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Abstract
The Bluetooth Low Energy (BLE) protocol ubiquitously

enables energy-efficient wireless communication among
resource-constrained devices. To ease its adoption, BLE re-
quires limited or no user interaction to establish a connection
between two devices. Unfortunately, this simplicity is the root
cause of several security issues.

In this paper, we analyze the security of the BLE link-layer,
focusing on the scenario in which two previously-connected
devices reconnect. Based on a formal analysis of the reconnec-
tion procedure defined by the BLE specification, we highlight
two critical security weaknesses in the specification. As a re-
sult, even a device implementing the BLE protocol correctly
may be vulnerable to spoofing attacks.

To demonstrate these design weaknesses, and further study
their security implications, we develop BLE Spoofing Attacks
(BLESA). These attacks enable an attacker to impersonate a
BLE device and to provide spoofed data to another previously-
paired device. BLESA can be easily carried out against some
implementations of the BLE protocol, such as the one used in
Linux. Additionally, for the BLE stack implementations used
by Android and iOS, we found a logic bug enabling BLESA.
We reported this security issue to the affected parties (Google
and Apple), and they acknowledged our findings.

1 Introduction

Bluetooth Low Energy (BLE) is the most widely utilized low-
energy communication protocol, and, by 2023, the number of
BLE-capable devices is expected to reach 5 billion [10]. The
BLE protocol enables wireless, short-range communication
which allows two devices to connect and exchange data. A
typical usage scenario consists of a smartphone and a “gadget”
device (such as a fitness tracker) that communicate over BLE.
Every BLE connection involves a device acting as a client (in
this example, the smartphone) and another device acting as
a server (in this example, the fitness tracker). The first time
two devices connect (allowing them to exchange data), they

perform a specific pairing procedure, which varies depending
on the type of the connected devices and their user-interfaces’
capabilities.

The major factors that have helped the rapid growth of the
adoption of BLE-enabled devices are its low cost and the
minimal setup effort required for end users. Unfortunately,
previous research [7, 12, 22, 24, 27] has shown that these user-
friendly features have a negative impact on the security of
this protocol. This concern is particularly worrisome since
BLE communication is often used in security-sensitive de-
vices, such as physical safety devices (e.g., locks) or health
monitoring devices (e.g., medical implants) [16].

Researchers have pointed out and studied many implemen-
tation weaknesses in the BLE protocol by manually analyzing
its specification [2, 3, 8, 32, 35]. Additionally, some previous
works have also performed a formal automated analysis of the
BLE specification [5, 29]. However, these formal approaches
only focused on limited aspects of the entire protocol, such
as the BLE pairing mechanism. This limitation is due to the
fact that it is challenging to fully formalize and automatically
analyze the BLE specification. The challenges stem from the
complexity of the BLE protocol, difficulties in modeling its
multi-layer design, and its multiple variants and optional fea-
tures (which allow this protocol to support a wide range of
devices with significantly different capabilities).

In this paper, we study a previously-unexplored mechanism
of the BLE protocol. Specifically, we focus on the mechanism
of dealing with reconnecting two previously connected de-
vices. This mechanism comes into play when, for instance, a
server device (e.g., a fitness tracker) moves out of the BLE
wireless communication range of a connected client device
(e.g., a smartphone), and then at a later time, the two devices
get close enough to re-establish a connection.

To start our analysis of this scenario, we first carried out
a formal verification of the relevant BLE link-layer specifi-
cation [11], by using the ProVerif protocol verifier [9]. Our
formal analysis highlighted two weaknesses in the BLE of-
ficial specification. These weaknesses, in some BLE stack
implementations, allow an attacker to launch a spoofing at-



tack in which the attacker pretends to be a previously-paired
server device, inducing a client device into accepting spoofed
data.

In particular, we discovered that the BLE specification al-
lows implementing several aspects of this protocol in multiple
ways, some of which are vulnerable. For this reason, even
BLE stack implementations correctly following the speci-
fication can potentially be susceptible to spoofing attacks.
For instance, we found that the BLE protocol stack (when
accessed via gatttool [26]) used in Linux client devices
(e.g., Linux laptops), while following the BLE specification
correctly, is susceptible to the identified spoofing attack.

Furthermore, we discovered that even BLE protocol stacks
implemented in ways that are, in theory, not susceptible to
the identified attack are still vulnerable in practice due to a
specific logic vulnerability. Specifically, we found a similar
implementation issue in the BLE stack used by Android de-
vices and in that used by iOS devices. This issue makes many
Android and iOS devices vulnerable to the identified attack.
We have responsibly reported our findings to Google and Ap-
ple, and they have confirmed these vulnerabilities. As of June
2020, while Apple has assigned the CVE-2020-9770 to the
vulnerability and fixed it, the Android BLE implementation
in our tested device (i.e., Google Pixel XL running Android
10) is still vulnerable.

