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Abstract
Kernel rootkits, malicious software designed to compromise
a running operating system kernel, are difficult to analyze
and profile due to their elusive nature, the variety and com-
plexity of their behavior, and the privilege level at which they
run. However, a comprehensive kernel rootkit profile that re-
veals key aspects of the rootkit’s behavior is helpful in aiding
a detailed manual analysis by a human expert. In this paper
we present PoKeR, a kernel rootkit profiler capable of pro-
ducing multi-aspect rootkit profiles which include the reve-
lation of rootkit hooking behavior, the exposure of targeted
kernel objects (both static and dynamic), assessment of user-
level impacts, as well as the extraction of kernel rootkit code.
The system is designed to be deployed in scenarios which
can tolerate high overheads, such as honeypots. Our evalua-
tion results with a number of real-world kernel rootkits show
that PoKeR is able to accurately profile a variety of rootkits
ranging from traditional ones with system call hooking to
more advanced ones with direct kernel object manipulation.
The obtained profiles lead to unique insights into the root-
kits’ characteristics and demonstrate PoKeR’s usefulnessas
a tool for rootkit investigators.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection—Invasive software

General Terms Security

Keywords Kernel Rootkit, Malware, Profiling

1. Introduction
Targeting operating system (OS) kernels, kernel rootkits are
considered one of the most stealthy types of computer mal-
ware and pose a significant threat to the integrity of computer
systems. They run at the highest level of privilege within the
victim machine, hijack control of the OS kernel, and provide
“value-added” services to allow other malicious activities or
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unauthorized accesses to occur – all hidden from the system
administrator and users. For example, kernel rootkits have
been used to hide bot programs or other backdoor software
with the intention of maximizing the life time of a botnet.

Despite recent research efforts in kernel rootkit detection
[Garfinkel 2003, Petroni 2004; 2006; 2007] and kernel root-
kit prevention [Seshadri 2007, Riley 2008], less attentionhas
been given tokernel rootkit profiling– the revelation of key
aspects of a kernel rootkit’s behavior. It is further desirable
that such profiles be generated on-the-fly in “live” systems
such as honeypots. Kernel rootkit profiles are valuable in the
design of effective solutions to kernel rootkit detection,dam-
age mitigation, and kernel integrity protection. In this paper,
we define a kernel rootkit profile as be comprised of the fol-
lowing four aspects:
• Hooking behavior: the way the kernel rootkit hijacks the

kernel’s control flow, if any, during the rootkit’s instal-
lation. Typically, such hijacking is done by modifying
hooks (e.g., function pointers) in the kernel. Note that it
is not uncommon for rootkits to install hooks within vari-
ous kernel objects, including kernel code or dynamically
allocated kernel objects [Hoglund 2006].

• Targeted kernel objects: the kernel objects accessed by
the rootkit, such as those read or modified by the root-
kit. Similar to hooking behavior, a targeted kernel object
may be dynamic. A classic example is theall-task list,
maintained by the OS kernel for accounting purposes but
often manipulated by rootkits for hiding purposes.

• User-level impacts: the affected user-level applications
whose execution may be directly affected by the execu-
tion of rootkit code. Note that we do not aim to derive a
complete list of affected applications. Instead, we focus
on a corpus of commonly-used system utilities (e.g.,ps,
ls, netstat, etc.) that retrieve important system infor-
mation and are therefore often targeted by kernel rootkits.

• Injected code: the kernel rootkit code injected into the
kernel memory address space for execution. The injected
code should be accurately located at runtime and ex-
tracted for later forensic analysis.
A number of recent efforts have been reported towards

kernel rootkit profiling [Yin 2007; 2008, Wang 2008, Lanzi
2009]. Despite their usefulness, the current approaches leave
more to be desired in their capabilities: (1) Some approaches
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Figure 1. VMM-based PoKeR architecture

require prior availability of the kernel rootkit code and
knowledge that the rootkit attack is going to occur. However,
such requirement makes it difficult to profile zero-day kernel
rootkits live. (2) The current profiling techniques only focus
on one aspect of rootkit behavior (e.g., hooking behavior)
or on one stage of a rootkit’s life cycle (e.g., installationor
execution but not both). (3) The key techniques used in the
existing approaches such as system-wide tainting or slicing
have well-known limitations and challenges that are hard to
overcome. For example, taint-based information flow track-
ing can be circumvented by various control-flow evasion
schemes [Cavallaro 2008].

To overcome the above limitations we present PoKeR
(Profiler of Kernel Rootkits), a virtualization-based kernel
rootkit profiler that generates multi-aspect kernel rootkit pro-
files during rootkit execution. PoKeR is designed to be de-
ployed in a system that can tolerate high performance over-
head, such as a honeypot which is subject to rootkit attacks
in the wild. A PoKeR-enabled system executes normally un-
til a kernel rootkit is installed and ready to execute malicious
code injected into the kernel. At that point, PoKeR switches
the system (a virtual machine or VM) to a rootkit profiling
mode and applies a strategy called “combat tracking”1 to
automatically track and determine the kernel objects – either
static or dynamic – that are being targeted by the kernel root-
kit. In addition, when the targeted kernel objects are being
manipulated, PoKeR records the relevant system call con-
texts and infers potential effects on user-level applications.

We have developed a prototype of PoKeR and used it to
profile 10 representative real-world kernel rootkits that ex-
hibit a broad range of attack methodologies. This includes
basic system call table hooking, the more advanced tech-
nique of direct kernel object manipulation [Silberman 2006],
manipulation of function pointers inside dynamic kernel data
objects [Hoglund 2006], and others. The profiles generated
by PoKeR capture multiple aspects of the rootkit’s behavior
and permit unique insights into each rootkit’s characteris-
tics. We have also measured the performance of our QEMU-
based prototype and found that it degrades virtualization sys-

1 Combat tracking, in war, is the art of hunting the enemy by following the
signs he leaves behind as he moves. In PoKeR, we intend to follow the trail
the rootkit leaves behind.

tem performance between 3x and 6x during profiling, with
the virtualization system itself adding an additional slow-
down of 3.8x above and beyond that of the physical host.

The contributions of our work are as follows:
• We identify four key aspects of kernel rootkit behavior

and use them to characterize and profile existing kernel
rootkits.

• We define the concept of aninstantaneous rootkit detec-
tion systemand discuss how an existing kernel rootkit
prevention system can be transformed into one so that a
detection pointcan be generated to trigger rootkit profil-
ing.

• We propose a technique calledcombat trackingto deter-
mine the identity and type information of rootkit-targeted
kernel objects, even if they are dynamically allocated
from the kernel heap.

• We develop a PoKeR prototype and present the evalu-
ation results with 10 representative real-world rootkits.
The obtained rootkit profiles provide useful insights into
rootkit behavior, some of which are difficult to obtain
without PoKeR, despite in-depth analysis.

2. Assumptions
In this work we assume that a kernel rootkit has the same
memory access privileges as the OS kernel itself. If the OS
can read from or write to a memory location, so can the root-
kit. This also means that the rootkit does not have privileges
higher than that of the OS, such as those of a virtual machine
monitor (VMM). The rootkit is free to modify any kernel ob-
jects, whether static or dynamic.

