-7, that duration can be arbitrarily long. More specifically,
the initial corruption of a control variable on the CVDG-level
path may happen first in just a few iterations (e.g., 8 in Case
1). But the controller’s initial digression could happen an ar-

basic blocks and lines of source code identified by MAYDAY
for each case. Notice that the numbers are fairly small (from
7 to 50 basic blocks, or 22 to 137 lines of code), indicating a
low-effort manual program inspection. We confirm that the
actual bug behind each case is indeed located in the code
identified by MAYDAY.

Bug Detection Capability Comparison We have also con-
ducted a comparative evaluation with (1) two off-the-shelf
bug-finding tools: Cppcheck 1.9 [22] and Coverity [21], and
(2) RVFuzzer [51], to detect the bugs behind the 10 accident
cases. We used the most recent stable version of Cppcheck
with all its available analysis options to leverage Cppcheck’s
full capability. For Coverity, we used its online service ver-
sion. For RVFuzzer, we used its latest version. The results are
shown in Table 4.

Comparison with Cppcheck and Coverity Neither Cppcheck
nor Coverity reported any of the bugs behind the 10 cases. For
Cases 1-6, without knowledge about the control model, it is
impossible for Cppcheck and Coverity to check the validity of
control/mission parameter input, or to determine if the RAV
controller state — manifested by program state — is semanti-
cally valid or corrupted. For Case 7, the overflow of an integer
program variable was not detected by either Cppcheck or
Coverity. This was also confirmed by a Cppcheck developer”.
For Cases 8-10, accurate detection of divide-by-zero bugs

“https://sourceforge.net/p/cppcheck/discussion/
development /thread/eed7d492df
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Table 4: Bug detection capability comparison results. v': bug
triggered and located in source code, A: bug triggered and
faulty input constructed, and X: bug not detected.

Case Cppcheck | Coverity | RVFuzzer
D Nature of Bug MAYDAY 22] ‘ 21] I51]

Missing controller

! parameter range check v d X A

2 Missing controller v X X A
parameter range check

3 Missing controller v X X A
parameter range check

4 Missing controller v X X A
parameter range check

5 Comparison with v X X A

a wrong variable
Wrong waypoint
6 computation based on v X X X*
non-existent coordinate
Integer overflow on

7 T . v X X A
a mission variable
3 ) Dlv{de—by—zero caused by v X X A
invalid controller parameter
9 Divide-by-zero caused by v X X A

invalid controller parameter
(Probabilistic)

10 Divide-by-zero caused v X X X

by sensor input

* The bug cannot be triggered under the default configuration of RVFuzzer. However, it
can be triggered if RVFuzzer’s flight simulation is re-configured.
is hard for static analysis-based tools such as Cppcheck and
Coverity. Without a concrete execution confirming a divide-
by-zero instance, they cannot detect such bugs with low false
positive and false negative rates.

Our comparison results highlight the key differences be-
tween MAYDAY and the off-the-shelf bug-finding tools. First,
MAYDAY complements the generic tools by serving as a spe-
cialized tool (i.e., for RAV control programs) for uncovering
control-semantic bugs that cause controller anomalies, instead
of “syntactic” bugs that cause generic symptoms such as mem-
ory corruption and CFI violation. Second, unlike program
debuggers, MAYDAY debugs an entire cyber-physical sys-
tem based on both control- and program-level traces. Third,
MAYDAY’s bug localization is guided by the RAV control
model and its mapping to the control code; whereas off-the-
shelf debuggers are without such domain-specific knowledge.

Even if a static analysis tool is aware of value ranges of con-
trol parameters, MAYDAY is still necessary because (1) there
is no existing static analysis tool that comes with or generates
a parameter-range specification; (2) static analysis is prone to
high false positives/negatives when detecting divide-by-zero
bugs (Cases 8-10); and (3) static analysis cannot detect se-
mantic bugs such as a wrong variable-name (Case 5), due to
unawareness of control semantics. MAYDAY, based on actual
RAV control program runs, overcomes these limitations.