To showcase the identified issues, we design a novel practi-
cal attack, named BLESA (BLE Spoofing Attack). In BLESA,
the attacker pretends to be a previously-paired server device,
rejects the authentication requests coming from the client
device, and then feeds spoofed data to it. We then show that
a Linux laptop running Ubuntu with the most updated ver-
sion of its BLE stack is vulnerable to BLESA. In addition,
we demonstrate the effectiveness of BLESA by launching
it against Google Pixel XL phone recording the informa-
tion from a wearable activity-tracking device called Oura
Ring [25]. In particular, by using BLESA, the attacker suc-
cessfully impersonates the ring, injects spoofed data to the
phone, and the companion application of the ring running on
the phone accepts and displays the spoofed data.

In summary, our work has these main contributions:

• We performed a formal analysis of the BLE link-layer au-
thentication mechanism and discovered two design weak-
nesses in the BLE protocol specification.

• We studied how these design weaknesses affect existing
BLE stack implementations, and we discovered a related
logic bug in the BLE link-layer implementations used by
Android and iOS devices.

• Exploiting the identified design weaknesses and the discov-
ered logic bug, we crafted a novel attack, named BLESA,
which allows an attacker to impersonate a server device and
provide forged data to a previously-paired client device.

• We proposed mitigation techniques to the identified security
issues, which enable systemic changes in the reconnection

procedure to make it robust against BLESA.

2 Background

The original Bluetooth (Classic) protocol was designed
for short-range wireless streaming applications such as au-
dio, video, and file transfer. Different from Bluetooth Clas-
sic, Bluetooth Low Energy (BLE) is designed for energy-
constrained low-cost IoT applications that require an intermit-
tent transfer of smaller amounts of data at lower speeds.

The BLE protocol enables a device, acting as a server (e.g.,
a fitness tracker), to efficiently communicate relevant data
(e.g., the number of tracked footsteps) to another connected
device, acting as a client (e.g., a smartphone). In BLE, the
typical communication procedure between the server and the
client involves five steps:

1. The server advertises its presence by broadcasting adver-
tising packets containing its identity.

2. The client scans for advertising packets to discover the
server and establishes a wireless connection with it.

3. (Optionally) The client pairs with the server to share a
long-term cryptographic key. This key is used to encrypt
and authenticate the exchanged data.

4. The client initiates the request to access the data stored by
the server.

5. The server checks if the client has the right to access the
specific requested data. If this condition is true, the server
grants read/write access to the requested data.

Security Levels. The data stored at a server is organized
in attributes, and each attribute (e.g., a blood pressure mea-
surement) is identified using a unique identifier. BLE allows
the server to protect attributes at a fine-grained granularity. In
particular, the server can specify an access control policy for
each attribute. Each such policy describes how an attribute can
be accessed (read-only, write-only, or read-and-write), and
which security level is needed to access it. Specifically, there
are four possible security levels: no security (level 1), encryp-
tion only (level 2), encryption and authentication (level 3),
and strong encryption with authentication (level 4).

When an access request is received from the client, the
server checks whether the current connection meets the se-
curity level required to access the requested attribute. If the
connection satisfies the required security level, the server
grants access to the requested attribute. Otherwise, the server
denies the request and sends an error message back to the
client.

Pairing and Key Generation. The pairing between the
client and the server is optional, and it depends on the security
level requested by the server. When encryption or authentica-
tion is needed to access an attribute, the client and the server
must be paired to establish a (long-term) shared secret key.
Once the long-term key is generated between two devices, the



two devices are said to be bonded, and the long-term key is
utilized to derive session keys to encrypt and authenticate the
exchanged data during reconnections.

Different pairing methods require different levels of user
interaction, and a specific pairing method is selected based
on the available user interface (e.g., keyboard and display) of
the pairing devices. For example, if the server device has a
graphical user interface (such as in a smartwatch), user inter-
action (e.g., pressing a button or inserting a PIN) is required
to approve the pairing on the server. In this case, the gener-
ated key can be used to access security level 3 or 4 attributes
(depending on the length of the key). Alternatively, if the
server device does not have input or output interfaces (e.g.,
a temperature sensor), no user interaction is possible on the
server-side. In this case, the generated key can only be used
to access attributes requiring security level 2.

Note that authentication and encryption are not always
needed since data transmission in plaintext is allowed in the
specification. In fact, the access control policy specified by
the server fully determines if encryption and/or authentication
are used.

For example, the Polar H7 Heart Rate Sensor [31] transmits
the heart rate in plaintext. Hence, no pairing is needed to read
the heart rate from this device. Conversely, the Fitbit smart-
watch [20] requires link-layer encryption and authentication.
In this case, a smartphone has to pair with the smartwatch
before reading its recorded data.

3 Threat Model

We assume the adversary has the same capabilities as the
Dolev–Yao model [19], i.e., the adversary can eavesdrop, in-
tercept, and modify legitimate messages communicated be-
tween a server and a client. The adversary can also inject
any message into the communication channel. However, the
adversary does not know the secret key shared between the
server and the client, and the used cryptographic functionality
are perfectly secure. Also, the adversary cannot replace the
firmware of the server or client. Since BLE is a short-range
communication protocol, we assume that the distance between
the adversary and the client, and the distance between the ad-
versary and the server, are both within the Bluetooth range.
In this scenario, the adversary aims to impersonate the server
and to mislead the client with spoofed messages.

