
Profiling Self-Propagating Worms via Behavioral Footprinting

Xuxian Jiang, Dongyan Xu

CERIAS and Department of Computer Science, Purdue University, West Lafayette, IN 47907
{jiangx, dxu}@cs.purdue.edu

Abstract

This paper proposes behavioral footprinting, a
new dimension of worm profiling based on worm
infection sessions. A worm’s infection session con-
tains a number of steps (e.g., for probing, exploita-
tion, and replication) that are exhibited in certain
order in every successful worm infection. Behav-
ioral footprinting complements content-based sig-
nature by enriching a worm’s profile, which will be
used in worm identification, an important task in
post worm attack investigation and recovery. We
propose an algorithm to extract a worm’s behav-
ioral footprint from the worm’s traffic traces. Our
evaluation with a number of real worms and their
variants confirms the existence of worms’ behav-
ioral footprints and demonstrates their effective-
ness in worm identification.

1 Introduction

In Internet worm defense, it is useful to create a
complete, multi-facet profile for each worm. Such
worm profiles can be used for worm identifica-
tion, which is important to hold specific worms
(and possibly worm authors) accountable for de-
tected worm attacks and to recover from the dam-
ages inflicted by a specific worm. Worm identifi-
cation is different from worm detection, in that
the latter answers the question “is there a worm
attack?” while the former answers the question
“which worm is it?”. A well established dimen-
sion of worm profiling is content-based fingerprint-
ing [16, 17, 19, 22], which characterizes a worm
by extracting the most representative content se-
quence(s). Though effective, the content-based di-
mension alone does not create a complete worm
profile.

In this paper, we propose a new dimension
of worm profiling called behavioral footprinting,

which profiles worms based on their infection ses-
sions. A worm’s infection session contains a num-
ber of steps that are performed in certain order in
every successful infection. Our approach is based
on the key observation that the logic in a worm’s
implementation is different from that of the service
or software being exploited by the worm. More-
over, it differs from other worms by exhibiting its
“personalities” with respect to the vulnerability it
exploits, exploitation means, replication scheme,
and payload features. For example, in its infection
session, the MSBlaster worm [3] first exploits an
RPC-DCOM vulnerability (MS03-026) with one
TCP connection. Once successful, it creates a new
port-binding shell service (4444/TCP) in the vic-
tim. It then replicates itself by using the tftp pro-
tocol. Unlike the MSBlaster worm, the Lion worm
[2] first creates two TCP connections to exploit
a BIND vulnerability (CA-2001-02). Once suc-
cessful, the victim connects back to the infecter
and replicates itself by using a new encapsulated
HTTP connection. It does not create port-binding
shell in the victim. As such, each worm has a
unique behavioral footprint that differs from the
normal service behavior as well as from that of
other worms.

We have experimented with a number of real
worms and their variants and extracted unique
behavioral footprint for each of them1. Our ex-
periments also show the effectiveness of behav-
ioral footprints for worm identification from real-
world traffic traces. Being orthogonal to the
content-based dimension of worm profiling, behav-
ioral footprint is by nature unaffected by attacks
against content-based signatures such as content
mutation [25]. The rest of this paper is organized

1We in this work focus on worms that exploit vulnerable
servers without any human intervention. We are currently
evaluating other types of worms, such as mass-mailing, P2P,
and IM worms.

1

as follows: Section 2 makes a case for worm behav-
ioral footprinting. Section 3 describes behavioral
footprint representation and extraction. Experi-
mental results are presented in Section 4. Possi-
ble attacks and suggested solutions are described
in Section 5. Section 6 discusses related work and
Section 7 concludes this paper.

2 A Case for Behavioral Foot-

printing

2.1 Worm Infection Sessions

The infection session of a self-propagating worm
(between the infecter and the victim) spans the
following three phases:

(1): Target selection and probing Using an
address scanning strategy (e.g. random or biased
scanning), a worm attempts to pick a victim for
infection. For example, an ICMP echo request
packet or a TCP SYN probe can be used to infer
the reachability of a victim. Additional packets
may be used to obtain the version of a vulnera-
ble service. Note that this phase may not exist
for non-scanning worms (e.g. those that carry a
pre-computed target list).

(2): Exploitation Once the worm receives a
positive response from the victim, a number of ma-
licious packets 2 may be sent to exploit the specific
vulnerability. Successful exploitation will result in
the execution of crafted code by the victim. This
code is usually implemented differently in different
worms.