Comparison with RVFuzzer Among the 10 cases, RVFuzzer
was able to trigger eight cases caused by GCS input validation
bugs (i.e., lack of valid range check for runtime-adjustable
control or mission parameters, as defined in [51]). RVFuzzer
did not trigger Cases 6 and 10 for different reasons: (1) For
Case 6, the reason is insufficient flight simulation time un-
der RVFuzzer’s default configuration. In this case, given an

invalid input, RVFuzzer’s simulation run terminated before
controller anomaly could occur. However, RVFuzzer would
have detected the bug in Case 6, if the simulation had run
longer (for hours instead of minutes by default) for each input
value. We note that RVFuzzer limits the simulation time to
achieve high fuzzing throughput; and Case 6 manifests the
trade-off between fuzzing coverage and throughput. (2) Case
10 cannot be detected by RVFuzzer because the bug is not a
GCS input validation bug. Instead, it is triggered probabilisti-
cally by the wind speed sensor input.

In addition to Cases 6 and 10, we have found another inter-
esting bug that RVFuzzer cannot detect: PSC_ACC_XY_FILT
is a runtime-adjustable control parameter (which smooths the
change in X, y-axis acceleration reference), with a default
value of 2.0. During fuzzing, no controller anomaly is ob-
served, when the value of PSC_ACC_XY_FILT is set to 2.0
and when the value is set to 0. Following its fuzzing space
reduction heuristic, RVFuzzer will not test any other value
between 0.0 and 2.0, assuming that [0, 2.0] is a safe range.
But in fact, a positive value close to 0.0 (e.g., 0.0001) for
PSC_ACC_XY_FILT will lead to controller anomaly and hence
be missed by RVFuzzer. This bug can be demonstrated with
a concrete attack, which can be investigated by MAYDAY
similar to Cases 1-4 with a Type II CVDGe-level corruption
path.

More fundamentally, MAYDAY and RVFuzzer differ in two
aspects: (1) MAYDAY reactively performs investigation to
localize the bug in the source code that had led to an accident.
MAYDAY involves CVDG-guided source code analysis and
instrumentation to bridge the RAV control model and control
program. RVFuzzer proactively discovers vulnerable inputs
that cause controller anomalies, by treating the control binary
code as a blackbox. (2) RVFuzzer automatically mutates val-
ues of control parameters that can be dynamically adjusted via
GCS commands, to uncover vulnerable value ranges of those
control parameters — namely input validation bugs. On the
other hand, MAYDAY aims to trace back and pinpoint control
semantic bugs, which include not only input validation bugs
(e.g., Cases 1-4) but also other types of bugs such as flight
mission corruption (e.g., Cases 6) and data processing error
(e.g., Case 10).

Finally, our comparison between MAYDAY and RVFuzzer
suggests an integration opportunity: Given an RAV control
program (with both source and binary), we can first apply
RVFuzzer to construct a concrete attack/accident — instead of
waiting for one to happen — that indicates the existence of a
vulnerable control/mission parameter. We then use MAYDAY
to reproduce the accident/attack with the same malicious in-
put, collect the control and program logs, and locate and patch
the bug at the source code level. We can perform such inte-
grated “fuzzing — debugging — patching” workflow for the
eight cases detected by RVFuzzer.
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Figure 9: Case 1: History of x-axis velocity and acceleration
controllers — the former is the initial digressing controller.

8.1.1 Case Study: “Unexpected Crash after Turn”

We now present the investigations of Cases 1 and 5 as detailed
case studies. In Case 1, the quadrotor’s mission was to first
stop at waypoint A to pick up a package, then fly straight
north (along the y-axis) to waypoint B, where it would make a
90-degree turn to fly east (along the x-axis) to the destination.
After the pickup, to maintain the y-axis speed (5 m/s) with the
increased payload, the operator issued a parameter-changing
command via GCS to increase the kp parameter, shared by
both x- and y-axis velocity controllers. The flight from A
to B was normal. Unexpectedly, when the vehicle made the
scheduled turn at B, it became very unstable and soon lost
control and crashed.

MAYDAY first performs the control-level investigation.
By analyzing the control-level log, MAYDAY finds that the
initial digressing controllers are the x- and y-axis velocity
controllers, both with digression between the vehicle ve-
locity state (x,y) and reference (7yy) starting at around It-
eration 23267 (after the scheduled turn at Iteration 20858).
Fig. 9a shows the x-axis velocity state and reference. ° Next,
MAYDAY checks their child controllers (i.e., the X, y-axis ac-
celeration controllers) and confirms that the child controllers
did not exhibit any digression (i.e., ¥, always tracked #),
even after the velocity controllers’ digression. Fig. 9b shows
the x-axis acceleration state and reference. Based on Ta-
ble 1, MAYDAY infers that the CVDG-level corruption path
is P — kyy — Fyy (Type ID).