4 Formal Analysis of BLE Reconnection

We perform formal verification of the BLE link-layer au-
thentication mechanism when the client reconnects with a
previously connected server. We utilize ProVerif [9] to carry
out this protocol verification.

1 free attAccessReq [private].
2 free attAccessRsp [private].
3 free attSecAccessReq [private].
4 free attSecAccessRsp [private].
5 // Secrecy and integrity of attribute read request and

attribute value
6 query attacker(attAccessReq).
7 query attacker(attAccessRsp).
8 query attacker(attSecAccessReq).
9 query attacker(attSecAccessRsp).

10 // Authenticity of attribute request and response
11 query event(clientRecvRsp) ==> inj-event(serverSendRsp).
12 // Consistency of request and response security levels
13 query x:SecLv; event(clientReqSecLv(x))==> inj-event(

serverRspSecLv(x)).

Listing 1: ProVerif code with the verified security properties.

4.1 ProVerif Model
We build a formal model for the authentication process when
the client reconnects with the server in a new session. The
authentication process is modeled as two communicating
state machines, one for the client and one for the server. We
model the state machine corresponding to the transmission
of the attribute request of the client and the state machine
corresponding to the handling of the attribute request on the
server in the BLE specification [11]. The model comprehen-
sively covers the different types of messages including those
corresponding to the attribute access requests, attribute ac-
cess responses, and the error responses. The communication
between the client and the server is modeled as the free (or
open) channel (free plain_channel: channel) where the
adversary has the abilities as described in the threat model.

We also consider all the features of the attributes to cover
the different usage scenarios of server devices. Therefore,
we model the attributes on the server as both readable and
writable.

Furthermore, we model two types of attributes: (1) basic
attributes that can be accessed without pairing (i.e., at security
level 1), and (2) sensitive attributes that can be accessed after
pairing (at security level 2 or higher). Finally, we model the
client to send access requests to the server to read/write these
two types of attributes in different orders. The shared secret
key established during the pairing is used to encrypt/decrypt
the traffic when encryption is needed.

Security Goals. We analyze the above model in the light
of traditional security goals that are presented in Listing 1.
These security goals include: (1) Confidentiality, i.e., the com-
municated messages should not leak any sensitive data to the
adversary (Line 6-9), (2) Integrity, i.e., the communicated
messages should not be tampered by the adversary without
being detected (Line 6-9), and (3) Authenticity, i.e., the com-
municated messages can be verified to be generated by the
genuine sender (Line 11). Besides, we also check one BLE
specific security goal extracted from the rules specified in the
specification [11] when initiating requests from the client and
handling requests on the server. Only if the security level of



the connection is consistent with the requirement to access
the attribute, should the server give read/write access to the
client (Line 13).

4.2 Discovered Design Weaknesses
Through formal verification, we discover several instances of
violations of the checked security goals when the previously-
connected devices reconnect. These violations result in the
following two security weaknesses that can be potentially
exploited by an adversary to launch spoofing attacks.

4.2.1 Weakness-1: Optional Authentication

We find that the link-layer encryption/authentication is op-
tional: the client and the server may choose to disable it for a
specific attribute. Therefore, in the case of the basic attribute,
the confidentiality, integrity, and authenticity goals of the at-
tribute access request and response can be violated as shown
in the following results from ProVerif.

RESULT not attacker(attAccessRsp[]) is false.

Counterexample:

out(plain_channel, ~M) with ~M = attAccessReq at 2 in

copy a

in(plain_channel, ~M) with ~M = attAccessReq at 11 in

copy a_1

out(plain_channel, ~M_1) with ~M_1 = errCode at 13 in

copy a_1

in(plain_channel, a_2) at 14 in copy a_1

out(plain_channel, ~M_2) with ~M_2 = attAccessRsp at 16

in copy a_1

The attacker has the message ~M_2 = attAccessRsp.

A trace has been found.

We note that the server determines the security level of its
connection with the client based on the requested attribute’s
access control policy. As the counterexample shows, when
the access control policy allows the lowest security level (i.e.,
security level 1) of the connection, the attribute access request
and the response can be transmitted in plaintext. In this case,
no link-layer authentication is deployed. Therefore, the at-
tacker can launch spoofing attacks against the server and the
client devices.

We highlight that because the security level of the con-
nection is guided by the server, the client cannot enforce a
connection with higher security levels if the server only al-
lows connections with security level 1. This aspect makes
both the server and the client vulnerable to spoofing attacks.

4.2.2 Weakness-2: Circumventing Authentication

The BLE specification provides two possible authentication
procedures when the client reconnects with the server after
pairing.

(1) Reactive Authentication. In this procedure, the client
sends the attribute access request in plaintext (i.e., at security
level 1) right after establishing the connection. Only if the
server responds with an error message revealing an inconsis-
tency between the current security level of the connection and
the one required for accessing the attribute, the client reacts
by enabling the encryption/authentication.