We also assume that the rootkit requires the execution of
injected codeat the kernel’s privilege level. We do not, how-
ever, require that the injected code be persistent throughout
the life cycle of the rootkit attack. We refer to a kernel root-
kit that requires the execution of injected code at the kernel’s
privilege level as acode injection kernel rootkit. For ease of
presentation, throughout this paper we will use the term ker-
nel rootkit to refer to a code injection kernel rootkit. Thisas-
sumption is realistic. Petroni et al. [Petroni 2007] surveyed
25 kernel rootkits and none of them violate our assumptions.
In particular, all 25 rootkits make use of injected code in the



kernel space, and 24 of them require injected code to be per-
sistent throughout their lifetime.

With regards to PoKeR itself, we assume that it has access
to the OS kernel source code for static analysis, or to debug-
ging symbols and type information for an already compiled
kernel binary. We also assume that the system PoKeR is run-
ning on can tolerate high performance overhead during pro-
filing.

3. Design
Figure 1 shows the overall architecture of PoKeR. As high-
lighted in the figure, PoKeR has two main components:

• The Logging and Context Trackingmodule resides in-
side the VMM and, once activated, collects runtime ex-
ecution traces of malicious rootkit code. The execution
trace is saved outside the target VM and contains infor-
mation such as rootkit instructions executed, correspond-
ing memory reads and writes, and associated execution
context. The logging of execution context will be help-
ful later in assessing the user-level impacts of the rootkit
attack. Note that the activation of this module requires
a detection point and we will discuss it shortly in Sec-
tion 3.1.

• The Kernel Object Interpretationmodule processes the
collected execution trace and resolves read and write tar-
get addresses into the kernel objects read or manipulated
by a rootkit. The dynamic nature of certain kernel objects
significantly complicates the interpretation procedure.

There are three key challenges and techniques associated
with the design of PoKeR. They will be presented in the
following three subsections.

3.1 Switching to Profiling Mode

As mentioned in Section 1, PoKeR is primarily designed to
be used in environments which can tolerate high overhead.
A PoKeR-enabled system has two modes of operation. The
first mode,detection mode, is its initial state. While in this
mode, an instantaneous rootkit detection system (defined be-
low) watches for kernel rootkit execution. Most of PoKeR’s
rootkit profiling features are disabled during detection mode.
The other mode,profiling mode, starts right at thedetection
point, when the instantaneous rootkit detection system re-
ports that a kernel rootkit attack is about to occur. In profil-
ing mode, PoKeR enables its profiling features and logs the
rootkit’s actions at a fine granularity, such as instructionex-
ecution, system calls, and memory reads and writes. PoKeR
will then generate the rootkit’s profile according to the four
aspects defined in Section 1.

To ensure that all of a rootkit’s actions are profiled prop-
erly, the detection point must be generated before the very
first rootkit instruction is about to execute in the kernel. We
refer to a detection system capable of meeting this strict
time constraint as aninstantaneous detection system. Exist-

ing work in the area of rootkit prevention, such as Livewire
[Garfinkel 2003], SecVisor [Seshadri 2007], and our prior
work – NICKLE [Riley 2008], can be used as instanta-
neous rootkit detection systems. These systems are devel-
oped based on various virtualization techniques. For ex-
ample, SecVisor makes use of hardware virtualization sup-
port to prevent malicious kernel code from executing while
Livewire and NICKLE leverage software virtualization to
ensure only legitimate kernel code will be running in the ker-
nel space. The design of PoKeR will allow it to make use of
any of these systems to generate rootkit detection points.

3.1.1 NICKLE as Instantaneous Detection System

In this work, we leverage NICKLE to serve as the instanta-
neous detection system that generates kernel rootkit detec-
tion points for PoKeR. In the following, we will give a brief
overview of NICKLE. Interested readers are referred to our
previous paper [Riley 2008] for more details.

In short, NICKLE operates inside a VMM and protects
commodity guest OSes. NICKLE maintains two separate
memory spaces for a running VM. One, the standard mem-
ory, functions just like the normal memory space: It stores
code and data for both kernel and user levels. The other, the
shadow memory, stores only kernel code that has been au-
thenticated by NICKLE. This is done via an on-the-fly tech-
nique that uses hashes of known good kernel code for au-
thentication and copies only authenticated kernel code from
the standard memory to the shadow memory. At run time,
all kernel instruction fetches issued from the guest OS are
transparently routed to the shadow memory while all other
memory accesses are routed to the standard memory. As a re-
sult, a kernel rootkit that is attempting to execute its injected,
unauthorized code in the kernel space would be unable to do
so. Failing to go through NICKLE’s kernel code authentica-
tion, the injected code will remain in the standard memory
and cannot be fetched from the shadow memory. This is all
done in a manner that is transparent to the guest OS, which
does not need to be modified.

Turning the original NICKLE into an instantaneous root-
kit detection system for PoKeR is a natural next step. Instead
of simply blocking rootkit code execution, the system will
allow the code to be executed unhindered from the standard
memory. During a guest kernel instruction fetch the contents
of the standard and shadow memory are compared to deter-
mine if the same instruction exists in both. If a kernel in-
struction that is about to be fetched exists in the standard
memory but not the shadow memory (or if the contents sim-
ply differ) then unauthorized code is about to be executed at
the kernel level. This serves as PoKeR’s detection point, and
the system can be switched to profiling mode.

Given that we know an instruction is malicious prior to
executing it, we have the unique opportunity to identify and
extract the malicious rootkit code. It can then be analyzed
further later on, such as by static analysis. To aid in this,
we also record the order in which the instructions were exe-



cuted. In addition, the malicious code identification capabil-
ity may allow profiling mode to turn on and off during profil-
ing – on when rootkit instructions are executed and off when
authenticated kernel instructions are executed. The dynamic
toggling between detection mode (faster) and profiling mode
(slower) may result in better rootkit profiling efficiency.

3.2 Tracking Targeted Kernel Objects

Once kernel rootkit execution is detected and the profil-
ing mode of PoKeR is switched on, it is necessary to keep
track of all kernel objects manipulated by the kernel rootkit.
The rootkit may, for example, traverse the entire process list
looking for an entry with a specific PID to remove. Or, it
may change key values in a TCP data structure within the
kernel to mask the sending of data to a remote location. It is
important that PoKeR be able to determine, upon the execu-
tion of a rootkit instruction, which kernel object is being read
or modified. This is challenging because PoKeR operates at
the VMM level, which does not directly provide a semantic
view of the guest kernel objects. Unfortunately, current vir-
tual machine introspection techniques [Garfinkel 2003, Jiang
2007, Payne 2007] do not support such a “reverse lookup”
(namely, given a memory address, identify the correspond-
ing kernel object).

A list of the rootkit’s reads and writes is simple to ob-
tain using PoKeR’s logging and context tracking module, as
it simply logs all reads and writes performed by the rootkit
code. However, determining which kernel objects a rootkit is
modifying is complicated by the fact that a large number of
kernel objects are dynamically allocated. For example, we
may know that a rootkit is modifying memory at address
0xc6600856, but if that address is located within the ker-
nel’s heap there is no simple way to determine what object
it is. (This is one reason that a simple symbolic debugger
cannot be used to track kernel objects.) This is in contrast to
statically allocated kernel objects, whose addresses can be
easily determined at compile time. In order to handle dynam-
ically allocated kernel objects, we need to create anaddress-
to-dynamic object mapthat can be used to translate memory
addresses into the kernel objects they are a part of.