MAYDAY then performs the program-level investigation. It
runs Algorithm 2 on the program execution log, starting from
Iteration 23267 and going backward, to find data flows that
correspond to the CVDG-level corruption path. The multiple
data flows found by the algorithm reveal that they all started
from the parameter-changing GCS command (P), which led
to the modification of kp (which is part of kxy) during Iter-
ation 13938 — much earlier than the digression (23267). kp
remained unchanged after Iteration 13938. Finally, MAYDAY
maps the data flows to 34 basic blocks, among which we (as
investigator) find the actual bug.

Listing | shows the code snippets with the bug. When
a parameter-changing command is received, set_and_save
saves the new parameter value. The value is later retrieved
by get_p, when rate_to_accel_xy is called by the x, y-
axis velocity controller. The code indicates that the controller

SThose for y-axis velocity are omitted to avoid duplication.

——

GCS_MAVLINK:: handle_param_set (..//Parameter update

//No range check

vp->set_float (packet.param_value, var_type);
AC_PI_2D::get_p () {

(_input * _kp); //No range check
11

AC_PosControl::rate_to_accel_xy (... //Controller

— OO0 XXIA N B W=

//Access parameter _kp
vel_xy_p = _pi_vel_xy.get_p();

//No range check

Listing 1: Control-semantic bug behind Case 1. The range
check patch can be applied in Line 7.

would accept any kp value from the GCS without a range
check! (A range check should be added at Line 7.) The rele-
vant log also shows that, despite the improper kp value, the
vehicle remained stable from A to B. This is because the
x- and y-axis velocity controllers are not sensitive to kp un-
der constant speed with negligible instantaneous error (i.e.,
Fxy — Xxy). However, when the vehicle turned 90 degrees, the
x-axis velocity had to increase from 0 m/s to 5 m/s (and the
opposite for y-axis velocity) and the impact of kp manifested
itself during the acceleration/deceleration.

8.1.2 Case Study: ““Frozen’ Velocity after Slowdown”

While Case 1 was caused by corruption of control parameters
(Type II), Case 5 was triggered by corruption of flight mission
(Type IV). We note that this case was first discussed by [51]
as an attack scenario; and the corresponding vulnerability was
found but without exact reasoning of the root cause (bug) at
source code level. Here, we demonstrate how MAYDAY can
locate the bug via post-accident/attack investigation.

In Case 5, the quadrotor flew east-bound (along the x-axis)
at a velocity of 2 m/s. During one segment of the flight, the ve-
hicle is supposed to take aerial survey video of a specific land-
scape (e.g., an archaeology site) hence the operator issued a
mission-changing command to reduce the vehicle speed to 15
cm/s so that the on-board camera could capture detailed, slow-
progressing view of the landscape. After the video-shooting
operation, the vehicle was supposed to resume the 2 m/s cruis-
ing velocity. However, it seemed to get “stuck” in the 15
cm/s velocity and did not respond to any velocity-changing
command from the operator.

MAYDAY first performs the control-level investigation.
From the control-level log, it finds that the initial digressing
controller is the x-axis velocity controller, with the digression
between the velocity reference 7, and the operator-set velocity
(which is part of mission M), starting from Iteration 23629
(Fig 10a). Different from Case 1, there is no digression be-
tween the x-axis velocity state (x,) and reference (), hence
the vehicle did not lose control during the entire flight, despite
the “frozen” speed. MAYDAY also confirms that the child con-
troller (i.e., the x-axis acceleration controller) did not exhibit
any digression (Fig 10b). In other words, both velocity and ac-
celeration states correctly tracked their respective references
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Figure 10: Case 5: History of x-axis velocity and acceleration
controllers — the former is the initial digressing controller.

AC_PosControl {

1

2 :

3 get_max_speed_xy () { _speed_cms; }
4] .