For this procedure, the formal analysis indicates that the
authenticity of the access response can be violated, as shown
by the following ProVerif output.

RESULT inj-event(clientRecvRsp) ==>

inj-event(serverSendRsp) is false.

Counterexample:

event clientReqSecLv(secLv1) at 3 in copy a

out(plain_channel, ~M) with ~M = attAccessReq at 4 in

copy a

in(plain_channel, a_1) at 5 in copy a

event clientRecvRsp at 14 in copy a (goal)

The event clientRecvRsp is executed at 14 in copy a.

A trace has been found.

As the counterexample shows, the attacker can first inter-
cept the request sent from the client. After that, the attacker
can respond to the client with any message other than an error
message, so that the client will receive and accept the message
from the attacker.

Although the sensitive attribute stored at the server is not
leaked to the adversary, the adversary can eavesdrop on the
request sent by the client, impersonate the server, and trick the
client with a spoofed response corresponding to the sensitive
attribute. We will demonstrate in Section 5.1 that the existing
BLE stack implementation (when accessed via gatttool) on
Linux follows this reactive authentication making the corre-
sponding clients vulnerable to spoofing attacks.

(2) Proactive Authentication. In this procedure, the client
device proactively enables the encryption/authentication be-
fore sending any request to the server. In particular, the client
enables the encryption using the pre-shared secret key previ-
ously established, and then it proceeds with the authentication.
In this case, if the server fails to enable the encryption (which
also means that it fails to enable the authentication), the client
aborts the connection. Our formal verification shows that all
the checked security goals hold during proactive authentica-
tion, as shown by the following results.

RESULT not attacker(attSecAccessReq[]) is true.

RESULT not attacker(attSecAccessReq[]) is true.

RESULT inj-event(clientRecvRsp) ==>

inj-event(serverSendRsp) is true.

RESULT inj-event(clientReqSecLv(x)) ==>

inj-event(serverRspSecLv(x)) is true.

Unfortunately, as we will further elaborate in Section 5.2,
the existing BLE stack implementations used by Andriod
and iOS fail to correctly follow this procedure making the
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Figure 1: BLE communication workflow when the client (following the reactive authentication procedure) reconnects with
(a) the benign server and (b) the adversary which exploits the security weaknesses to circumvent the authentication procedure.

corresponding clients vulnerable to spoofing attacks.

5 BLE Spoofing Attack (BLESA)

We exploit the design weaknesses identified through the for-
mal verification to craft the BLE Spoofing Attack (BLESA).
In this attack, an adversary provides spoofed data to a client
device pretending to be a previously-paired server device.

Attack Setup. We examine the scenario where the server
and the client were securely paired in a previous session.
Currently, they are disconnected, but they intend to start a
new session. This scenario happens when, for instance, the
client moves out of the communication range of the server
and then it gets back.

In this scenario, the adversary first discovers the server and
connects with it to obtain information (e.g., the identifier)
about a server’s attributes. The adversary can easily obtain
this information because the BLE protocol is designed to
allow any device to connect with another BLE device and
obtain information about provided attributes. Further, since
the BLE advertising packets are always transmitted in plain-
text, the adversary can easily impersonate the benign server
by advertising the same packets and cloning its MAC address.
Then, the adversary starts broadcasting spoofed advertising
packets to ensure that whenever the client attempts to start a
new session with the previously-paired server, it can discover
the spoofed advertising packets and establish a connection

with the adversary.
At this point, the adversary is ready to launch BLESA

against the client. We present the workflows of BLESA
against the client following the reactive authentication proce-
dure and that following the proactive authentication procedure
in the following sections.

5.1 BLESA against Reactive Authentication

Figure 1a shows an illustration where the client and the server
reconnect, and the reactive authentication procedure (dis-
cussed in Section 4.2.2) plays out in a benign environment.
The client first sends an attribute read request to the server
at the lowest security level (i.e., level 1) without any encryp-
tion/authentication. If the attribute is sensitive and can be read
only at a higher security level (e.g., security level 3 with en-
cryption and authentication), the server responds to the client
with an error message (e.g., insufficient encryption). After
receiving the error message, the client elevates the security
level by enabling encryption and authentication using the pre-
shared secret key and sends the request again. At this time,
the server readily accepts the read request and returns the
attribute value.

Now we present the workflow of BLESA, as shown in
Figure 1b. Here, the adversary intercepts the attribute read
request from the client and responds with a spoofed attribute
value. Since the client does not encounter any error message,
it mistakenly assumes that the attribute can be accessed at the
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Figure 2: BLE communication workflow when the client (following the proactive authentication procedure) reconnects with
(a) the benign server and (b) an adversary exploiting BLESA.

lowest security level (i.e., in plaintext). Therefore, the client
does not enable the encryption/authentication, and it accepts
the spoofed attribute value.

We highlight that in this instantiation of BLESA, the fun-
damental reason making the attack possible is the fact that
the client device relies on the server’s error message to adapt
the used security level.