One key observation that helps in creating this address-to-
dynamic object map is that all dynamically allocated kernel
objects must be accessible in some way from global vari-
ables or CPU registers. If one imagines kernel objects as a
graph where the edges are pointers, then all objects will be
transitively reachable from at least one global variable. If
an object is not reachable in this way, then the kernel itself
will not be able to access it and the object cannot be used.
A similar observation has also been made in previous work
on both garbage collection [Boehm 1988] and state-based
control-flow integrity [Petroni 2007]. A brute force approach
for mapping an address to a dynamic object would be to
search the entire memory graph. This would be extremely
inefficient and thus undesirable.

Algorithm 1 Combat Tracking Algorithm
Requires: addr: Address of read.

val: Value read.

if addr in static mapthen
// Query the static data for type information of the address
type← staticobjects(addr)

else
if addr in dynamic mapthen

// Query the dynamic map instead
type← query dynamicmap(addr)

else
// No type information known
return

end if
end if
if type is a pointerthen

// If we have a pointer,val is the address of a kernel object
d_type← dereference(type)
adddynamicmap(val, d_type)

end if

To support the address-to-dynamic object mapping in a
more efficient way, we propose a technique called “combat
tracking.” The key observation in our combat tracking tech-
nique is that in order for a kernel rootkit to find the address
of a dynamically allocated kernel object, it will first traverse
to it from a statically allocated one. The rootkit, much like
PoKeR, is naturally ignorant of the layout of dynamic ker-
nel objects, and therefore will do a series of reads of kernel
memory in order to reach the objects. By tracking a root-
kit through its series of reads, we can dynamically build up
an address-to-dynamic object map for PoKeR to look up a
corresponding dynamic kernel object when given a memory
address.

Algorithm 1 shows the combat tracking algorithm exe-
cuted by PoKeR’s kernel object interpretation module. The
algorithm assumes the availability of an initial map of static
objects and uses that, combined with the rootkit’s reads, to
build the map of dynamic objects on the fly. (In our proto-
type, the static kernel object map as well as the object type
definitions come from a copy of the kernel compiled with de-
bug symbols.) The first step in the algorithm is to determine
what type of data the address being read is. We first query the
static object map to see if the object is a global object and
if that fails then we check our dynamic object map to see if
we have previously added this address to the map. Once we
find the type of the object being read, we determine if it is a
pointer. We care about pointers because if a read occurs on a
pointer object, then the value of the read corresponds to the
address of a kernel object. This may be a kernel object we
haven’t seen before, and it can be used to further build the
dynamic map. Given this, in the event the rootkit did read a
pointer, we determine the value read by the rootkit (the ad-
dress of the new object) as well as the de-referenced type



of the pointer (the type of the new object) and we add this
information to the dynamic map. In this way we progres-
sively build up the address-to-dynamic object map based on
the rootkit’s reads.

To illustrate combat tracking, let us consider an exam-
ple. Figure 2 is a simplified representation of the process
list maintained in the Linux kernel. There is one global
data structure at address0xc0300000, init task, which
forms the head of a linked list of dynamically allocated
struct task struct structures. If a rootkit were to try
and find thetask struct for pid 3, it would do the fol-
lowing. First, it would read address0xc0300004 in order
to find thenext task pointer in the globaltask struct.
It would receive back0xc11a0000, the address of the next
structure. Next, it would read the pid of that next structure
at address0xc11a0000, and when it found that it was not 3,
it would read0xc11a0004 to find the nexttask struct to
search on. It would repeat this procedure until it found pid 3
in thetask struct at address0xc11c0000. From there it
may modify a variable in that data structure (say at address
0xc11c0008) in order to perform some sort of kernel object
manipulation.

Without combat tracking, we would only know that the
rootkit did a write at address0xc11c0008 and we would
have no way of knowing what kind of data was at the ad-
dress. With combat tracking, given the entire chain of reads,
the dynamic map would be built: When the rootkit first reads
thenext task element ofinit task, a query of the initial
static map tells us that the read corresponds to an object of
typestruct task struct *. Given this knowledge, com-
bined with the fact that the rootkit reads0xc11a0000 from
that location, we know that address0xc11a0000 contains
a struct task struct and add it to our dynamic map.
When the rootkit later reads thenext task pointer from
that dynamic data structure, we know (thanks to what we
learned from the previous read) that the read is for another
pointer of typestruct task struct * and can add that
element of the linked list to our dynamic map as well. We
continue on in this fashion until we have a map of all the
data structures the rootkit has read. Later, when the write to
address0xc11c0008occurs, we can check the dynamic map
to know that the address is part of atask struct and deter-
mine which element of the data structure is being modified.

We do not keep track of a kernel object’s lifetime and
remove its entry from the dynamic map right after its de-
allocation. The entry will still exist in the map despite there
being no object at that location. Such a “stale entry” does
not matter, however, because the rootkit should not access
a deallocated kernel object. (If it does, it is most likely a
programming error.) If a new object is ever allocated at a
previously used address, then the chain of rootkit reads to
the new object will result in the stale entry being replaced
by a new entry that corresponds to the new object.

3.3 Discovering Rootkit Hooking and User-Level
Impacts

For many kernel rootkits, one key reason for manipulating a
specific subset of kernel objects is to eventually hijack the
kernel’s control flow so that the rootkit can somehow af-
fect the execution state of the running kernel. The hijacking
behavior is typically accomplished by modifying function
pointers, many of which may be stored in dynamically allo-
cated objects within the kernel’s heap. To reveal a rootkit’s
hooking behavior, it is vital that we be able to find these
hooks as they are being installed. It is also possible for the
rootkit to directly modify legitimate code to force a call to
the rootkit code. Fortunately, both types of changes can be
thought of as a subset of the kernel object tracking prob-
lem (Section 3.2). Tracking modifications to existing code is
similar to tracking modifications to static objects; whereas
tracking function pointer modifications is simply a part of
tracking object modifications using combat tracking – the
main reason being that the modified function pointers be-
long to certain kernel objects.

As an example, consider a Linux kernel module (LKM)
based rootkit2 with the goal of ensuring that files that end
in the extension “.hacker” are never visible to a user. The
attacker installs this malicious rootkit as a kernel moduleus-
ing theinsmod command. The system copies the malicious
module into memory and then runs the module’sinit()

function. Before the first instruction frominit() is exe-
cuted, the instantaneous rootkit detection system generates
a detection point which turns on PoKeR’s profiling mode.
Next, the rootkit’s initialization function modifies the system
call table so that the system call originally used to retrieve a
directory listing is changed to point to a malicious function
that ensures files ending in.hacker do not appear in the
listing. The write to the system call table is logged and inter-
preted. Thus the code’s hooking point is discovered and the
control flow modification made by the rootkit is profiled.