(3): Replication If the exploitation is suc-
cessful, the replication phase follows to transmit
a worm replica to the victim. Once the replica
is installed in the victim, the infection session is
completed.

As an example, the MSBlaster worm [3] exploits
an RPC-DCOM vulnerability (MS03-026). Figure
1 shows the steps in one infection session of the
MSBlaster worm:

• A three-way TCP handshake on port 135 is
used to check the reachability of the victim.

• Upon the establishment of the TCP connec-
tion, the worm sends a number of malicious

2There are some worms such as Slammer that might
blindly send exploiting packets to any probed hosts.

 69/UDP */UDP

4444/TCP */TCP

TCP 3−way handshake

TCP 3−way handshake

UDP * −> 69

UDP 69 −> *

RST

135/TCP */TCP

RST

Figure 1: An Infection Session of the MSBlaster
Worm

packets to exploit the RPC-DCOM vulnera-
bility using specially crafted attack code. If
successful, the attack code will be executed
by the victim. As a result, a new shell service
will be started on TCP port 4444.

• The new shell service on 4444/TCP is im-
mediately contacted by the worm to send
instructions on how to download the worm
replica, i.e., msblast.exe. The tftp protocol is
used for the downloading.

The same infection session is repeated during
the propagation of the MSBlaster worm. Other
worms have their own infection sessions.

2.2 Behavioral Footprints for Worm

Profiling

We are motivated to use the steps and their or-
dering during an infection session to profile the
behavior of a worm.

First, there are intrinsic differences between a
worm infection session and a normal access session
to the vulnerable service. During the exploitation
phase of a worm infection session, a worm will
attempt to misuse a vulnerable service in a way
that deviates from the normal access. In fact, sev-
eral recent works such as Shield [26] rely on such
difference to derive vulnerability-specific models.
The replication phase of a worm infection session
should not happen during a normal service access.
Moreover, the temporal order of infection steps
taken by a worm reflects the intrinsic dependen-
cies that must be followed to ensure a successful
infection.

2

Second, worm infection sessions reflect their re-
spective implementations. Even for worms ex-
ploiting the same vulnerable service, their se-
quences of infection steps are different. This is be-
cause of the fact that the worms’ implementations
tend to have different exploitation means, replica-
tion idiosyncrasies, and carried-on payloads.

As a result, a worm’s infection steps and their
ordering during each infection session become
valuable identity-revealing information. We are
motivated to extract such information, which we
call behavioral footprint, to profile the worm and
use it for worm identification in post-attack analy-
sis. This new dimension of worm profiling enriches
the worm profile by complementing the existing
content-based fingerprinting dimension. These
two dimensions combined are expected to generate
more complete worm profiles.

3 Behavioral Footprint Repre-

sentation and Extraction

In this section, we first define the representation
of a worm’s behavioral footprint. We then present
an algorithm to extract a worm’s behavioral foot-
print based on collected network traces that con-
tain worm infection sessions.

3.1 Representation

We first break one infection session into different
infection phases, each of which contains a number
of flows (e.g. TCP, UDP, or ICMP connections).
We identify each flow and present a sequence of
flow-level actions as elements in the worm’s be-
havioral footprint. For example, the behavioral
footprint of the MSBlaster worm, based on its in-
fection session in Figure 1, can be represented as

S1

←−
SA

1
A1 · · ·R1S2

←−
SA

2
A2 · · ·

←−
U1U1 · · ·R2, where

S1 : < TCP, 4581/infecter, 135/victim, SY N >
←−
SA

1 : < TCP, 135/victim, 4581/infecter, SY N, ACK >

A1 : < TCP, 4581/infecter, 135/victim, ACK >

R1 : < TCP, 4581/infecter, 135/victim, RST >

S2 : < TCP, 4599/infecter, 4444/victim, SY N >
←−
SA

2 : < TCP, 4444/victim, 4599/infecter, SY N, ACK >

A2 : < TCP, 4599/infecter, 4444/victim, ACK >
←−
U1 : < UDP, 1552/victim, 69/infecter >

U1 : < UDP, 69/infecter, 1552/victim >

R2 : < TCP, 4599/infecter, 4444/victim, RST >

Each letter in the above behavioral footprint de-
scribes either a TCP flow with different control
bits (SYN, ACK, RST), an UDP flow (U), or an
ICMP flows (I). The subscripts denote different

flows. For example,
←−
SA

1
represents the second step

(SYN and ACK bits set) in a normal three-way
TCP handshaking procedure. The arrow sign is
used to mark the traffic flow direction and can be
omitted when there is no ambiguity. For conve-
nience, a well-known subsequence can be denoted
by a single letter. For example, a standard TCP

3-way handshake sequence (e.g., Si

←−
SA

i Ai, i = 1, 2,
in previous sequence) can simply be denoted as
Ci.