5.2 BLESA against Proactive Authentication
Figure 2a shows the workflow of the proactive authentication
procedure triggered when a client device reconnects with a
benign server. Right after the connection, the client requests
to enable the encryption (and authentication) using the pre-
shared key, and the server complies with the request. Then
the client securely sends an attribute read request, and the
server securely responds with the (encrypted and authenti-
cated) attribute value. If the BLE stack correctly implement-
ing the proactive authentication follows the specification (as
presented in Figure 10.2 on page 1382 in [11]), BLESA will
fail against the client. However, our further analysis reveals
that both Android and iOS-based client devices suffer from a
logic bug that makes BLESA possible against these devices.

Implementation Vulnerability. According to the BLE
specification, when the client reconnects with the previously-
paired server, if the encryption enabling process fails during
the proactive authentication procedure, the client should ei-
ther re-pair with the server (as mentioned in Figure 3) or abort
the connection. However, the BLE stacks in some clients (i.e.,

... If encryption fails either the bond no longer exists on the re-
mote device, or the wrong device has been connected. The local
device must, after user interaction to confirm the remote de-
vice, re-bond, perform service discovery and re-configure
the remote device...

Figure 3: Description of the BLE protocol (page 1381 in [11])
indicating the steps to deal with the failure in enabling the
encryption during the proactive authentication procedure.

Android and iOS-based devices) fail to follow the specifi-
cation correctly. Specifically, we discover that even if the
enabling encryption process fails, the client may not abort
the connection and continue the communication in plaintext
without re-pairing with the server. This flaw can be exploited
by an adversary to launch BLESA.

... if the Host indicates that a key is not available, the slave
shall either send an LL_REJECT_IND ... or Key Missing ...
The Link Layer can now send LL Data PDUs and LL Control
PDUs; these packets will not be encrypted.

Figure 4: Description of the BLE protocol (page 3031 in [11])
indicating the procedure to deal with the non-availability of
the long-term key at the client device.

We suspect that this implementation vulnerability is likely
caused by the way in which this part of the BLE protocol is
explained in the official documentation.



Specifically, since encryption is not mandatory in BLE
for accessing basic attributes and some server devices do
not support link-layer encryption (i.e., the design weakness-
1 discussed in Section 4.2.1), the BLE specification makes
provisions to maintain the compatibility and enhance usabil-
ity with these resource-constrained server devices. For this
reason, when the encryption/authentication fails, the BLE
data and control messages can still be transmitted in plaintext
as described in the specification (Figure 4). We believe that
the contradiction originating from the details in the speci-
fication shown in Figures 3 and 4 may have confused the
BLE stack developers. As such, they made the logical mis-
take of not aborting the connection in the event of failure of
the encryption process, which is mandatory for accessing the
security-sensitive attributes on a previously-paired server.

Figure 2b presents the details of how the BLESA succeeds
against client devices using the proactive authentication pro-
cedure, but affected by the explained implementation vulnera-
bility. Specifically, after the connection to the adversary, if the
client attempts to enable the encryption, the adversary sends
an error message to the client specifying the non-availability
of the long-term key so that the encryption fails. At this point,
the client does not follow correctly the BLE specification
(which, in this case, recommends aborting the connection),
but continues the connection with the adversary.

Due to the first design weakness described in Section 4.2.1,
the client then proceeds to send the read request for the target
attribute in plaintext. Unlike the server, the adversary read-
ily grants the access to the attribute, making it available at
the lowest security level (i.e., security level 1), and it feeds
spoofed attribute data to the client. Consequently, the client
accepts the spoofed data from the adversary.

6 Implementation and Impact

In this section, we first examine the impact of the two iden-
tified design weaknesses in the real-world BLE stack imple-
mentations (Section 6.1 and Section 6.2). We then elaborate
on the impact of BLESA on the Linux platforms (Section 6.3)
and the Android/iOS mobile platforms (Section 6.4).

6.1 Examination of Design Weakness-1

To find out if there are indeed certain BLE server devices that
do not employ the link-layer authentication, we follow two
approaches: (1) We inspect the behavior of a set of BLE de-
vices’ companion applications through static analysis. (2) We
sample a set of real-world BLE devices and inspect their com-
munication packets with runtime analysis.

Static Analysis of Mobile Applications. A typical BLE
device (e.g., Fitbit fitness tracker) relies on its companion
mobile application (e.g., the Fitbit application) which enables
the end-user to access and manage the recorded attribute data

Table 1: List of BLE server devices examined to evaluate the
impact of the design weakness-1.