In addition to determining which function pointers get hi-
jacked by a kernel rootkit, it is also desirable to determine
how the modified kernel control flow will impact system
calls made by user-level programs. This may help ascertain-
ing which user-level programs are being targeted by a spe-
cific rootkit as well as giving us a general understanding of
what the rootkit is trying to hide. For kernel rootkits that
modify the system call table, such impact is fairly obvious:
explicitly modified table entries will result in hijacked con-
trol flow when the corresponding system calls are made. For
rootkits that do not directly modify system call table entries,
however, determining which system calls will be affected is
less obvious.

To determine which system calls get their control flow
hijacked at runtime, we need to be able to correlate the
execution of malicious rootkit code with the execution of

2 An LKM based rootkit is a kernel module that implements rootkit func-
tionality. It can be loaded into the kernel like a normal driver.
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Figure 2. A simplified example of a Linux process list

the system call that led to it. To accomplish this, PoKeR
will track the execution of system calls and apply a virtual
machine introspection technique [Jiang 2007] to determine
the current process context, namely which process is making
the system call. Note that by logging the starting point when
a system call is made and the ending point when the system
call returns, PoKeR can effectively keep track of the lifetime
of the system call. If malicious code execution is detected,
PoKeR will infer the current process context of the malicious
code execution and determine if any ongoing system call
has the same process context. If so, the control flow of that
system call is hijacked.

4. Implementation
To validate our design, we have developed a prototype of
PoKeR. In this section we will describe its implementation.

4.1 Instantaneous Rootkit Detection

As mentioned in Section 3.1.1, NICKLE is our instantaneous
rootkit detection system. NICKLE has been implemented
and tested in multiple VMM platforms such as QEMU [Bel-
lard 2005], VirtualBox [Innotek], and VMware Workstation
[VMware]. In this work, we have chosen the QEMU port of
NICKLE for implementation convenience.

4.2 Logging and Context Tracking

Once NICKLE signals the detection of malicious kernel
rootkit code, PoKeR enters profiling mode. In profiling mode
all kernel instructions are interpreted using the built-indy-
namic re-compiler (a virtualization technique based on effi-
cient, dynamic translation of guest code into host code) in
QEMU so that the rootkit’s actions can be logged at a fine
granularity.

A sample of the log is shown in Figure 3. It shows the
seven different types of log entries. TheR andW log lines
(lines 2 and 4) signify that the malicious rootkit code is now
reading or writing. The reads and writes are caught by ex-
tending the QEMU-translated VM memory access instruc-
tion to include a check on whether the instruction issuing
the access is malicious. The first argument on the line is the
memory address being read or written and the second argu-
ment is the corresponding memory content. TheE log line

1: M - 0xc883d000

2: R - 0xc1548054 - 0xc154a000

3: C - 0xc6706000

4: W - 0xc6707f24 - 0xc6707f3c

5: SC - 619 - insmod - sys_write

6: E - 0xc883ea28 - 619

7: SR - 619 - insmod

Figure 3. Sample log entries generated by PoKeR

(line 6) signifies the execution of rootkit code and is gener-
ated by PoKeR while a malicious instruction is being trans-
lated for execution. The arguments are the address of the
malicious instruction and the pid of the process context it is
running in, respectively. TheM log line (line 1) is emitted
whenever a kernel module is loaded – as seen by virtual ma-
chine introspection that is a part of NICKLE – and signifies
the base address of that module’s kernel data structure. (The
M log line is the one item logged before a detection point
is raised.) TheC log line (line 3) is used to signify the ad-
dress of the task structure of the currently running process
(current in Linux) and is output preceding a read or write
from that task structure.3 The SC andSR log lines (lines 5
and 7) signify the start and end, respectively, of a system
call. The SC log line includes information about the pid,
program name, and system call made and is generated by
extending the specific binary translation of the system call
interrupt (int 0x80 andsysenter). TheSR log line only
conveys the pid and program name, and is generated during
the kernel-to-user mode switch.

The SC, SR, and E log entries allow us to determine
which system calls have their control flow hijacked by a
kernel rootkit. This is done by correlating the system call log
entries with the rootkit code execution entries via the process
context information. We parse through the log file and track
currently running system calls (they begin with anSC and
end with anSR) for running processes. In the event anE log

3 We would like to point out thatcurrent in Linux is not an actual variable,
it is instead a macro that derives the address of the task structure for
the currently running process based on the runtime stack. The address of
current cannot be determined by static analysis and this hint is needed
by the object tracker later on. We outputcurrent during rootkit reads and
writes that involve the task structure for the currently running process.



line for a given process occurs while there is an open system
call in that process, we know that the system call’s control
flow has been hijacked.

As mentioned earlier, the malicious rootkit instructions
executed are logged along with the order in which they
are executed. Later, a customized disassembler [libdisasm]
is used to combine these two pieces of information and
produce a copy of the rootkit’s executed code annotated with
its order of execution.

4.3 Kernel Object Interpretation

Once the log file of memory accesses is available, it is
important to translate these accesses into names and types
of the corresponding kernel objects. To track both static and
dynamic kernel objects as described in Section 3.2, static
analysis must be performed on the kernel itself. PoKeR can
then use this information in conjunction with the rootkit’s
memory reads to instantiate our combat tracking technique.

The Linux kernel is a large, complicated code base that
makes traditional static analysis difficult. However, by com-
piling a copy of the kernel with debug symbols (the-g flag to
gcc) the GNU debugger (gdb) [Free Software Foundation]
can be used to extract the types, names, and locations of all
static kernel objects. We modifiedgdb to facilitate easier ac-
cess to this information and query for static kernel object
information.

PoKeR’s kernel object interpretation module is written
in Python and implements combat tracking. It usesgdb for
static type information and progressively builds its own in-
ternal map of dynamic kernel objects by processing rootkit
reads using the algorithm in Section 3.2. The rootkit’s kernel
object manipulation profile can then be produced by query-
ing the static and dynamic kernel object maps in interpreting
the rootkit’s memory writes. Our implementation also facil-
itates manual type annotation to accommodateunion types.
For the current prototypeunions are handled by having a
human user decide before hand which type should be used
when that specific union is encountered. Another possibility
would be to bifurcate union decisions by inserting all possi-
bilities into the dynamic map. This could, however, result in
an explosion of search space in the map. We look to emerg-
ing work in the area of automatic type determination [Cozzie
2008] to eventually automate the handling of unions.

5. Evaluation
In this section we present the results of using PoKeR to
profile 10 real-world kernel rootkits and give a brief eval-
uation of PoKeR’s performance. In our experiments, the
host machine is an Intel Core 2 - 2.4GHz desktop running
Ubuntu 8.10. The VMM is a modified version of QEMU
0.9.0 running with KQEMU enabled4. Our guest OS is Red-

4 KQEMU is a host kernel module to enhance QEMU’s performance by
running some guest code natively on the host processor. It was disabled for

Hat 8.05 running a recompiled version of its stock kernel,
Linux 2.4.18-14. The recompilation is needed to produce a
version with debug symbols (Section 4.3.)

Table 1 shows an abbreviated summary of the profiling
results. For each kernel rootkit, its profile consists of thefour
aspects described in Section 1. The first aspect, hooking be-
havior, is revealed by the modified function pointers in cer-
tain kernel objects shown in Table 1. The second aspect of
the profile, targeted kernel objects, indicates which objects
are of interest to a rootkit. Kernel objects read but not modi-
fied are part of this aspect of the profile, but are not shown in
the table due to the sheer quantity of them and lack of space.