Each letter in the behavioral footprint is fur-
ther specified as a tuple with varying num-
ber of fields. In this example, the let-
ter representing a TCP flow has four fields
< TCP, source port, dest port,TCP control bits > ;
while the letter representing a UDP flow has three
fields < UDP, source port, dest port > . We note
that additional fields can be added to carry other
“context” information such as the packet length,
content signature, or timing information relative
to the previous step. The design goal of such an
extensible representation is to make it easier to
integrate other worm profiling dimensions. Par-
ticularly, the content-based signature of a worm
can be added, indicating the occurrence of a spe-
cific content signature during that corresponding
infection step.

In addition, as a worm infection step might in-
volve a non-deterministic port, a special wildcard
field is introduced. Using the MSBlaster worm
as an example, the source ports (e.g., the port

4581, 4599, 1552 in S1, S2,
←−
U1, respectively) vary

in different infection sessions while the destination
ports are the same (e.g., the port 135, 4444, 69 in

S1, S2,
←−
U1, respectively). The special wildcard can

be used for the source port field. As another exam-
ple, the Witty worm has a fixed UDP source port
4000 and a random destination port. In this case,
the wildcard is used to represent the destination
port field.

3.2 Extraction

A worm’s behavioral footprint can be obtained in
the following way: the raw infection session traces

3

of the worm are first collected (e.g. using a hon-
eyfarm [14]). The raw traces are then processed
by an algorithm, which extracts the worm’s be-
havioral footprint common in the traces. In this
section, we present a pairwise alignment algorithm
for the extraction.

Our algorithm is based on Needleman-Wunsch
algorithm [9], which has been extensively used in
bioinformatics research to find certain patterns in
large sequences of strings such as DNA, RNA, and
protein sequences. Note that any type of protein
is a sequence of amino acid sub-units and there
are only 20 different amino acids, which consti-
tute the “alphabet” for protein sequence analysis.
Similarly, if we consider all possible infection steps
in a worm infection session as the alphabet, the
behavioral footprint of a worm can be represented
as a sequence of letters in the alphabet.

Given two infection traces F1 = x1x2 · · ·xn

and F2 = y1y2 · · · ym, our algorithm achieves an
optimal alignment between them. Based on a
pre-defined scoring matrix (e.g., a match yields
1 while a mismatch yields 0), the alignment algo-
rithm inserts gaps, if necessary, to achieve maxi-
mum alignment of the two sequences. The maxi-
mum alignment is defined as the sum of terms for
each aligned pair of letters < xi, yj > within the
sequences (representing similarity s(xi, yj)), plus
terms for each gap (representing penalty, p). The
similarity and gap penalty are defined as a part of
the scoring matrix and can be specific to different
scenarios.

Based on our algorithm, a matrix M , indexed
by i and j with one index for each sequence, is it-
eratively constructed. The cell M (i, j) is the score
of the best alignment between the initial segment
x1x2 · · ·xi of x up to xi and the initial segment
y1y2 · · · yj of y up to yj . Initially, M (0, 0) = 0,
M (i, 0) = −ip, M (0, j) = −jp. The matrix is
then iteratively filled from top-left cells to bottom-
right cells based on Eqn.(1).

M (i, j) = max

M (i− 1, j − 1) + s(xi, yj), i ≥ 1, j ≥ 1

M (i− 1, j)− p, i ≥ 1

M (i, j − 1)− p, j ≥ 1

(1)

Each case represents an option how current
M (i, j) cell is derived from one of the other three
cells (above-left [i − 1, j − 1], above [i − 1, j], or

left [i, j − 1]). Once all values are calculated, the
choices taken at each cell starting from the bot-
tom rightmost one are traced back so that an op-
timal global alignment is derived. An example
alignment applying our algorithm to a synthesized
Welchia worm variant is shown in Figure 2.