5 AC_WPNav::set_speed_xy ( speed_cms) {

6 // range check new target speed

7| - (_pos_control.get_max_speed_xy () >=

8| - WPNAV_WP_SPEED_MIN) { //Buggy code

9] + (speed_cms >= WPNAV_WP_SPEED_MIN) { //Patched code
10 _pos_control.set_max_speed_xy (_wp_speed_cms) ;

11 // flag that wp leash must be recalculated

12 _flags.recalc_wp_leash = true;

Listing 2: Control-semantic bug behind Case 5.

and hence are consistent. Based on Table 1, MAYDAY infers
that the CVDG-level corruption path is M — 7, (Type IV).

Next, MAYDAY performs the program-level investigation.
Starting from the program execution log at Iteration 23629
and moving backward. Algorithm 2 finds the data flow that
corresponds to the CVDG-level corruption path: It started
from the velocity-changing (from 2 m/s to 15 cm/s) command
at Iteration 17736, which led to the modification of x-axis
velocity reference (7) at Iteration 17742. MAYDAY reports
12 basic blocks that may be involved in the data flow.

From the 12 basic blocks, we pinpoint the bug as shown in
Listing 2. The code intends to enforce a minimum mission
velocity (WPNAV_WP_SPEED_MIN, which is 20 cm/s in ArduPi-
lot) through a range check on the flight mission velocity input
(speed_cms) (Line 9, which is the patch). But the code, by
mistake, compares the minimum mission velocity with the
current velocity _pos_control.get_max_speed_xy (), not
with the set velocity speed_cms (Line 7)! This bug caused
the control program to accept the 15cm/s velocity, which is
lower than the minimum mission velocity. Even worse, after
this velocity change, the x-axis velocity controller will refuse
to accept any other velocity change, because the result of
the (buggy) comparison will always be FALSE. The 12 ba-
sic blocks identified by MAYDAY cover the buggy statement
with the wrong variable name, which RVFuzzer [51] cannot
report.

8.2 Scope Reduction for Bug Localization

As shown in Section 8.1, MAYDAY can significantly narrow
down the scope of control program code for manual inspection
to pinpoint a bug, thanks to 1) control model (CVDG)-guided
corruption inference and 2) program execution logging. In
this section, we define and implement a baseline investigation
method without adopting these two ideas. We then compare

100000
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OMAYDAY @ Baseline

GHEEEELE

Casel Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 CaselO
Investigated Cases

# of Basic Blocks
(Log-scaled)

1.18%
0.22%
0.92%

Figure 11: Number of basic blocks reported by the baseline
investigation method and by MAYDAY.

MAYDAY with the baseline, with respect to the number of
basic blocks they identify for bug localization.

The baseline model only analyzes the control program
source code and control-level log. To its favor, we assume
that the baseline method is able to identify at least one cor-
rupted control variable based on the control-level log. From
the corrupted variable, it performs static analysis (i.e., point-
to analysis and backward slicing) to identify the correspond-
ing basic blocks that implement the slice. Fig. 11 shows, in
log scale, the number of basic blocks reported by the base-
line method for each of the 10 cases in Section 8.1, compar-
ing with MAYDAY. For each case, the baseline method re-
ports thousands of basic blocks for bug localization; whereas
MAYDAY reports tens of them. This comparison highlights
the benefit (and novelty) of MAYDAY’s control model guid-
ance and program-level logging, which mitigates the long-
existing problem of state explosion [53, 54] faced by generic
program attack provenance.

8.3 Runtime, Storage and Energy Overhead

By identifying the basic blocks that implement the data flows
in the CVDG (Section 5.3), we instrumented and logged
40.08% of the basic blocks in ArduPilot, introducing runtime,
storage, and energy overheads. We measure these overheads
using a real quadrotor RAV.

Runtime Overhead We measure the execution time of the
40 soft real-time tasks in ArduPilot during 30-minute flights
with twenty random and different flight operations, with and
without MAYDAY. The execution frequencies of the ArduPi-
lot tasks vary, from 0.1 Hz to 400 Hz. The results are shown
in Fig. 12, with each task’s average execution time and its soft
real-time deadline (defined in ArduPilot) in log scale.