The third aspect of the profile is the potential impact on
user-level programs. Given that most rootkits have a primary
goal of altering a system administrator’s view of the OS, we
ran a corpus of 10 system utility programs that retrieve sys-
tem information that kernel rootkits tend to hide. Four of
them,w, who, uptime, andfinger are capable of show-
ing information related to currently logged-in users. Two,
netstat andifconfig, reveal information about network
usage. Another pair,ls andbash, can reveal the existence
of files. Information about running processes can be obtained
by ps. Finally,lsmod shows the list of installed kernel mod-
ules.

These 10 programs were run and tested to see how many
of the system calls they made resulted in the execution of
rootkit code. They do not, however, represent the execution
of all possible system calls. While a program could be writ-
ten to exercise all system calls, the enormous variety of ar-
guments and the control paths that those arguments could
trigger would make it infeasible to ensure that the program
would follow all hooked rootkit code paths. By using pro-
grams that a rootkit tends to hide information from, we ex-
pect that at least a portion of the malicious rootkit code
will be triggered. During the execution of those 10 utility
programs, 39 different system calls got executed and those
that led to rootkit code execution are shown in Table 1. The
last aspect of the profile is the extracted kernel rootkit code
shown in Table 1 only by the number of rootkit instructions
extracted. This is useful for determining the approximate
size of a kernel rootkit, and the code is made available by
PoKeR for further analysis, as shown in Section 5.2.2.

5.1 Profiling-based Study of Rootkit Behavior

As a kernel rootkit investigation tool, PoKeR allows a human
expert to quickly ascertain and classify a rootkit’s attack
methodology without solely relying on manual analysis of
the rootkit’s binary, source code, or the compromised OS.
In the following, we summarize the findings that generalize
across the rootkits we have profiled using PoKeR.

the SucKIT experiments because it interferes with an instruction related to
the interrupt descriptor table.
5 We choose this version of Linux because it allows all the rootkits we
experimented with to work properly.



Kernel Objects Modified User-Level
Name Code Kernel Object Note Impacts Attack Type
SucKIT
1.3b

1687 instr sys_call_table[59]

system_call at offset 47
tracesys at offset 27
current->addr_limit

current->flags

Function Pointer
Code
Code
Data Object
Data Object

2 - fork
3 - read
4 - write
5 - open
6 - close
11 - execve
85 - readlink
195 - stat64
196 - lstat64
220 - getdents64

code change,
syscall hook

rial 475 instr sys_call_table[3,5,6,141,167] Function Pointers 3 - read
5 - open
6 - close
167 - querymod

syscall hook

rkit 1.01 12 instr sys_call_table[23] Function Pointer syscall hook
knark
0.59

490 instr sys_call_table[2,3,11,37,54]

sys_call_table[79,120,141,220]

current->flags

Function Pointers
Function Pointers
Data Object

2 - fork
3 - read
11 - execve
54 - ioctl
220 - getdents64

syscall hook

kbdv3 30 instr sys_call_table[30,199]

current->uid

current->euid

current->gid

current->egid

Function Pointers
Data Object
Data Object
Data Object
Data Object

199 - getuid32 syscall hook,
DKOM

adore
0.42

770 instr sys_call_table[2,4,5,6,18,37,39,84,106]

sys_call_table[107,120,141,195,196,220]

Function Pointers
Function Pointers

2 - fork
4 - write
5 - open
6 - close
195 - stat64
196 - lstat64
220 - getdents64

syscall hook

adore
0.53

733 instr sys_call_table[1,2,6,26,37,39,120,141,220]

proc_net->subdir->next->(...)->next->get_info

proc_root_inode_operations->lookup

Function Pointers
Function Pointer
Function Pointer

1 - exit
2 - fork
3 - read
5 - open
6 - close
85 - readlink
195 - stat64
220 - getdents64

syscall hook,
data hook

adore-
ng
0.56

785 instr proc_net->subdir->next->(...)->next->get_info

proc_root_inode_operations->lookup

proc_root_operations->readdir

ext3_dir_operations->readdir

ext3_file_operations->write

unix_dgram_ops->recvmsg

Function Pointer
Function Pointer
Function Pointer
Function Pointer
Function Pointer
Function Pointer

3 - read
5 - open
85 - readlink
195 - stat64
220 - getdents64

data hook

linuxfu 117 instr init_task->next_task->(...)->prev_task->next_task

init_task->next_task->(...)->next_task->prev_task

Data Object
Data Object

DKOM

hp 1.0.0 100 instr pidhash[600]

pidhash[600]->pid

pidhash[600]->prev_task->next_task

pidhash[600]->next_task->prev_task

pidhash[600]->p_osptr->p_ysptr

pidhash[600]->p_ysptr->p_osptr

Data Object
Data Object
Data Object
Data Object
Data Object
Data Object

DKOM

Table 1. Summary of kernel rootkit profiling results using PoKeR



From the “hooking behavior” aspect, we can generalize
the rootkits’ profiles to three hooking strategies: modifying
existing kernel code, hooking system call entries, and hook-
ing function pointers in data structures. For example, one
rootkit that we profiled, SucKIT, modifies existing kernel
code. Five rootkits (rial, rkit, knark, kbdv3, and adore 0.42)
use syscall hooking as their primary attack vector, with two
others (SucKIT and adore 0.53) employing it in addition to
other attack techniques. Two rootkits (adore 0.53 and adore-
ng 0.56) hook function pointers in both static and dynamic
kernel objects.

From the “targeted kernel objects” aspect, we can iden-
tify those kernel objects that are more likely to be manip-
ulated by rootkits that manipulate kernel data structures di-
rectly. (This is also known as direct kernel object manipu-
lation or DKOM). For example, some critical fields in the
process control block (e.g.,uid, euid) can be targeted (e.g.,
by the kbdv3 rootkit) for escalating the privilege of the pro-
cess under which the rootkit code runs. The task list is often
manipulated (e.g., by the linuxfu and hp rootkits) for pro-
cess hiding purposes. Moreover, the semantics associated
with the function pointers hijacked by kernel rootkits also
reveal the rootkits’ intentions. For example, function point-
ersget info andlookup can be hijacked (e.g., by adore
0.53 and adore-ng 0.56) to filter out “sensitive” information
so that a rootkit can remain invisible in the compromised
system.

Another interesting benefit of PoKeR’s rootkit profiles is
that they reveal the changes made between various versions
of the same rootkit. Consider the three different adore root-
kits in Table 1. Version 0.42 relies solely on a system call
hooking attack. A later version, 0.53, lessens its relianceon
system call hooking and hooks two kernel objects instead.
Once adore becomes adore-ng, it moves to entirely relying
on hooks in kernel objects. Such an evolution of adore’s at-
tack behavior is clearly illustrated by PoKeR’s profiles.