Device Name Support for link-layer
authentication

Nest Protect Smoke Detector ×
Nest Cam Indoor Camera ×
SensorPush Temperature Sensor ×
Tahmo Tempi Temperature Sensor ×
August Smart Lock ×
Eve Door&Window Sensor ×
Eve Button Remote Control ×
Eve Energy Socket ×
Ilumi Smart Light Bulb ×
Polar H7 Heart Rate Sensor ×
Fitbit Versa Smartwatch

√

Oura Smart Ring
√

(e.g., the number of footsteps). Since the pairing procedure
(to establish a secret key) is one of the prerequisites for en-
abling the link-layer authentication, we can readily confirm
that the BLE device does not support the link-layer authen-
tication if there is no pairing API invoked in its companion
application. To this end, we utilize the static analysis frame-
work, FlowDroid [6], to inspect the Android BLE applications.
More specifically, for each companion application, we use the
Class Hierarchical Analysis (CHA) option in FlowDroid to
build the call graph and find whether the application indeed
invokes the pairing API from any of its entry points (e.g.,
an Activity). Since CHA is a relatively conservative way for
call-graph construction, it may miss part of the method invo-
cations. However, the analysis result is much more precise,
with minimal false positives compared to other options (e.g.,
SPARK) [23]. Hence, it provides us a lower-bound of BLE
apps using pairing.

Our static analysis starts with 33,785 popular applications,
which are automatically crawled from AndroZoo website [1]
in January and February 2020. Based on the constructed call-
graph and corresponding APIs of these applications, we find
that only 127 applications contain the BLE data read/write op-
erations. We then check if the pairing API (createBond()) is
invoked in these applications. Unfortunately, we find that only
41 (32.3%) out of the 127 inspected applications contain the
pairing procedure, implying that a majority of the investigated
BLE companion applications (67.7%) do not implement the
link-layer authentication.
Runtime Analysis of Transmitted Packets. We examine
12 BLE devices (as listed in Table 1) which are selected to rep-
resent a variety of application from mainstream BLE device
manufacturers. We connect each of these server devices with
a Google Pixel XL phone and read their attributes. During
these experiments, we intercept the runtime communicated
packets using an Ubertooth One radio [33]. By analyzing the
intercepted packets, we find that 10 out of the 12 inspected



Table 2: List of BLE client platforms examined to evaluate the
impact of the design weakness-2 and utilized as the victims
to evaluate BLESA.

Platform OS BLE Stack
Google Pixel XL Android 8.1, 9, 10 Fluoride [17]

iPhone 8 iOS 12.1, 12.4, 13.3.1 iOS BLE stack

Linux Laptop Ubuntu 18.04
BlueZ 5.48 [14]

(accessed via gatttool)
Thinkpad X1 Yoga Windows 10 V. 1809 Windows stack

BLE devices do not support any link-layer encryption/authen-
tication. To this end, we conclude that most real-world BLE
devices do not employ link-layer authentication.

6.2 Examination of Design Weakness-2
For the examination of the second weakness, we test four
different client devices that cover all major platforms with
different BLE stack implementations. We present detailed
information about these devices in Table 2. We run experi-
ments on each of these platforms to explore the answers for
the following two questions: (1) Which of the two authen-
tication procedures (i.e., reactive or proactive, as discussed
in Section 4.2.2) does the client device utilize when it recon-
nects with a server device? (2) If the client device follows the
proactive authentication procedure, does its BLE stack imple-
mentation have any logic flaw making it vulnerable against
a spoofing attack? To answer these two questions, we first
pair each tested client with a server (which is emulated using
a Linux laptop, as shown in Table 3) and then disconnect
them. Thereafter, we reconnect the tested client with the same
server, and we ask the client to read one of the server’s at-
tributes, while capturing all the generated BLE traffic using
Wireshark [18].

By analyzing the traffic data corresponding to the Linux
laptop used as the client, we find that the Linux BLE stack
(i.e., BlueZ accessed via gatttool) implements the reactive
authentication procedure. As a result, the Linux BLE stack
suffers from the weakness described in Section 4.2.2.

Conversely, we find that the Android, iOS, and Windows
BLE stacks implement the proactive authentication procedure.
Among them, the Windows BLE stack strictly follows the
BLE specification. However, both Android and iOS devices
continue the reconnection even when the encryption/authenti-
cation fails (as elaborated in Section 5.2).
Responsible Disclosure. We have reported the vulner-
ability to Apple and Google on April 8, 2019. Apple has
acknowledged our findings, assigned the CVE-2020-9770
to the vulnerability, and fixed it. Although Google has also
confirmed the vulnerability, we have been told that our vul-
nerability report is similar to another report submitted three
days earlier than us1. We note that a more recent (as of May

1We received the following reply from Google: "The Android Security

Table 3: BLE server devices utilized to evaluate BLESA.

Platform OS BLE Stack
Linux Laptop Ubuntu 18.04 BlueZ 5.48

Oura Ring [25] Vendor OS Vendor Firmware

Table 4: Adversary’s platform for launching BLESA.

Platform OS BLE Stack
Linux PC & BT Dongle Ubuntu 18.04 BlueZ 5.48

2020) Android BLE implementation in our test device (i.e.,
Google Pixel XL with Android 10) is still vulnerable.

6.3 BLESA against Linux Clients
For attacking the Linux client (listed in the third row in Ta-
ble 2), we utilize another Linux laptop (listed in the first row
in Table 3) as the server device. The emulated server runs
a python script to provide a service corresponding to a sen-
sitive attribute that can be read at security level 3 (i.e., with
an encrypted and authenticated connection). To emulate the
adversary, we use a Linux desktop with a CSR 4.0 [15] Blue-
tooth dongle (shown in Table 4). The adversary also runs a
python script that handles the messages received from the
client and launches BLESA against it. Besides, we use the
gatttool on the client device to send the attribute read re-
quests and receive the responses.