The results show that MAYDAY does increase the task exe-
cution time. Relative to the execution time without MAYDAY,
the increase ranges from 8% to 170% However, comparing
to the soft real-time deadline of each task, the increase (i.e.,
the increment/deadline ratio) is small, ranging from 0.02%
to 14.0% and averaging at 3.32%. As expected, our selec-
tive instrumentation method tends to impose higher overhead
on functions that frequently access control variables (e.g.,
update_GPS and run_nav_updates) and lower overhead on
functions that do not.

We further breakdown the logging overhead between log
generation (e.g., program path encoding) and I/O (writing to
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Figure 12: Runtime overhead of MAYDAY: average execution time of soft real-time tasks with and without MAYDAY in log scale.
While MAYDAY introduces runtime overhead, it still meets the real-time requirement without missing deadlines.

SD card), as shown in Table 5. With a 400 Hz control loop
frequency, MAYDAY’s logging takes 7.6% of the time in one
iteration — 190.72 us in total. We note that such runtime fine-
grain program tracing is feasible, thanks to the intrinsically
low control frequency of cyber-physical systems, relative to
that of their controller CPUs.

Table 5: Logging overhead breakdown.
‘ Average Latency / Iteration (us) ‘ Breakdown (%)

Log generation 37.22 19.71
Log I/0 153.5 81.29
Logging total 190.72 100

Storage Overhead We measure MAYDAY’s log data gen-
eration rate and volume during the 30-minute experiment.
The average log generation rate is 742.8 KB/s: 15.4 KB/s for
ArduPilot’s existing vehicle control log and 717.4 KB/s for
our program execution log. The total log volume is no more
than 1.3 GB in 30 minutes, which is the typical maximum
flight time for many commodity RAVs, such as Navio2, DJI
Phantom 4 and Parrot Bebop2. Such a volume can be easily
accommodated by lightweight commodity storage devices
(e.g., our 64 GB SD card).

Battery Consumption MAYDAY consumes fairly small
amount of battery power, compared with the RAV motors. Our
quadrotor is equipped with four motors whose total power
consumption is approximately 147.5-177.5 Watts [58] exclud-
ing the computing board’s power consumption (2.5 Watts).
According to specifications, our sensor board consumes no
more than 0.65 Watt [14], and its main processor board con-
sumes a maximum of 5.0 Watts (less than 3.69% of the overall
power consumption), with other attached devices (e.g., SD
card) powered via the main processor board [10]. MAYDAY’s
power consumption is covered by the main processor board
and therefore an even smaller fraction of the overall power
consumption.

9 Discussion

Code and Log Protection We assume code integrity af-
ter instrumentation, log integrity, and log recover-ability in
MAYDAY. To achieve code integrity, we can apply content-

based integrity checking [55,61] via remote attestation [18,
35]. We can also apply disk content integrity techniques [59]
for log integrity. To recover from log corruption, special file
system techniques (e.g., journaling file systems [25]) may be
applied.

To protect kernel and flight data recording (FDR) modules
at runtime, we could apply kernel hardening (e.g., SecVi-
sor [69], NICKLE [68], and nested kernel [30]) and persistent
data protection (e.g., InkTag [43]) techniques. However, many
of those techniques are not suitable for resource-constrained
RAV micro-controller platforms. Fortunately, there exist
lightweight memory isolation techniques [39, 50, 52] that can
protect security-critical modules (e.g., kernel and FDR) with
low overhead. In particular, MINION [50] can be readily de-
ployed with ArduPilot for memory access protection, even on
low-end micro-controllers with only an MPU (memory pro-
tection unit). Additionally, we could consider Date Execution
Prevention (DEP) [1] for thwarting code injection.

Log Volume Reduction We assume that the subject RAV
has enough storage space to store logs in light-weight, low-
cost devices such as commodity SD cards. However, future
control programs may generate a larger volume of logs due
to the complexity of their control algorithms and the fact
that MAYDAY must record fine-grain, reproducible program
execution paths/traces. Existing techniques reduce log size
by (1) compressing the entire log [73] or (2) identifying and
removing redundant log entries [53, 60]. Similar to (2), we
plan to leverage control- and program-level dependencies to
further reduce the log volume.