I 1I 1C 1F 1F 1C 2U 1U 1 R 2

C 1F 1F 1C 2U 1U 1 R 2U 2U 2

Sequence 1:

Sequence 2:

Figure 2: A pairwise alignment of two raw infec-
tion traces of the same worm. The choices made
during the alignment are shown as “-” and “|”.
The “-” in the top sequence used as index i for M

corresponds to the choice “above” [i−1, j], the “-”
in the bottom sequence used as index j for M rep-
resents “left” choice [i, j − 1], while the “|” in the
middle shows the option “above-left” [i− 1, j− 1].

Our experiments (Section 4) show that the
alignment algorithm is highly effective in extract-
ing behavioral footprints for all the worms we have
experimented with. For more advanced worms
that exhibit behavior polymorphism, a counter-
part of content polymorphism, we have designed a
tree-based algorithm and the details are presented
in [13].

4 Evaluation

In this section, we first demonstrate the existence
of behavioral footprints of worms. We then ap-
ply behavioral footprints to worm identification
during a post attack investigation based on real
network traces.

4.1 Existence of Behavioral Footprints

We have accumulated a number of worm infec-
tion traces from two earlier projects: Collapsar
[12] and vGround [14]. Each infection trace is col-
lected as a separate tcpdump log file and is pro-
cessed by sneeze, a tool we have developed for be-
havioral footprint extraction and worm identifica-
tion. Sneeze extracts all TCP/UDP/ICMP flows
in a complete infection session. If necessary, it
also performs packet re-ordering and reassembly.
After the extraction, the TCP/UDP/ICMP flows
are ordered based on time-stamps. The duration
and payload size of each flow is also calculated by

4

Name Infection Vector Behavioral Footprints Derived Platforms

MSBlaster RPC-DCOM vulnerability (MS03-026) C1R1C2

←−
U1U1R2 Windows

Welchia RPC-DCOM vulnerability (MS03-026) I1

←−
I1C1F1

←−
F1

←−
C2

←−
U1U1

←−
U2U2R2 Windows

Enbiei RPC-DCOM vulnerability (MS03-026) C1R1C2

←−
U1U1R2 Windows

Sasser LSASS vulnerability (MS04-011) C1R1C2

←−
C3C4F4

←−
F4F3

←−
F3R2 Windows

Ramen LPRng vulnerability (CVE-2000-0917) SF
1

←−
S1R1C2F2

←−
F2C3

←−
C4F4

←−
F4 Linux

WU-FTPD vulnerability (CVE-2000-0573) SF
1

←−
S1R1C2R2C3R3

NFS-UTILS vulnerability (CVE-2000-0666) SF
1

←−
S1R1U1

←−
U1U2C2

←−
C3F3

←−
F3R2

Lion BIND vulnerability (CA-2001-02) C1F1

←−
F1C2

←−
C3F3

←−
F3R2 Linux

Slapper OpenSSL vulnerability (CA-2002-23) C1F1

←−
F1C2

←−
F2

∏

22

i=3
CiC23C24 Linux

SARS Samba vulnerability (CAN-2003-0201) U1

←−
U1U2

←−
U2C1F1C2F2

←−
F2C3

←−
C4

←−
F4F4R3 Linux/BSD

Table 1: Worms and Their Behavioral Footprints

sneeze. An example output generated by sneeze
after analyzing a successful Sasser worm [4] infec-
tion session is shown in Figure 3.

Figure 3: A Sample Output of Our Sneeze Tool

When analyzing different TCP segments in the
same TCP flow, sneeze is able to track relevant
TCP states. Specifically, TCP control packets
with SYN, ACK, FIN, or RST bit set are recorded
in the final representation. The TCP data packets
(though ACK bit turned on) are usually ignored.
However, as discussed in Section 3.1, unique pay-
load content, or certain vulnerability-specific in-
formation can also be integrated here to enrich
the accuracy and completeness of worms’ profiles.

Our pairwise alignment algorithm (Section 3) is
then applied to extract behavioral footprints. The
results are shown in Table 1. Each letter in the ta-
ble represents either a TCP flow, a UDP flow, or
an ICMP flow. The letter Ci represents the stan-
dard three-way TCP connection handshake pro-
cess. Note that the same letter in different rows of
the table contains different field values (e.g., desti-

nation port numbers) and are omitted for brevity.