To launch BLESA, the adversary carries out the follow-
ing steps which are akin to the procedure described in
Section 5.1: ¶ scan (bluetoothctl) for the advertising
packets transmitted by the server to record its MAC ad-
dress; · change the adversary’s Bluetooth MAC address
(bdaddr tool in BlueZ) to the server’s MAC address so
that the client can reconnect with the adversary; ¸ broad-
cast the same (impersonated) advertising packets as the
server by issuing Host Controller Interface (HCI) com-
mands, HCI_LE_Set_Advertising_Parameters, HCI_LE_
Set_Advertising_Data, and HCI_LE_Set_Advertising_
Enable, to the dongle; and ¹ inject the spoofed data via ATT_
READ_RSP message after receiving ATT_READ_REQ message
from the client.

By performing these steps, the adversary successfully by-
passes the reactive authentication procedure of the Linux
client and tricks the client into accepting the spoofed data.

6.4 BLESA against Android/iOS Clients
Since BLESA bypasses the link-layer authentication by down-
grading the connection to plaintext, all Android and iOS-
based client devices communicating with the BLE server

Team believes that this is a duplicate of a report previously submitted by
another external researcher on Apr 5, 2019".



(a) Benign battery level (43%). (b) Spoofed battery level (0%). (c) Spoofed notification for charging.

Figure 5: Demonstration of the impact of BLESA on the data displayed by the Oura Ring application on the Google Pixel phone.

devices that do not employ any application-layer security
mechanism (e.g., encryption or authentication) are vulnerable
to BLESA. We note that according to prior research [32], 46%
of the Android applications (2,379 million cumulative instal-
lations) do not utilize application-layer security while reading
data from BLE server devices. This implies that at least 46%
of the Andriod applications are vulnerable against BLESA.
The Apple app store is likely to have a similar proportion of
vulnerable applications.

Here, we present how an adversary (shown in Table 4)
launches BLESA against a Google Pixel phone (the client
device, shown in Table 2) by impersonating an Oura Ring
(the server device, shown in Table 3). The adversary carries
out the first three steps similar to those utilized for attack-
ing Linux clients as discussed in Section 6.3, i.e., ¶ scan
for the advertising packets of the ring; · clone the advertis-
ing packets and the MAC address of the ring; ¸ advertise
as the ring. Thereafter, the adversary performs the follow-
ing: ¹ send an HCI command HCI_LE_Long_Term_Key_
Request_Negative_Reply indicating the unavailability of
the key to bypasse the encryption and authentication when the
HCI event HCI_LE_Long_Term_Key_Request is received;
º inject the spoofed data via ATT_READ_RSP messages after
receiving ATT_READ_REQ message from the phone. We note
that the adversary can follow the same steps to launch BLESA
against an iOS client device (the second row in Table 2).

By performing these steps, the adversary successfully in-
jects spoofed data into the smartphone, and the companion
application of the ring running on the smartphone displays
the spoofed data to the user. Figure 5a shows that, in our
experiment, the real battery level of the Oura Ring device
is 43%. Through BLESA, we successfully inject a spoofed
battery level (0%) to the application, as shown in Figure 5b.

At the same time, we also inject another spoofed message
which triggers a notification in the application mentioning
that the charging is complete, as shown in Figure 5c.

We note that although the first spoofed message tricks
the application into believing that the battery level is at 0%,
the application interestingly accepts another spoofed mes-
sage (corresponding to charging completion) and displays the
false notification to the user. A demo of this attack can be
accessed at https://pursec.cs.purdue.edu/projects/
blesa.html.

7 Mitigation of BLESA

To prevent BLESA, we need to secure the reconnection pro-
cedure between clients and their previously-paired server de-
vices. We can achieve this by improving the BLE stack im-
plementations and/or updating the BLE specification.

Updating Implementation. As far as the Linux BLE
stack (BlueZ accessed via gatttool) is concerned, the
client devices can be updated to only employ the proactive
authentication. We clarify that, another Linux client tool,
bluetoothctl, used by typical applications and built on the
D-Bus APIs in BlueZ, strictly follows the proactive authen-
tication specification, and therefore, is immune to BLESA.
According to BlueZ developers, they have marked gatttool
as deprecated and will remove gatttool and its source code
from BlueZ completely and only keep bluetoothctl. Also,
the discovered implementation vulnerability of the proac-
tive authentication used by Android and iOS clients can be
mitigated by correctly following the BLE specification. The
updated implementation must ensure that when the authenti-
cation with a previously-paired server fails, the client aborts
the connection and restarts the pairing process.

https://pursec.cs.purdue.edu/projects/blesa.html
https://pursec.cs.purdue.edu/projects/blesa.html


A more fundamental problem is that even for the proactive
authentication, BLESA can bypass the link-layer authentica-
tion in the presence of other potential bugs in the implemen-
tation. This is a typical scenario in which authentication at
multiple layers is suggested by the security researchers [21].
In fact, the link-layer problem would not be an exploitable
issue if we had authenticaiton/encryption at application-layer.
Unfortunately, such an improvement might not be widely de-
ployed because a large proportion of resource-constrained
devices cannot be remotely updated.