5.2 Detailed Results for Three Representative Rootkits

When conducting in-depth analysis of kernel rootkits, PoKeR
is especially helpful in providing a human expert with infor-
mation related towhata kernel rootkit did so that the expert
can more quickly ascertainwhythe rootkit did it. In this sec-
tion, we describe detailed profiling results for three kernel
rootkits which each display different attack methodologies.
In the following descriptions, we will present (1) an analysis
of each rootkit based only on general knowledge of Linux
and PoKeR’s multi-aspect profile and (2) a manual analysis
based on the rootkit’s source code (which we have for the ex-
periments.) Observations and explanations from analysis (1)
are presented in normal text; while interpretations based on
analysis (2) are indented and preceded byMANUAL INSPEC-
TION RESULTS. Our intention is to show how a human expert
can use PoKeR to quickly understand a rootkit’s behavior
without its source code. The descriptions also highlight how

closely the results from analysis (1) and (2) match and in
particular, what PoKeR is oris notable to capture.

5.2.1 adore-ng 0.56

Hooking Behavior The hooking profile for adore-ng is
quite interesting because it does not hook any system calls.
In addition, one of its hooks requires combat tracking (Sec-
tion 3.2) to reveal. The rootkit modifies six function pointers
in various kernel objects. It is particularly interested inthe
proc file system, modifying three function pointers there.
One of those pointers,proc_net->(...)->get_info, is
located in an object that was dynamically allocated on the
kernel’s heap (and was found by combat tracking.) The
other two,proc_root_inode_operations->lookup and
proc_root_operations->readdir are related to file op-
erations onproc. Theproc file system exports information
from kernel-space to user-space and is used by applications
that retrieve system information.ps, for example, retrieves
the process list andnetstat gets information about open
network connections. The hiding of processes and network
connections is the most likely reason for hookingproc.

MANUAL INSPECTION RESULTS: A quick search of the
adore-ng source code confirms that theproc net hook
is there to hide the existence of network connections
on certain ports and thereaddir hook is used to hide
running processes. Thelookup hook, however, is used to
signal information to adore-ng’s kernel component. The
analysis above did not catch this.

Adore-ng also impacts the mainext3 file system. The first
of these functions,ext3_dir_operations->readdir, is
used to generate directory listings. The second function,
ext3_file_operations->write, is used to write to files.
The most obvious reason to hookreaddir on the main file
system would be to hide the existence of certain files. The
write operation instead is to perform one layer of filtering
so that rootkit-related information will not be visible.

MANUAL INSPECTIONRESULTS: The source code review
confirms thatreaddir is used to hide files.write is
hijacked to ensure that hidden processes do not write to
any of the system wide log files in/var.

Lastly, adore-ng hijacks theunix_dgram_ops->recvmsg
function pointer, which would allow it to intercept UNIX
domain socket messages, a type of inter-process communi-
cation. This one is quite puzzling. Inter-process communica-
tion seems like a very strange thing to intercept and poten-
tially stop.

MANUAL INSPECTIONRESULTS: The source code analysis
reveals that it is used to intercept and delete messages to
the system logging daemon.

Targeted Kernel Objects Based on PoKeR profiling results,
it seems that adore-ng does not modify any kernel objects
outside of function pointers and instead does its work by
hijacking the control flow. In this respect the rootkit is not
any more advanced than many system call hooking rootkits.



Address Order Instruction
C72EC40B 22 lcall 0x00000414

C72EC410 DATA
C72EC414 23 pop %eax

C72EC415 24 ret

. . .
C72EE0CB 1 push %ebp

C72EE0CC 2 mov %esp, %ebp

C72EE0CE 3 sub $0x0C, %esp

C72EE0D1 4 mov $0x00001000, %ecx

C72EE0D6 5 push %edi

C72EE0D7 6 push %esi

C72EE0D8 7 push %ebx

C72EE0D9 8 movl 0x14(%ebp), %eax

C72EE0DC 9 mov $0x0804EF39, %ebx

C72EE0E1 10 sub $0x0804D040, %ebx

C72EE0E7 11 movl 0xC(%ebp), %edx

C72EE0EA 12 movl %eax, 0xEC(%edx)

C72EE0F0 13 movl 0x8(%ebp), %esi

C72EE0F3 14 leal 0x400(%esi,%ebx), %esi

C72EE0FA 15 movl %esi, -0x4(%ebp)

C72EE0FD 16 mov $0x00, %dl

C72EE0FF 17 mov %esi, %edi

C72EE101 18 mov %dl, %al

C72EE103 19 repz stosb %al, %es:(%edi)

C72EE105 21 lcall 0xFFFFE40B

Table 2. Excerpt of SucKIT code extracted by PoKeR

However, it is important to note that while it does not mod-
ify any other kernel objects, its malicious code may still be
modifying the system call results returned to user-level pro-
grams.

MANUAL INSPECTIONRESULTS: The source code review
confirms these results.

User-Level Process Effects Without modifying any system
call table entries directly, adore-ng still manages to execute
its malicious payload during system calls. This is logical,
considering that the function pointers it modified would be
called during various system calls. Our results show that five
system calls from our corpus executed adore-ng code.

Extracted Code Adore-ng results in 785 instructions ex-
tracted.

5.2.2 SucKIT 1.3b

Hooking Behavior SucKIT is another interesting rootkit
mainly because it only modifies one entry in the system call
table, 59. This isn’t even an interesting entry; it corresponds
to oldolduname. (Which, as one can imagine, is deprecated
and not frequently used.) We hypothesize that this system
call is used by a user-space control program to invoke certain
kernel-level functions.

MANUAL INSPECTION RESULTS: The source code re-
view reveals that the above hypothesis is mostly correct.
SucKIT makes use of that system call entry to make the
kernel functionkmalloc callable from user-space. This
allows it to allocate a place for its kernel component from
user-space and then install it via/dev/kmem.

Targeted Kernel Objects The targeted kernel objects are
very interesting, leading to a few important observations.
First, PoKeR’s memory read log indicates that SucKIT reads
in the entire system call table. Second, it modifies the code of
two kernel functions,system call andtracesys. These
two functions can be used to dispatch system calls. For
example, when a software interrupt0x80 is received, the
system call function directs the system call to the proper
kernel handler by reading the function pointer from the sys-
tem call table. These two observations lead us to hypothesize
that SucKIT makes a copy of the system call table and mod-
ifies the dispatcher functions to use the new table instead of
the old one.

MANUAL INSPECTIONRESULTS: The source code review
confirms that the above hypothesis is correct.

User-Level Process Effects In SucKIT’s profile, we ob-
served no modifications to relevant function pointers other
than the one to the strange system call. However, since
SucKIT directly overwrites kernel code in the Linux system
call dispatcher, it still hijacks the control flow of key system
calls using its alternate table. In our test suite, we find that
SucKIT manages to hijack 10 of the 39 system calls.

Extracted Code One tidbit from the extracted code was
interesting enough to warrant inclusion here. Table 2 shows
the first few dozen instructions executed by the SucKIT root-
kit. The table shows the virtual address where the code was
located, the order in which the instructions were executed,
and the extracted instructions themselves – all provided by
PoKeR.