We are able to reliably extract behavioral foot-
prints for all worms investigated. The Welchia
worm is similar to the MSBlaster worm except
that an initial ICMP probing packet is generated
before actual exploitation and the second TCP

connection (
←−
C2) is initiated from the victim with

connect-back attack code. Though the MSBlaster
worm and the Welchia worm exploit the same vul-
nerability, their behavioral footprints are different.
The Enbiei worm exhibits a footprint similar to
that of the MSBlaster worm but has a different
binary file and payload. The Sasser worm uses

the ftp protocol (
←−
C3) to download a worm replica.

Within the ftp session, a PORT primitive is initi-
ated to start an embedded ftp-data session (C4).

Table 1 also shows behavioral footprints of sev-
eral historical worms. The Ramen worm is a
multi-vector worm with three infection vectors
(IVs): LPRng (CVE-2000-0917), wu-ftpd (CVE-
2000-0573), and nfs-utils (CVE-2000-0666). For
all three IV-specific behavioral footprints, the Ra-
men worm starts a TCP control packet with SYN
and FIN bits (SF

1
) set, source port 21, and desti-

nation port 21 to probe victims.

4.2 Behavioral Footprints for Worm

Identification

In this section, we demonstrate the effectiveness of
behavioral footprints in worm profiling and iden-
tification. To this end, we perform a post-attack
worm investigation using a 7-hour network trace
(80M bytes) collected from a live honeypot sys-
tem that was successfully infected by 3 different

5

Snort Signature # Alerts # Sources # Dests

1 NETBIOS DCERPC ISystemActivator path overflow attempt little endian 539 12 201

2 NETBIOS SMB-DS Session Setup And X request unicode username overflow attempt 15 1 1

3 NETBIOS SMB-DS DCERPC NTLMSSP asn1 overflow attempt 14 2 1

4 ICMP Source Quench 28 28 1

5 ICMP redirect host 27 1 1

6 TFTP Get 24 1 4

7 ICMP Large ICMP Packet 3 2 2

8 ICMP PING CyberKit 2.2 Windows 307551 33 153549

9 ICMP Destination Unreachable Communication Administratively Prohibited 156 2 1

10 SCAN UPnP service discover attempt 30 1 1

11 NETBIOS SMB-DS IPC$ share unicode access 6 3 1

Table 2: Intrusion Alerts by Snort

Figure 4: Worm Profiling and Identification by Sneeze

worms.

As a comparison, we apply the popular content-
based intrusion detection system snort side-by-
side with our approach. The signature database
used in snort has been updated to contain the lat-
est content signatures for known intrusions. In
the meantime we extend sneeze to recognize worm
infection sessions based on extracted behavioral
footprints. The results from snort and sneeze ex-
periments are shown in Table 2 and Figure 4, re-
spectively.

Table 2 shows that snort performs well in de-
tecting on-going attacks (e.g., RPC DCOM buffer
overflow attacks) and reports numerous alerts such
as “ICMP PING CyberKit 2.2 Windows”. How-
ever, these alerts are separately raised even though
they may be involved in the same worm infec-
tion session. Figure 4 shows the sneeze result.
Sneeze naturally identifies 3 successful worm in-
fections and also reports 2 unsuccessful worm in-
fections. Further manual analysis shows that one
unsuccessful worm infection has erroneously gen-
erated a wrong address (192.168.1.59) to down-
load the worm replica while another unsuccess-

ful infection has a flawed exploitation in binding
the command shell service. As the tftp protocol is
used for all these worms, we compare both outputs
in this aspect. Table 2 reports four alerts with
messages “TFTP GET” while Figure 4 further re-
ports that one tftp is related to the Enbiei worm,
one tftp is related to the MSBlaster worm, and
the other two tftp are attributed to the Welchia
worm, which uses one tftp session to download the
file DLLHOST.exe (the worm payload) and the
other tftp session for SV CHOST.exe (a tftpd dae-
mon).

Based on the above comparison, we observe that
snort inspects every incoming/outgoing packet
and raises an alert if a specific content-based sig-
nature is matched. However, it is not able to cor-
relate multiple alerts to identify the same worm
infection session. Sneeze instead recognizes a
worm’s infection session and therefore can iden-
tify each individual worm.

Our other experiments [13] also show that snort
becomes unable to identify worms when their con-
tents are mutated or encrypted to evade content-
based signatures. Sneeze is by nature unaffected

6

by these attacks. In the next Section, we discuss
some advanced attacks and possible countermea-
sures.