Updating Specification. We argue that while it is important
to fix the implementation bugs to promptly make the BLE
devices secure against BLESA, it is equally critical to chart
out a roadmap to prevent more advanced spoofing attacks.
To this end, we should prevent the client from sending the
attribute access request first and adjust the security level of
the connection later based on the error message returned by
the server. In other words, the client should first obtain the
authentic information about the access requirements of the
attributes stored at the server, and then adjust the security level
of the connection to meet those requirements, before sending
the access request. However, this approach requires the client
to record the security requirements for each attribute on the
server during the pairing process. Therefore, pairing process
in the specification needs to be updated so that the server can
send the security requirements of each of its attributes to the
client.

Challenges and Future Directions. Patching different vul-
nerabilities at different layers in a timely fashion is a naive and
straight forward approach to prevent spoofing attacks in BLE.
However, this approach is unlikely to work well in practice
because such ad-hoc, case-by-case fixes might not be feasibly
adopted by the extremely fragmented BLE ecosystem at a
large-scale. BLE device vendors tend to sacrifice security for
utility, especially for low-end BLE devices. It is especially
challenging to secure those low-end BLE devices that do not
support any firmware update. Also, it is difficult to modify the
pairing process while maintaining the backward compatibil-
ity with the legacy BLE devices. In addition, fundamentally
addressing the BLE protocol vulnerabilities will require up-
dating the BLE specification, which requires a lot of time and
coordination. Therefore, such challenges bring the need for a
device-agnostic, legacy-friendly, and comprehensive solution
to mitigate the threat of spoofing attacks, as partially explored
by a recent study [34].

8 Related Work

Formal analysis of the Bluetooth Protocol. Existing lit-
erature focuses on the formal analysis of Bluetooth pairing
protocols. Chang et al. [13] have formally analyzed the au-
thentication process in the Bluetooth legacy pairing and the
secure simple pairing, and revealed their weaknesses. Phan et

al. [30] have also formally verified and found vulnerabilities
in the secure simple pairing. Arai et al. [5] have specifically
analyzed the numeric comparison protocol used in the secure
simple pairing and identified potential attacks. Nguyen et
al. [29] have discovered vulnerabilities in the protocols that
use out-of-band channels to establish shared keys. In contrast,
in this paper, we focus on the formal modeling and analysis
of the reconnection procedure in the BLE protocol, which
leads to two design weaknesses in the authentication process.

Attacks against Bluetooth. A majority of the recent stud-
ies focus on the design weaknesses and implementation flaws
in the Bluetooth stacks. Naveed et al. [28] have discussed
the mis-binding between applications and external Bluetooth
Classic devices. Sivakumaran et al. [32] have revealed sim-
ilar mis-binding issues for BLE devices and analyzed the
application-layer security issues in BLE applications on An-
droid. Antonioli et al. [3] have discovered a logic flaw in the
key negotiation protocol during pairing and exploited it to
decrypt the encrypted traffic. BadBluetooth [35] has revealed
how a malicious Bluetooth device can launch severe attacks
against mobile platforms. Biham et al. [8] have focused on the
Elliptic Curve Diffie-Hellman protocol and found weaknesses
in the Bluetooth pairing procedure against invalid curve at-
tacks. The study closest to our work is presented by Antonioli
et al. [4] where they have presented impersonation attacks
against Bluetooth Classic by exploiting the existing support
for legacy pairing methods and role-switching feature. In this
paper, we focus on the design weaknesses and implemen-
tation vulnerabilities in the BLE stack and how they can be
exploited to launch the spoofing attack, BLESA. We highlight
that since BLESA can be launched by an adversary without
any additional assistance from a malicious application pre-
installed on the client device, it is more powerful and practical
than the attacks in the prior art [3, 4, 28, 32, 35].

9 Conclusion

In this paper, we carried out a formal verification of the re-
connection procedure defined in the BLE specification, and
we discovered two design weaknesses in the BLE link-layer
authentication mechanism. By exploiting these design weak-
nesses, we proposed BLESA, a novel BLE spoofing attack
through which an attacker can impersonate a BLE server de-
vice and provide spoofed data to a previously-paired BLE
client device. BLESA can easily be launched against a BLE
device running Linux (accessed via gatttool).

In addition, further examination of the identified weak-
nesses in real-world BLE implementations revealed a related
implementation vulnerability in the Android and iOS BLE
stacks. Due to this vulnerability, these two stacks are vulnera-
ble against BLESA.

To showcase BLESA, we provided an in detail description
of how to use this attack to spoof data coming from a fitness



tracker to an Android smartphone. Moreover, we estimated
the number of existing Android apps potentially affected by
this attack. Finally, we discussed possible improvements in
the reconnection procedure, to fundamentally mitigate the
threat of spoofing attacks like BLESA.
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