Scope of Applicability We clarify that, rather than being
a generic bug-finding tool, MAYDAY specializes in finding
RAV control-semantics bugs, which involve incomplete or
incorrect implementation of the underlying control theoreti-
cal model. As acknowledged in Section 2, there exist other
types of vulnerabilities in RAV systems, such as traditional
program vulnerabilities and vulnerabilities in physical com-
ponents (e.g., sensors). For physical attacks (e.g., sensor and
GPS spoofing), MAYDAY is fundamentally not suitable, as the
root cause of those attacks lies in the physical component (e.g.,
vulnerable sensing mechanism of a gyroscope device [70]),
not in the control program. Hence MAYDAY’s program exe-
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cution trace analysis would not be necessary for detecting or
investigating physical attacks.

Fortunately, defenses against physical attacks exist and can
be deployed alongside with MAYDAY. Many sensor attacks
can be detected by checking the RAV control log [19] for
anomaly and inconsistency among sensors [70]. Physical sen-
sor spoofing attacks can be detected by cross-checking the
observed and expected controller states [28,34]. GPS spoofing
attacks can be detected by commodity hardware (e.g., u-blox
M8) and advanced techniques [41,46]. Jamming attacks can
be defended against via existing solutions [57, 66].

More Robust Control Models We acknowledge that more
robust control models are technically possible and can make
the RAV more tolerant of disturbances and changes. For exam-
ple, a “self-examining” control algorithm can be designed to
dynamically compute and verify the system’s stability proper-
ties, in response to every GCS command. As another example,
the PID control algorithm can be replaced by more advanced
ones such as the Linear-quadratic regulator controllers [62]
to better mitigate disturbances. However, such advanced con-
trol models are not yet widely adopted in commodity control
programs (e.g., ArduPilot and PX4).

More importantly, the program-level implementation of
advanced control theoretical models may still be buggy, due
to programming errors (e.g., wrong variable names, missing
parameter range checks, etc.) that MAYDAY is tasked to find
out. In other words, despite increasing robustness of RAV
control models, MAYDAY will continue to help debug their
implementation at the program level to avoid misuses or ex-
ploits.

10 Related Work

Postmortem Robotic Vehicle Investigation MAYDAY was
inspired in part by the well-established aircraft accident in-
vestigation practices based on recorded flight data. We find it
meaningful to establish a parallel practice of recording RAV
flight data, in preparation for in-depth investigation of RAV
accidents. Offline log analysis is an established method to
investigate RAV operation problems. Based on flight logs
recorded, existing analysis tools [19, 29, 45] can visualize
sensor inputs, motor outputs, high-level controller states, and
flight paths in the logs. The visualization helps investigators
find the vehicle’s physical and mechanical problems, such as
sensor and motor failures and power problems. Some of these
tools (e.g., LogAnalyzer [19]) also examine the correctness
of some of the high-level controller states based on simple
range checks (e.g., “from -45 to 45 degrees” for roll angle con-
trol), which can identify obvious problems without in-depth
analysis. DROP [29] detects injected malicious commands
based on the well-established DJI RAV framework. However,
it focuses on finding a malicious command that appears only
at the GCS or on-board the RAV, without performing cross-

layer (i.e., from control and program) analysis. In comparison,
MAYDAY performs cross-domain trace-back to RAV accident
root causes by revealing the causality between physical im-
pacts and control program bugs.

Program-Level Root Cause Analysis Many root cause
analysis techniques based on execution logs have been pro-
posed to investigate program failures [49, 64,76, 77], security
incidents [47,54,60] and for debugging [27, 56, 63].

Several solutions leverage program instrumentation to gen-
erate execution logs [63, 77]. On the other hand, there is a
large number of works that record OS events during runtime
and perform offline analyses to backtrack the provenance of
Advanced Persistent Threat (APT) attacks [47,54, 60]. These
works leverage program execution partitioning [54,60] and
system event dependency models [47,54, 60] to identify at-
tack paths accurately in a large amount of log data from
long-running systems. Another line of work records com-
plete or partial execution until a program crashes and ana-
lyzes the logs to diagnose the root causes or reproduce the
errors [64,77]. Some of these works [49, 76] leverage hard-
ware assistance [2] to log fine-grain program execution with
high efficiency. Guided by RAV control model and control
“model-to-program” mapping, MAYDAY achieves higher ac-
curacy and efficiency for control program debugging.