5 Attacks and Improvements

Behavior substitution attack The goal of our
algorithm is to achieve an optimal alignment be-
tween worm infection traces. An advanced worm
could intentionally introduce substitutable subse-
quences to corrupt the alignment process while
still achieving its goal of infection and propaga-
tion. This is a feasible attack. However, if we
consider each substitution as a potential mutation,
this attack is reminiscent of the classic challenge
faced by biologists of how to optimally align gene
sequences under possible mutations; and the solu-
tions lie in enhancing the underlying scoring ma-
trix. As a possible improvement, instead of sim-
ply returning either 0 or 1 when comparing two
flows, the scoring matrix can be defined to return
a normalized factor, indicating how likely these
two flows are substitutable for each other.

Behavior-camouflaging attack In this at-
tack, a worm author might attempt to hide true
infection steps by injecting “noises” into the in-
fection sequences. These noises, if not removed,
may eventually pollute the final behavioral foot-
print generated. We could manually examine each
infection session and only use those true infection
steps for footprint analysis. However, this may
be tedious and error-prone. How to automatically
and accurately extract behavioral footprints from
tainted sequences is our on-going research problem
3.

6 Related Work

Our approach falls into the broader category of
using attack behavior [1, 10, 11, 23] for intrusion
profiling and identification. For example, [11] pro-
files the behavior of vulnerable programs and use
them as a reference for detecting potential intru-
sions against systems. GrIDS [23] builds an activ-
ity graph based on machines activities and uses it
to detect distributed intrusions. Assuming the ex-
istence of behavioral signatures of worm attacks,

3A number of techniques might be helpful, such as pro-
tocol compliance analysis, semantic-aware tracking, as well
as various data mining techniques.

[10] focuses on the modeling of inter-machine com-
munication patterns for worm activity detection.
However, it did not address the problems of formal
representation and extraction of behavioral signa-
tures, which are the main focus of our work.

Another related technique, anomaly detection
[8, 15, 18, 27], leverages the insight that worms
are likely to exhibit anomalous behavior such as
port scanning [15] and failed connection attempts,
which are different from the normal behavior. Al-
though such approach has been demonstrated ef-
fective in detecting worm infection (i.e. “is there
a worm infection?”), it is not intended to identify
worms (i.e. “which worm is this?”).

Content-based fingerprinting [16, 17, 19, 22] is
an extensively studied dimension of worm char-
acterization by extracting the most representative
worm-identifying content sequence(s). Previously,
it was often a manual process. A number of sys-
tems [16, 17, 22, 19] have recently been devel-
oped to automate the task of extracting represen-
tative content sequences. Our approach comple-
ments content-based fingerprinting by capturing a
worm’s behavior signature. The two approaches
can be naturally integrated to create a more com-
plete, multi-facet worm profile.

Other related approaches include vulnerability-
specific characterization [5, 26] and semantic-
aware taintedness tracking [6, 7, 20, 21, 24]. Shield
[26] proposes the notion of vulnerability-specific
signature and uses it to accurately filter out at-
tack flows. TaintCheck [20], Minos [7], Vigilante
[6], and others [21, 24] enable the detection of un-
known attacks by associating a tag to untrusted
information sources and reporting an alert if a
tainted instruction is executed. These schemes
are also applicable to the detection of unknown
attacks. While being able to detect the occur-
rence of an exploitation, they do not aim at char-
acterizing the entire worm infection session where
exploitation is only one phase of the session.

7 Conclusion

We have presented a new dimension – behavioral
footprinting – to profile self-propagating worms.
Orthogonal and complementary to existing dimen-
sions, behavioral footprinting characterizes worm
infection steps and their order in every worm in-
fection session. A pairwise alignment algorithm is

7

proposed to extract a worm’s behavioral footprint
from raw traffic traces. Our experiments with real-
world worms confirm the existence of behavioral
footprints and demonstrate their effectiveness in
worm identification.

References

[1] Snort. http://www.snort.org.
[2] Lion Worms. http://www.sans.org/y2k/lion.htm,

2001.
[3] MSBlaster Worms.

http://www.cert.org/advisories/CA-2003-
20.html, 2003.

[4] Sasser Worms. http://www.microsoft.com/security/
incident/sasser.asp, 2004.

[5] D. Brumley, J. Newsome, D. Song, H. Wang,
and S. Jha. Towards Automatic Generation of
Vulnerability-Based Signatures. Proceedings of
the 27th IEEE Symposium on Security and Pri-
vacy, May 2006.