One unique property of SucKIT that can be seen from
these instructions is that it has a tricky way of creating a
global variable. SucKIT installs itself into the kernel by writ-
ing its malicious kernel payload directory into a piece of
memory speciallykmalloc’d and then executing it. The spe-
cific address of kernel memory where SucKIT will reside is
not known at compile time. Global variables (the addresses
of which must be known at compile time) are not available to
the rootkit author. Rootkits that install as kernel modulesdo
not have this problem as the kernel will dynamically relocate
their code and data prior to execution. Given that SucKIT
does not have the benefit of dynamic relocation, a trick is
used to permit the use of global variables when their ad-
dresses cannot be known a priori. Instruction 21 in the table
(lcall 0xFFFFE40B) makes a function call to an offset of
the current page, in this case a negative number. This call
causes instruction 22 (near the top of the table) to execute.
The memory layout starting at instruction 22 is quite inter-
esting. One can see the layout is: instruction 22 followed by
4 bytes of data followed by instructions 23 and 24. When in-
struction 22 executes (another local call) the address of the
memory immediately following thelcall is pushed onto
the stack. This is the return address, but here it corresponds
to the address of the 4 bytes of data. Thepop instruction that
runs next moves that address into registereax and then is-



sues aret that returns control flow back to the main code.
At this point registereax contains the address of the 4 bytes
of data. This mechanism allows the attacker to achieve the
functionality of global variables without having to worry
about dynamic relocation.

MANUAL INSPECTIONRESULTS: The source code review
confirms the above analysis.

5.2.3 hide pid (hp) 1.0.0

Hooking Behavior The hp rootkit modifies no function
pointers and, in fact, does not hijack control flow at all.
It also does not install persistent code. This is drastically
different from the previous two rootkits.

MANUAL INSPECTIONRESULTS: The source code review
confirms these statements.

Targeted Kernel Objects The kernel object accessed by
hp is the pid hash table. (pidhash is basically a table of
task structures hashed by pid. It allows kernel functions to
search for a process by pid without needing to traverse the
entire process list. Entries in the hash table are still partof
the process list, however.) It is possible to see the rootkit’s
intentions using the following excerpt from its object access
log:

R - 0xc03a61a0 (0xc677c000): pidhash[600]
R - 0xc677c078 (0x0000025a): pidhash[600]->pid
R - 0xc677c054 (0xc6780000): pidhash[600]->prev_task
R - 0xc677c050 (0xc76d8000): pidhash[600]->next_task
R - 0xc677c050 (0xc76d8000): pidhash[600]->next_task
R - 0xc677c054 (0xc6780000): pidhash[600]->prev_task
W - 0xc76d8054 (0xc6780000): pidhash[600]->next_task->prev_task
R - 0xc677c054 (0xc6780000): pidhash[600]->prev_task
W - 0xc6780050 (0xc76d8000): pidhash[600]->prev_task->next_task

As can be seen from the log, the rootkit readspidhash[600]

in the table, verifies it is the correct entry by checking the
pid, and then proceeds to remove that entry from the pro-
cess list by modifying the previous and next pointers of its
neighbors. We point out that these task structures are dynam-
ically allocated, yet our combat tracking technique is ableto
identify them accurately.

MANUAL INSPECTIONRESULTS: The source code review
confirms that the above analysis is correct.

User-Level Process Effects As mentioned above, the hp
rootkit did not execute any malicious code during the execu-
tion of our corpus. As a result, we can infer that it does not
install persistent code into the kernel and thus has no impact
on the system calls.

MANUAL INSPECTIONRESULTS: The source code review
confirms that the above analysis is correct.

Extracted Code The extracted code of hp is extremely small
– only 100 instructions. This makes sense considering that
all it seems to do is remove an item from the process list,
and lends evidence to the idea that it may not do anything
else.

MANUAL INSPECTIONRESULTS: The source code review
confirms that the above analysis is correct.
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Figure 4. PoKeR performance results

5.2.4 Summary

For the three kernel rootkits analyzed above, the PoKeR-
based analysis leads to 13 statements about the rootkits’ be-
havior and 12 of them are confirmed by the analysis based
on rootkit source code. (With 1 being mostly correct.) We
highlight that the high accuracy of PoKeR is achieved based
solely on one execution session and neither the source code
nor the original binary of the rootkit was manually con-
sulted. Our comparison also indicates that even when the
rootkit source code is available, it would be technically con-
venient to first use PoKeR – instead of starting right from the
source code – to achieve faster revelation and understanding
of the rootkit’s behavior.

5.3 Performance

While performance is not always a significant concern for a
honeypot system, we feel it necessary to give a general idea
of the speed at which the various components of PoKeR run.

Runtime PoKeR Module We ran two basic tests to de-
termine the performance of PoKeR’s runtime component
that generates the log entries. All tests were run under the
system as described at the beginning of Section 5. We ran
Unixbench 4.1.0 as well as a test timing kernel compilation
under standard QEMU, QEMU + PoKeR without a root-
kit being profiled, and QEMU + PoKeR while profiling the
adore-ng rootkit. The results, normalized to the speed of
standard QEMU, are shown in Figure 4. (Lower is better.)
While in the profiling mode, PoKeR is 2.96x slower than
standard QEMU for the kernel compilation test and about
5.88x slower under the Unixbench test. While not profil-
ing (but simply waiting to detect an attack), the slowdown
is significantly less, 1.17x for the kernel compilation case
and 1.28x for the Unixbench case.

QEMU QEMU itself contributes a noticeable amount of
overhead to our PoKeR prototype. Thoroughly benchmark-
ing QEMU is outside the scope of this work, however a ba-



sic benchmark is helpful for understanding PoKeR’s overall
performance. To test the overhead of QEMU we took ver-
sion 0.9.1 (the latest release) and compared the performance
of a native install of Ubuntu 8.10 to a QEMU+KQEMU vir-
tualized copy. Both had access to the same amount of mem-
ory (512MB) and one processor core. A kernel compilation
benchmark revealed an overhead of 3.8x. Given the portabil-
ity of NICKLE to other dynamic translation-based VMMs
such as VMware [Riley 2008], we believe that this portion
of overhead could be reduced by making use of a more effi-
cient VMM platform.

Log Processing To demonstrate the efficiency of log pro-
cessing, the amount of time taken to process the log entries
for each of the 10 rootkits in Table 1 was measured. The
longest processing time was for rial: 3 minutes and 36 sec-
onds. The shortest time was for rkit: 0.7 second. The average
time across all 10 rootkits was 37 seconds.

6. Discussion
In this section we will discuss potential attacks against
PoKeR as well some of its limitations and future improve-
ments.

6.1 Attacks

There exist a number of potential attacks that a rootkit may
employ to evade PoKeR.

Our current prototype relies on NICKLE to signal the ex-
ecution of kernel rootkit code. However, if a kernel rootkit
modifies kernel data directly from user-space using a mem-
ory access device such as/dev/kmem, PoKeR will not be
able to profile it. We have synthesized such a rootkit, al-
though it has limited functionality as it cannot execute its
own kernel code. A related attack is one that uses only
existing kernel code as in an advanced type of return-to-
libc attack [Shacham 2007, Buchanan 2008] for the ker-
nel. NICKLE would fail to generate the needed detection
point for PoKeR. Existing approaches such as control-flow
integrity [Abadi 2005] are able to detect these types of at-
tacks and PoKeR could be engineered to use them to gener-
ate detection points.