Some debugging techniques such as statistical debugging
techniques [27,56] work by comparing the statistical code
coverage patterns in “passing” and “failing” runs. However,
bugs in control systems do not always induce obvious code
coverage difference, due to the iterative control-loop execu-
tion model, in which the same set of components (e.g., sensor
reading sampling and control output generation) is periodi-
cally executed, with or without a controller digression. As
such, for our target systems, they may not be as effective as
for non-control programs.

Runtime Assurance and Testing for Robotic Vehicle
Safety There have been significant advances in ensuring
robotic vehicle operation reliability and safety to monitor
controller state digression [28, 34], violation of safety con-
straints [75] and memory safety [50]. Meanwhile, there have
been many software testing efforts that aim at bug detec-
tion [23,40,51,65,74]. Several techniques are proposed to find
erroneous behaviors of deep neural networks [65] and viola-
tion of safety constraints [23] for autonomous cars. Timperley
et al. [74] and RVFuzzer [51] introduced new testing methods
to characterize existing bugs and find control-semantic vulner-
abilities in robotic vehicles, respectively. Compared to these
runtime defense and off-line testing techniques, MAYDAY fo-
cuses on post-accident trace-back of control-semantic bugs,
based on off-line source code instrumentation, runtime log-
ging, and post-accident log analysis. He et al. [40] proposed
a debugging system based on heuristics and an approximate
model generated by a system identification technique. Un-
like MAYDAY, which is designed for post-accident investiga-
tion based on production runtime logs, the debugging system
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in [40] is effective only in scenarios where one can interac-
tively monitor multiple program runs hence is more applicable
during program development.

11 Conclusion

It is challenging to investigate RAV accidents caused by
control-semantic bugs. We have presented MAYDAY, a
cross-domain RAV accident investigation tool that localizes
program-level root causes of accidents, based on RAV control
model and enhanced in-flight logs. Guided by a generic RAV
control model (CVDG), MAYDAY selectively instruments the
control program to record its execution aligned with exist-
ing control-level logs. Using the control- and program-level
logs, MAYDAY infers and maps the culprit control variable
corruption from control domain to program domain, and lo-
calizes the bug within a very small fragment of the control
program. Our investigation of 10 accident cases caused by
real control-semantic bugs demonstrates the effectiveness of
MAYDAY. Moreover, MAYDAY incurs low runtime and stor-
age overhead.
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Appendix
A State Consistency Check Formula

During the CVDGe-level corruption path inference (Sec-
tion 6.1.2), MAYDAY must determine whether the vehicle

state of the initial digressing controller (x;) and that of the
child controller (x.) shows consistent vehicle states. We lever-
age the following equation to compare the two vehicle states:

t+w swe
err(Cr,C.) = I e (swe) —xp (s) = [V Mae (v))dv|ds 0

wr

Intuitively, x; and x. are not directly comparable since their
orders are different. To match the order, MAYDAY makes
the order of x. equal to that of x; via integral using the time
window (w.). MAYDAY leverages IAE [37] to robustly check
the error value between the two vehicle states within the time
window (wy), similar to the initial digression determination
(Section 6.1.1). If this error value is larger than the threshold
(Thr) of the child controller, we consider the two vehicle
states as inconsistent. The above time windows (w;, w.) and
threshold (T hr) are described in Appendix B.

Additionally, we leverage A which is a conversion func-
tion to compare different child controllers. A is normally an
identity function. However, A becomes the inverse form of
an inter-cascading controller formula in Fig. 6 only if the
controller states are located in multiple cascading controllers
(Section 5.1).

B Parameters for Digression Determination

We used threshold (7'hr) and time window (w) (refer to the
TAE formula [37] and Equation 1) for both initial digres-
sion determination 6.1.1 and state consistency check in Ap-
pendix A. For the selection of reasonable Thr and w, we used
the three-sigma rule [67] with fifty different experimental mis-
sions for 6DoF, similar to the previous work [51]. Compared
to w in the previous work, we used much smaller windows
to detect the more accurate time when the initial digression
occurred. Specifically, we used 0.5 seconds for the x-, y-axis
controllers, z-axis position, acceleration controllers, and yaw
and yaw rate controllers. In addition, we used 0.25 seconds for
the z-axis velocity controller, and roll and roll rate controllers,
and pitch and pitch rate controllers.
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