[6] M. Costa, J. Crowcroft, M. Castro, A. Row-
stron, L. Zhou, L. Zhang, and P. Barham.
Vigilante: End-to-End Containment of Internet
Worms. Proceedings of ACM SOSP 2005, Oct.
2005.

[7] J. R. Crandall and F. T. Chong. Minos: Control
Data Attack Prevention Orthogonal to Memory
Model. Proceedings of 37th International Sympo-
sium on Microarchitecture, Oct. 2004.

[8] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard,
J. Levine, and H. Owen. HoneyStat: Local Worm
Detection Using Honeypots. Proceedings of RAID
2004, Sept. 2004.

[9] R. Durbin, S. Eddy, and A. Krogh. Biological
Sequence Analysis. Cambridge University Press,
ISBN: 0521629713, 1998.

[10] D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. D.
Tenaglia. A Behavioral Approach To Worm De-
tection. Invited talk in ACM WORM 2004, Oct.
2004.

[11] A. K. Ghosh, A. Schwartzbard, and M. Schatz.
Learning Program Behavior Profiles for Intrusion
Detection. Proceedings of the 1999 Workshop
on Intrusion Detection and Network Monitoring,
Apr. 1999.

[12] X. Jiang and D. Xu. Collapsar: A VM-Based Ar-
chitecture for Network Attack Detention Center.
Proceedings of the 13th USENIX Security Sympo-
sium, Aug. 2004.

[13] X. Jiang and D. Xu. Behavioral Footprinting: a
New Dimension to Characterize Self-Propagating
Worms. Department of Computer Science Tech-
nical Report CSD TR 05-027, Purdue University,
Jan. 2005.

[14] X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford.
Virtual Playgrounds for Worm Behavior Investi-
gation. Proceedings of RAID 2005, Sept. 2005.

[15] J. Jung, V. Paxson, A. W. Berger, and H. Balakr-
ishnan. Fast Portscan Detection Using Sequential
Hypothesis Testing. Proceedings of the 25th IEEE
Symposium on Security and Privacy, May 2004.

[16] H. A. Kim and B. Karp. Autograph: Toward Au-
tomated, Distributed Worm Signature Detection.
Proceedings of the 13th Usenix Security Sympo-
sium, Aug. 2004.

[17] C. Kreibich and J. Crowcroft. Honeycomb: Cre-
ating Intrusion Detection Signatures Using Hon-
eypots. ACM SIGCOMM Computer Communi-
cation Review, Jan. 2004.

[18] M. E. Locasto, J. J. Parekh, A. D. Keromytis, and
S. J. Stolfo. Towards Collaborative Security and
P2P Intrusion Detection. Proccedings of the 6th
Annual IEEE Information Assurance Workshop,
June 2005.

[19] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically Generating Signatures for Poly-
morphic Worms. Proceedings of the 26th IEEE
Symposium on Security and Privacy, May 2005.

[20] J. Newsome and D. Song. Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software.
Proceedings of NDSS 2005, Feb. 2005.

[21] M. Rinard, C. Cadar, D. Dumitran, D. Roy, and
T. Leu. A Dynamic Technique for Eliminating
Buffer Overflow Vulnerabilities (and Other Mem-
ory Errors). Proceedings of ACSAC, Dec. 2004.

[22] S. Singh, C. Estan, G. Varghese, and S. Savage.
Automated Worm Fingerprinting. Proceedings of
the 6th ACM/USENIX Symposium on Operating
Systems Design & Implementation, Dec. 2004.

[23] S. Staniford et al. The Design of GrIDS: A Graph-
Based Intrusion Detection System. UCD Techni-
cal Report CSE-99-2, Jan. 1999.

[24] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure Program Execution via Dynamic Informa-
tion Flow Tracking. Proceedings of the 11th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
Oct. 2004.

[25] G. Vigna, W. Robertson, and D. Balzarotti. Test-
ing Intrusion Detection Signatures Using Mutant
Exploits. Proceedings of the 11th ACM Confer-
ence on Computer and Communication Security,
Oct. 2004.

[26] H. J. Wang, C. Guo, D. R. Simon, and A. Zugen-
maier. Shield: Vulnerability-Driven Network Fil-
ters for Preventing Known Vulnerability Exploits.
Proceedings of ACM SIGCOMM 2004, Sept. 2004.

[27] K. Wang and S. J. Stolfo. Anomalous Payload-
based Network Intrusion Detection. Proceedings
of RAID 2004, Sept. 2004.

8