Combat tracking implicitly relies on the fact that a rootkit
must obtain dynamic kernel objects’ addresses by starting a
chain of reads at a static data object. A rootkit may not need
to do this, however. It may, for example, call existing kernel
code to retrieve the address of a data structure. In this case,
the chain of reads would occur from legitimate kernel code
and hence would not be logged. PoKeR can handle this situa-
tion by simply tracking all kernel reads instead of just rootkit
reads, but at an increased performance penalty. Another po-
tential approach would be to have PoKeR monitor all kernel
reads as long as there is a pointer to malicious code on the
current kernel stack. This pointer is likely a return address to
the rootkit code, which has called the valid kernel code.

Another situation is one where a rootkit installs a code
hook and uses it to walk the stack and find kernel object
addresses on it. (If the rootkit author knows what functions
have already been called prior to his hook, he can easily
derive the type information for function arguments on the
stack.) In this case, combat tracking would not be able to
properly identify the types of data being read. PoKeR could
be extended to monitor type information for items on the
stack, similar to the waygdb does.

Finally, a rootkit may be able to scan kernel memory and
guess at the identity of kernel objects, and do so with a high
probability of success. One possible approach to combating
this attack would be to periodically build a complete map of
kernel objects (similar to SBCFI [Petroni 2007]). Assuming
that this periodic map building occurred at regular intervals,
PoKeR would be able to identify any dynamic kernel object
with high probability, even without a chain of reads.

6.2 Limitations

There are some limitations to our current PoKeR proto-
type. First, our current profiling results are not complete
for fully and provably determining all aspects of a given
rootkit. Instead, we are only focusing on four specific as-
pects of the rootkit’s behavior. Our lack of completeness isa
trait shared by other dynamic analysis based systems [Moser
2007, Lanzi 2009].

Second, the current prototype is still limited in revealing
the context in which the rootkit-manipulated kernel objects
were used. For example, in theadore-ngexperiment we no-
ticed that the IPC datagram receive function was hijacked.
However the derived profile could not tell us why. Manu-
ally inspecting theadore-ng source code indicated that this
was used to filter messages being sent tosyslogd. Thus, it
would be a huge advantage if PoKeR could be improved to
automatically reveal that. In the meantime, we also recog-
nize that PoKeR’s user-level impact metric is still simplistic
and we plan to extend it to determine the complete set of
system calls that may get hijacked at runtime. Correlating
modified kernel objects with a static analysis of the kernel’s
call graph as well as multiple path exploration [Moser 2007]
are potential avenues of research in this area.

Finally, a rootkit may be able to detect virtualization or
PoKeR’s profiling mode and alter its actions accordingly.
Note that as virtual machines become more prevalent, they
are quickly becoming valid targets for attacks and rootkit au-
thors are losing their incentive to avoid them. While efforts
could be made to mask the presence of virtualization from
the attacker, it is considered an unsolvable problem in the
general sense [Garfinkel 2007].

7. Related Work
Analyzing Kernel-level Malware The first area of related
work includes recent efforts in investigating and understand-
ing kernel malware behavior. For example, based on taint



analysis, Panorama [Yin 2007] performs system-wide in-
formation flow tracking to understand how sensitive data
(e.g., user keystrokes) are stolen or manipulated by mal-
ware. Unfortunately, the underlying taint-based information
flow techniques fundamentally suffer from control-flow eva-
sion attacks [Cavallaro 2008] that directly break taint prop-
agation. From another perspective, K-Tracer [Lanzi 2009]
combines backward and forward slicing techniques to un-
derstand kernel rootkit behavior. However, the slicing op-
eration requires prior determination of the sensitive dataon
which to perform the slicing analysis. As a result, althoughit
is capable of dealing with regular kernel rootkits that hijack
system call table entries, it becomes less efficient to handle
advanced ones such as DKOM-capable rootkits. In compar-
ison, with the capability of tracking both static and dynamic
kernel objects, PoKeR does not rely on such prior knowl-
edge and can work with DKOM-capable rootkits (e.g., the
hp rootkit in Section 5.2.3) as well.

Several other approaches have recently been proposed
to understand rootkit hooking behavior. HookFinder [Yin
2008] analyzes a given rootkit sample and reports a list of
kernel hooks that are being used by the rootkit. HookMap
[Wang 2008] instead aims to systematically enumerate all
of the kernel hooks that can be hijacked for rootkit-hiding
purposes. These approaches mainly focus on one aspect of
rootkit behavior, i.e., the hooking behavior. However, they
miss other aspects that are also important for rootkit profiling
purposes.

Detecting Rootkit Presence The second area of related
work is the detection of kernel rootkits based on certain
rootkit-related characteristics. For example, Copilot [Petroni
2004] leverages a trusted piece of hardware to collect the
runtime OS memory image and infers possible rootkit pres-
ence by detecting any kernel code integrity violations. That
concept has been further extended to identify other types
of violations regarding semantic integrity of dynamic ker-
nel data [Petroni 2006] and state-based control-flow in-
tegrity of kernel code [Petroni 2007]. Other solutions such
as VMwatcher [Jiang 2007] and Strider GhostBuster [Wang
2005] exploit the self-hiding goal of rootkits and infer their
presence by detecting differences between the views of the
same system from different perspectives. Note that all the
above approaches detect rootkit presence based on certain
symptoms exhibited by rootkits. However, these systems
are not designed to profile kernel rootkit behavior. Some of
these could, in principle, be used as PoKeR’s detection point
generators. However, given that they detect rootkit presence
sometime after the attack is under way, some of the rootkit
actions may have been missed.

Preventing Rootkit Execution There are also efforts
that aim to prevent kernel rootkit execution. For example,
Livewire [Garfinkel 2003] is a software virtualization-based
intrusion detection system that aims to protect the guest OS
kernel code and critical data structures from being modified.

SecVisor [Seshadri 2007] enforces kernel code integrity by
leveraging hardware virtualization support. NICKLE [Riley
2008] proposes a memory-shadowing scheme that ensures
only authenticated kernel code be fetched and executed in
the kernel space. Other approaches such as driver signing
[Microsoft] and various forms of driver verification [Kruegel
2004, Wilhelm 2007] have also been proposed to protect
kernel integrity. Interestingly, though these systems arepri-
marily developed to enforce kernel integrity, they might be
adapted to serve as instantaneous rootkit detection systems.
The concept of on-the-fly emulation of malicious code has
been studied at the user-level [Portokalidis 2008]; in this
work we apply the concept to kernel-level rootkit profiling.

8. Conclusion
We present the design, implementation, and evaluation of
PoKeR, a kernel rootkit profiler that produces multi-aspect
rootkit profiles which include hooking behavior, targeted
kernel objects, user-level impacts, and executed rootkit code.
In particular, via the combat tracking technique, PoKeR
maintains a map of dynamic kernel objects, which allows
it to accurately determine which kernel objects are modified
by a rootkit. PoKeR is also able to extract the executed root-
kit code and infer the potential impact the rootkit might have
on user-level programs. PoKeR is evaluated using 10 real-
world kernel rootkits, the profiles of which reveal a variety
of attack methodologies and demonstrate PoKeR’s effective-
ness as a rootkit analysis aid.
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